Eigenmode Compression for Modal Sound Models

Timothy R. Langlois

Steven S. An

Kelvin K. Jin Doug L. James

Cornell University

Figure 1: Eigenmode Compression: (Left) This complex Heptoroid model’s displacement eigenmode matrix has 194 audible modes, 81884
vertices, and consumes 186 MB. By approximating each eigenmode with moving least squares (MLS), and nonlinearly optimizing the control
points (shown in white), we compressed the entire model down to 3.1 MB—a 60:1 compression ratio—with negligible audible difference.
(Middle) mode #17 (2.67 kHz, 276 MLS control points), (Right) mode #53 (5.21 kHz, 610 MLS control points).

Abstract

We propose and evaluate a method for significantly compressing
modal sound models, thereby making them far more practical for
audiovisual applications. The dense eigenmode matrix, needed to
compute the sound model’s response to contact forces, can consume
tens to thousands of megabytes depending on mesh resolution and
mode count. Our eigenmode compression pipeline is based on non-
linear optimization of Moving Least Squares (MLS) approxima-
tions. Enhanced compression is achieved by exploiting symmetry
both within and between eigenmodes, and by adaptively assigning
per-mode error levels based on human perception of the far-field
pressure amplitudes. Our method provides smooth eigenmode ap-
proximations, and efficient random access. We demonstrate that, in
many cases, hundredfold compression ratios can be achieved with-
out audible degradation of the rendered sound.
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1 Introduction

3D modal sound models are one of the most effective and widely
used techniques for rigid-body sound in animation and virtual en-
vironments. These methods benefit from the ability to precompute
a solid object’s eigenmode matrix and eigenfrequencies, to enable
rapid integration of decoupled eigenmode vibrations, which are lin-
early composed for sound synthesis; since we do not hear object
vibrations directly, acoustic transfer models can be precomputed
to efficiently estimate sound pressure at the virtual listeners’ po-
sitions. Previous decades have seen various advances to improve
their speed, real-time performance, quality, measurement, contact
dynamics, and acoustic radiation modeling, all to generally make
them faster and better.

Unfortunately, despite their
success,  high-quality 3D
modal sound models still
suffer from a serious, basic
limitation: high memory
requirements. Simply storing
the precomputed displace-
ment eigenmode matrix U, a
large dense N-by-M matrix
for N/3 vertices and M
modes, requires N M floats—tens to hundreds of megabytes even
for small objects, dwarfing the size of other sound-model data,
such as acoustic transfer. The problem is worse for larger and
more complex objects, since they can have larger meshes (larger
N) and more audible eigenmodes (larger M). For example,
simply scaling up a large bronze bowl can quickly reach 1 GB
of eigenmode storage (see inset). To make matters worse, future
virtual worlds will involve not just one, but many distinct sound
objects, each contributing to potentially massive memory overhead.
Multi-gigabyte footprints are unacceptable and highly impractical
for many applications. Unfortunately, without knowing where
the objects are hit, or how they are temporally driven, or where
the listener will be, there is no principled way to a priori discard
eigenmodes without potentially degrading the achievable sound
quality.
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To address this memory bottleneck without degradation to high-
quality modal sound, we propose an eigenmode compression
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scheme that exploits the fact that (i) only sparse evaluation of eigen-
modes is required, i.e., at contact locations, and (ii) larger relative
errors are possible due to human hearing perception and varying ra-
diation efficiency of eigenmodes. Given the eigenmode matrix, our
automated compression pipeline builds an optimized Moving Least
Squares (MLS) approximation for each eigenmode’s smooth vertex
displacement field (see Figure 1). Nonlinear optimization of MLS
sample points and weights is used to minimize fitting error for a
given number of sample points. To find the bounded-error approx-
imation with smallest sample size, we also search over the number
of MLS samples used.

We can achieve further compression by exploiting human percep-
tion of mode loudness. The main result we use is loudness de-
pendence: humans’ ability to distinguish amplitude differences de-
creases with quieter sounds [Fastl and Zwicker 2006], and per-
ceived loudness is frequency dependent. By computing the ex-
pected loudness of each eigenmode (using an acoustic transfer
model), we assign more error to quieter modes, thereby increas-
ing compression without sacrificing quality. Importantly, assigning
larger tolerable errors at very high frequencies (nearing the limits
of human hearing) helps counteract the high geometric complexity
of these rapidly oscillating modes.

To further increase compression, we exploit the fact that many man-
made objects are symmetric, and their eigenmode matrices also
possess symmetric structure. There are two types of symmetry we
exploit (see Figure 2). First, in the case of intra-modal symmetry,
we only need to store a small piece of a mode shape, and can use
symmetry transforms to reconstruct the entire eigenmode from this
piece. Second, some objects also exhibit inter-modal symmetries,
where one mode is a rotation of another mode of the same eigen-
frequency. In this case, we only need to store one mode of the pair.

Finally, we present results for numerous objects that demonstrate
our method’s ability to achieve high compression ratios without no-
ticeable degradation (see Figure 3 and §7).
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Figure 2: Eigenmode Symmetries: (Left) Intra-mode or self
symmetry occurs when only a part of a mode (the indicated slice)
must be represented, since the whole can be reproduced via symme-
try transformations. (Right) Inter-mode symmetry occurs when a
degenerate eigenmode is a transformed (here rotated) copy of an-
other. Exploiting both symmetries here already gives 12X compres-
sion, and we further compress the slice. Figures are colored based
on the magnitude of the eigenmodes, using the colormap shown.
(Top down view of the Large Bowl model shown)

2 Related Work

Modal sound models are widely used in computer music and graph-
ics, and modal vibration analyses are standard in engineering acous-
tics [Shabana 1990; Howe 1998]. Modal sound synthesis is a popu-

lar technique for producing plausible sounds of rigid objects [Cook
1995; van den Doel and Pai 1996; Cook 2002], and a high-quality
modal sound is a long-standing goal in computer sound [Adrien
1991]. Popularized for use in rigid-body computer animation over
a decade ago [van den Doel et al. 2001; O’Brien et al. 2002], many
subsequent works make use of precomputed eigenmode matrices of
3D objects, e.g., using finite element analysis [O’Brien et al. 2002],
for efficient runtime sound synthesis [James et al. 2006; Raghu-
vanshi and Lin 2006; Bonneel et al. 2008; Chadwick et al. 2009;
Zheng and James 2010; Zheng and James 2011; Chadwick et al.
2012]. Unfortunately all of these approaches can suffer from large
memory requirements unless small mesh resolutions, or limited ac-
curacy sound approximations are used.

The high-cost of 3D physics-based modal sound models has been
avoided in various ways in the past. Modal oscillator models can
use simplified forcing models, without the need for spatial eigen-
mode data or finite element analyses [Cook 2002]. Van den Doel
and Pai [1996] exploited modal “gain maps” based on analytical
representations of eigenmodes, which avoid storage issues, but are
restricted to special classes of resonators, e.g., planar membranes
approximated by analytical solutions to the wave equation. Modal
models and gain maps can also be estimated empirically from mea-
sured sound samples [van den Doel et al. 2001], and automated
using robotic measurement [Pai et al. 2001] with adaptive sam-
pling [Richmond 2000]. Arbitrarily high compression can be ob-
tained by using highly simplified response models, e.g., in [van den
Doel et al. 2001] the modal “gain map” for a wok is interpolated
from just five measured points. In contrast, we attempt to en-
able high-resolution eigenmode representations for detailed sound
models. Many techniques have been introduced to accelerate the

676 MB —> 13.7 MB

Figure 3: Compression Benefits: Eigenmode memory require-
ments for large simulations are drastically reduced without audi-
ble differences. (Left) 191 Letters are dropped into a large bowl.
(Right) 125 Rocks fall out of a backhoe scoop.

1.1 GB — 8.3 MB

modal sound synthesis by simplifying sound computations. Van
den Doel et al. [2004] use knowledge of human perception and au-
ditory masking for runtime culling of modes which are either not
sufficiently excited or audible. This accelerates runtime synthesis,
but does not address the runtime memory costs of eigenmode ma-
trices, since all modes must still be available in case they are not
culled. Raghuvanshi and Lin [2006] reduce eigenmode memory
and synthesis costs by aggressively combining modes whose fre-
quencies differ by less than the human frequency discrimination
limit, achieving a space reduction factor of about 15. However, this
approach can introduce large errors depending on where the ob-
ject is hit, how it is driven, e.g., at a mode’s resonance, or where
the listener is positioned (when acoustic transfer is used). In con-
trast, we do not discard any modes (although runtime culling could
still be used), and we achieve a much higher compression ratio,
without introducing audible errors or subtle effects, e.g., like “beat-
ing” of nearby modes which can be perceptually important, such as
for bells. Methods for auditory culling and spatial level-of-detail
can reduce the number of sound sources at runtime [Tsingos et al.
2004], or aggressively cull modes [Grelaud et al. 2009], or delay
or reduce mode simulation costs [Bonneel et al. 2008], but do not
provide sound model compression.



Proxy sound models based on ellipsoidal soundbanks [Zheng and
James 2010] can avoid the need to build and store object-specific
modal models, however the soundbank can itself have an enormous
memory footprint, which our method can compress dramatically.
Instancing methods are often used to support sound synthesis with
many objects, e.g., [Bonneel et al. 2008], simplifying precomputa-
tion, but not avoiding the storage of at least one sound model.

High-quality sound pressure can require acoustic transfer functions,
which add additional storage requirements of, e.g., multipole ex-
pansions [James et al. 2006; Zheng and James 2010]. However,
these costs are an order of magnitude less than for the eigenmode
matrix in all of our experiments.
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Figure 4: Linear Vibration Modes: Three displacement eigen-
modes W’ of the Dinner Plate model. We approximate the eigen-
mode values on the surface, which are needed to compute the sys-
tem’s response to external contact forces f via dot products, (u’ ef).

Mode 4, 2.6 kHz

We use MLS approximation, which has seen various applica-
tions in computer graphics for surface reconstruction [Fleishman
et al. 2005; Sorkine and Cohen-Or 2004], defining implicit sur-
faces [Alexa et al. 2001; Shen et al. 2004], image deforma-
tion [Schaefer et al. 2006], and interpolating scalar fields [Jin et al.
2009]. We use MLS approximations and heavily optimize their
control parameters, and exploit symmetries, to compactly represent
M eigenmode vector fields per object.

Eigenmode compression is related to compressing collections of
mesh displacement fields. Many mesh animation compression
schemes use principal components analysis (PCA) or other data
reduction techniques to decorrelate the displacement fields [Alexa
and Miiller 2000], however these do not address how to compress
the mode basis itself. Seo et al. [2011] considered the problem
of compressing blend shapes for animation, however their method
exploits the sparsity of deformation fields which does not apply
to global eigenmodes. Second-generation wavelets [Schroder and
Sweldens 1995; Kolarov and Lynch 1997] offer another approach
to compressing surface displacement field operators, such as for
“spiky” Green’s function displacement fields to support fast wavelet
summation [James and Pai 2003], and have been used to com-
press parametrically coherent mesh animations [Guskov and Kho-
dakovsky 2004]. However, they are less ideal for compressing
pseudo-band-limited eigenmodes with sparse random access, es-
pecially when mode-specific mesh patches are needed to exploit
symmetry.

There exists a large body of work in computer graphics on an-
alyzing, detecting, and processing symmetry [Mitra et al. 2012].
One of the major applications of symmetry research is indeed com-
pression [Simari et al. 2006], and many researchers have proposed
different methods for analyzing and representing symmetric ob-
jects [Lipman et al. 2010; Mitra et al. 2006]. Our approach builds
upon the work of Martinet et al. [2006], which we extend to detect
geometric and modal symmetries simultaneously.

3 Background

Before explaining our compression approach, we briefly summa-
rize the 3D modal sound model employed (which is identical

to [Zheng and James 2010]), and discuss its memory requirements.
We start with the equation of motion for a 3D linear elastody-
namic model [Bathe 1996], M u(t) + Cu(t) + Ku(t) = £(¢)
where u € RY is the vector of N/3 nodal displacements, and
M, C = aM+ 8K, K € RV *Y are the mass, Rayleigh damping,
and stiffness matrices, respectively; f € R” represents any external
nodal forces, such as contact forces, which act to excite vibrations.
Modal analysis of linear finite element models is standard in graph-
ics and engineering (see [Shabana 1990; Bathe 1996]), and decou-
ples the N equations of motion into independent simple harmonic
oscillators. It amounts to first solving the generalized eigenvalue
problems, Ku’ = w? M w’, for the eigenvectors u’ and nonzero
eigenvalues w]2~, with j=1... M. Here u’ represents the ;" nor-
mal vibration mode’s nodal displacement field, and wyj is its natural
frequency of vibration; M is the number of eigenmodes with fre-
quencies within the audible frequency range of interest (20 Hz —
20 kHz). Some vibration modes are illustrated in Figure 4. The
eigenmode matrix of interest is then

N XM
U= |u' v? .-+ uM|eR

and can be normalized such that UTMU = I. Letting u(t) =
U q(t), where g € RM are modal amplitudes, the equation of mo-
tion for the j** mode becomes

5(t) + (4 Bwi) 4; () + wj q;(t) = v’ o £(t) (1)

and can be solved rapidly during sound synthesis [van den Doel
et al. 2001]. Note that the eigenmodes U are needed at runtime to
project the contact forces f into the modal subspace, i.e., via UTf,
and require NV M floats of storage. For contact sound synthesis, one
immediate source of compression is that only surface U values are
needed, and so, for convenience (but a slight abuse of notation), we
will hereafter assume that N refers to surface degrees of freedom.

The other significant storage requirement for high-quality modal
sound is an acoustic transfer model to estimate sound pressure.
Without loss of generality, the sound at position « and time ¢ can be
approximated as Ejle |pj ()| q;(t), where p;(x) is the acoustic
pressure due to a unit-amplitude oscillation of mode j. Here it is
approximated by the single-point multipole expansion
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where k; = wj/c is the wavenumber, hf) is a spherical hankel
function of the second kind, and ¢;,, € C are the (n; + 1)?
multipole expansion coefficients that must be precomputed and
stored. For sufficient accuracy, the expansion order is set to 7 =
max(1k;L,4), where L is the diameter of the object [Zheng and
James 2010; Liu 2009]. We note that, for all models we have ana-
lyzed, storage requirements for the uncompressed mesh-resolution-
dependent eigenmode matrix, U, are at least an order-of-magnitude
larger than for the multipole coefficients, c.

4 Eigenmode Approximation

We now describe how we fit each eigenmode u? with an optimized
Moving Least Squares (MLS) approximation, @’, such that its ap-
proximation error € is below a mode-specific error bound, £(0?) <
Eqou> W Use arelative £ error norm, e(#) = |[u—1|[2/||ul|2. The
MLS approximation has a number of desirable features for eigen-
mode approximation: it provides a smooth approximation suitable



for approximating both low- and high-frequency eigenmodes of
varying complexity; we can optimize the number of MLS samples
and their parameters (positions and weights) to minimize fitting er-
ror while achieving high compression; it is a meshless approxima-
tion that accepts flexible input data, and simplifies implementation;
it provides random-access eigenmode evaluation at O(1) cost at run-
time; it can be adapted to exploit symmetry; and it efficiently inter-
polates samples across thin volumes. We note that this is an asym-
metric compression scheme: high compression is achieved using a
computationally expensive MLS-fitting preprocess, but subsequent
random-access decompression is fast. In later sections, we also de-
scribe how we gain further compression by: (1) when appropriate,
we exploit intra- and inter-mode symmetry, and (2) we adjust each
mode’s error level €7 a1 Dased how well it radiates, as well as human
frequency and amplitude perception.

4.1 Moving Least Squares

We seek to find a set of 3D control points p = (p;)j=, with as-
sociated displacement values w = (w;)j—; from which an MLS
approximation can reconstruct the original mode accurately. Once
we have them, we can evaluate a scalar component of the mode
at , by first constructing an m-degree polynomial, f(p — ) =

cTb(p — ) € 113, with d= (33T$)! coefficients ¢ € R?, where
b(p — x) € R? is a vector of monomial basis functions. Given
the control parameters p and w, the coefficients c are computed by

minimizing the MLS error,

¢’ =arg mclnz [w; — f(pi — )] O(pi —x).  (3)
i=1

Each zyz component of f is computed separately, by replacing w;
with w; 5, W; 4, or w; . in (3); we use a QR factorization to solve
the least-squares problem, which involves solving with three (xyz)
right-hand sides. Once f is fitted, the mode approximation at vertex
x is simply f(0). The weighting function 6 controls the influence
of each control point; we use the adaptive 6(v) = exp(—||v||?/h?)
defined in [Pauly et al. 2002], where h = r /3, with r the radius of
the enclosing sphere of the k nearest neighbors of . This weight
function allows the approximation to adapt to varying control point
densities, and also improves performance since it is essentially zero
for control points with ||p; — x|| > r.

Storage and evaluation speed: Unless otherwise stated, we use
cubic approximation, m = 3, and k = 28 nearest neighbors when
choosing and optimizing control points. Storage of the MLS rep-
resentation for an eigenmode with n; control points requires 6m;
floats (3 for each p; and w;). The time required to approximate
a mode value using the MLS representation is very fast, and still
enables real time performance. In our implementation, evaluation
takes about 4015, and involves finding the k nearest control points
(using a kd-tree), and solving the 3 linear systems of size k X d.
Detailed timing statistics are given in §7.

Control point initialization using adaptive MLS: The key step in
MLS compression is to choose where to place our n control points.
We initialize their placement using the greedy selection method
of [Sorkine and Cohen-Or 2004]. Since we need at least d con-
trol points to ensure the linear system is not under-determined, we
first randomly pick d mesh vertices as control points, setting their
weights w to vertex displacements u. We then iteratively improve
the approximation by adding the vertex with the highest eigenmode
error as the next control point, until the error reaches g4 or the
desired number of control points n is attained. This approach could
quickly reach €40 With a modest number of sample points (< V)
for all examples we tested.

—Adaptive MLS
—Optimized MLS

Error level
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Figure 5: MLS error convergence versus n: Adaptive MLS pro-
vides fair compression at the target error, €g40a1 = 0.084, but our
optimized MLS fit requires even fewer control points (lower n).

4.2 Control Point Optimization

By further optimizing the n control points and weights, we can sig-
nificantly improve compression over adaptive MLS (see Figure 5).
Since the MLS approximation, 14, is a function of the controls p,
w € R3", we optimize their values using the nonlinear least-
squares optimization of eigenmode error at vertices V,

min [[{i(p, w) — ul|3 = min > _ || — w[3. 4)
p,w pP,w iev

We perform this nonlinear least-squares optimization using the
Levenberg-Marquardt (LM) algorithm; we use the Ceres Solver im-
plementation [Agarwal et al. ] which uses automatic differentiation
to compute the Jacobian J = Va(p, w).

Multi-level optimization: Since the compressed models have very
few control parameters, 6n, the bottleneck of each LM iteration is
not its linear solve, but rather the Jacobian computation which has
cost dependent on the number of vertices, |V| > 6n. To reduce
this cost, we use a 3-stage multi-level approach: we first run LM
to convergence using only /16 of the vertices, V1/,4, then improve
this initial guess by running LM to convergence using 1/4 of the
vertices, \71/4, and finally we use all of the vertices, V, as in (4).
This dramatically reduces the number of expensive all-vertex Jaco-
bian evaluations, since there are much fewer expensive LM itera-
tions due to the improved starting guess. We use non-nested vertex
sets, V1/,6 and V1/,, where each is half randomly sampled, and half
importance sampled from ||u;|| to avoid missing localized modes.

Minimizing n: Highest compression for mode j means finding the
fewest control points, n;, with bounded error, (/) < Eqou+ UN-
fortunately the optimization process only adjusts the control points,
(p, w), but cannot add or remove them. We use a simple binary
search to determine the smallest n; with e(@i’) < € 301> DY TEpEAL-
edly bisecting the minimum and maximum number of controls and
optimizing them—the minimum 7 is initialized to lynin = d, and the
maximum [max is taken as the number of greedily chosen adaptive
MLS points. To save time on large examples, we “early exit” the

expensive V-level LM optimization when the error falls below sg(,al.

5 Exploiting Symmetry

Many objects, especially manufactured ones, are symmetric. If
their modes also exhibit symmetries, we can increase the amount
of compression by only storing parts of some modes, and using
symmetry to reconstruct the rest. We first analyze the geometry to
detect any cylindrical, n-way rotational, and mirror symmetries us-
ing the method of [Martinet et al. 2006]. If approximate eigenmode
symmetries exist, then we proceed to exploit them as follows.
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Figure 6: Intra-mode symmetry examples: (Left) mirror symme-
try, (Middle) 4-way rotational symmetry, plus several mirror sym-
metries; (Right) cylindrical symmetry.

Mode 15, 9.3 kHz

5.1 Intra-mode symmetry

The first symmetry we exploit is intra-mode or self symmetry (see
Figures 2 and 6). We slightly modify the geometric-symmetry
method of [Martinet et al. 2006] to detect object and eigenmode
symmetries simultaneously. Instead of a purely geometric gener-
alized moment function, we compute the generalized geometry-
eigenmode moment function of order 2p,

MW@=/|bmmemW@, )
seS

where s is a vector from the surface’s center of mass to a point on
the surface, S. It follows that their real-valued spherical harmonic
representation is given by

P
MP () = Z Cr,, Yai'(9), (©6)

=0 m=-2l
Cif =55 [ IS lja(s) D57 (Re) ds. )
s€

where formulae for S% and D3, (Rs) are given in [Martinet et al.
2006]. By searching among roots of VM?? (%) =0, we find candi-
date symmetry axes, and then classify the symmetries of the eigen-
mode magnitudes as either cylindrical, n-way rotation, or mirror
symmetries as described in [Martinet et al. 2006]. In our imple-
mentation, we use order 2p = 8 moment functions.

Patch Extraction: After detecting symmetries using our general-
ized moment function, we find a patch of the object to approxi-
mate with MLS for storage. First, the symmetries are sorted in
order of their expected compression contribution: cylindrical sym-
metries, n-way rotational symmetries, and finally mirror symme-
tries. Then the symmetries are checked in order. If a symmetry
works for the current set of vertices, only a patch of the vertices are
MLS-compressed and stored, and the process continues with this
patch. For cylindrical symmetries, we store a 5° slice of the ob-
ject’s surface. For mirror symmetries we store one side of the mir-
ror. For n-way rotational symmetries, we only need to store a 22°
slice. However, often there are orthogonal mirror symmetrles to
the n-way rotational symmetries which can provide additional sav-
ings. Therefore, when choosing which slice of an n-way symmetry
to store, we search the remaining symmetries for any orthogonal
mirrors, and position our slice to take advantage of one of them, if
found (see Figure 7).

Displacement transformation: After finding a direction-invariant
symmetry, |[u(z)|| = |[u(Rx)|| for some R symmetry transfor-
mation, it still remains to determine any orthogonal transformation

Do >

Figure 7: Intra-mode symmetry example: Starting with a full
mode (a), we detect symmetries and only save a small patch of the
mode. In (b), a 4-way rotational symmetry is used, and in (c), a
mirror symmetry is exploited.

needed to match the eigenmode patch’s vector displacements. We
use a least-squares solve on vertex data to estimate any (orthog-
onal) displacement transformation, T' (with ||T"||2 & 1) such that
u(z)=Tu(Rx).

Symmetry tolerances: Given the approximate nature of discrete
eigenmode symmetry (due to meshing, MLS interpolation, numer-
ical eigenanalysis, etc.) we use a tolerance when confirming eigen-
mode symmetry; in our results, we use 0.02.

5.2 Inter-mode symmetry

Beyond symmetry within a single mode, an interesting character-
istic of cylindrically and n-way rotationally symmetric objects is
that they can have degenerate eigenmodes, i.e., modes with near-
equal eigen-frequencies, which form rotationally congruent pairs
(see Figures 2 and 8). If we can detect a congruent pair (j, j'), we
only need to store one of them along with the relative rotation which
maps one to the other. We detect these pairs by summarizing the an-
gular structure of the modes in a low-dimensional Fourier basis to
find a candidate rotation, and then perform a rigorous verification
of the candidate. Furthermore, we observe that congruent pairs are
usually close to each other in frequency, so instead of doing this
for all pairs (j,5’), we only do it for pairs such that j' = j + 1
(assuming modes are numbered in order of increasing frequency).

w8 Y ¢
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Figure 8: Inter-mode symmetry: Pairs of rotationally congru-
ent eigenmodes (shown here for Lego and Wine Glass models) just
need to store one of the modes and a relative rotation.

For a given pair of modes (7, j'), we first focus on the problem of
finding a best rotation angle ¢; ;» about a known symmetry axis.
For mode j, we compute Fourier-like moments,
=[5 [u/ ()| ™™ dS,, m=—m...m
that descrlbe the mode’s amplitude varlatlon about the rotation axis,
Al(g)y="_  al, e ™2,

In our implementation we use m = 30. Much like the general-
ized moment function M, this representation allows us to efficiently

search for candidate rotation angles that map u’ to u’ ", For two

y .
ol = A7 (¢ + ¢;,5), it fol-
lows that a?, = al,e"™%a.b. Therefore, we can estimate the rota-
tion angle by considering the near-zero minima of

congruent modes (4, 5) that have A7 (¢)
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Given the global minima of E(¢), we verify that the modes are
congruent by evaluating the relative global error,
u () H dSz,

/
(®)

where the look-up at the rotated position, u’ ' (R%J_, x), is approx-
imated using MLS on the mode’s vertex data (using m =0, k =3).
In this way, we consider all geometric cylindrical and n-way rota-
tion symmetry axes, estimate the best rotation angle for each, and
take the symmetry with the lowest feasible global error.

W) R (e, o) as. ) [

Symmetric Acoustic Transfer: One additional benefit of detect-
ing congruent eigenmodes, is that their acoustic transfer functions
are also congruent fields. Therefore it is only necessary to com-
pute acoustic transfer multipole coefficients for one of the modes,
and the other one is obtained by rotating the multipole expansion
coefficients using standard spherical harmonic techniques.

5.3 Runtime Evaluation

Given an external force f; € R? acting on node ¢ at vertex position
x, we evaluate each eigenmode’s value @’ (), and evaluate the dot
product @i’ (x) e f; required to force each mode j. To evaluate a
Q(x) value (dropping the j superscript) for a mode with symmetry,
we transform  to its symmetric image location, &, perform the
MLS lookup @' ('), then apply T to get the final .

Mode Caching: Simulations will often apply contact forces to the
same vertex repeatedly, e.g., during sliding or resting contact. Con-
sequently, repeated reconstruction of identical mode values can en-
sue, which is wasteful. We therefore allow a small cache of re-
cently reconstructed vertex mode values, and reuse them if they are
repeatedly queried. For simulations with persistent and/or resting
contacts we often observe a cache hit rate > 99%, whereas simula-
tions dominated by rolling have very poor cache hit rates.

6 Perceptually Based Error Allocation
Choosing good MLS fitting error tolerances, &, are critical, as
they control the balance between compression and quality. While
one could simply set all £, to a conservatively small value which
guarantees no audible difference will be heard (e.g., 2.3% would en-
sure an imperceptible 0.2 dB difference), much higher compression
can be obtained (especially at high frequencies) without sacrificing
quality by setting per-mode errors based on human perception of
each mode’s sound. We incorporate three factors: (1) vastly differ-
ent eigenmode loudness due to radiation efficiency, (2) frequency-
dependent hearing sensitivity, and (3) a perceptual model of just
noticeable differences (JND) in sound amplitudes.

We reason about the relative loudness of mode j by considering
its far-field radiated power for a random excitation; we estimate a
relative average pressure as proportional to ||[u? || ||c’|| £/ (w?)? (see
Appendix A for a derivation). Since the average far-field pressure
is only proportional to this value, we shift the dB pressure values
by pz}gf * so that the maximum modal pressure occurs at 60dB.
After calculating the average pressure for a mode, we weight it with
the ISO-226 equal-loudness curve (see Figure 9), which normalizes
sound pressure levels at different frequencies to more accurately
represent human hearing. Since this ISO standard is only defined
up to 12.5 kHz, we extended it using data from [Ashihara 2007]:
we fit a cubic spline to interpolate the ISO data, and added three
additional (frequency, SPL) points: (16 kHz, 41.8 dB), (18 kHz, 64
dB), (20 kHz, 89.9 dB).

The final representative modal pressure amplitude combining these
factors is

- NS -
v = 20105 (P10 ) “1s022600) 5357 0

SPL (dB)

10° 10° 10"
Frequency (kHz)

Figure 9: Extended ISO-226 Frequency Weighting

We then use this weighted average pressure to set a compression
error level so that the rendered differences are expected to be near
the JND. Studies in psychoacoustics have determined that humans’
ability to distinguish amplitude differences in sounds varies with
the sound’s loudness, with larger differences tolerated at lower am-
plitudes [Fastl and Zwicker 2006] (see Figure 10). Given an ac-
ceptable pressure amplitude difference Ap (in dB) for a mode, the
corresponding error is €gal = 1047/2°_1. Based on JND amplitude
differences Ap for a single tone at different amplitudes pqp ([Fastl
and Zwicker 2006], p.180), we model the acceptable error level us-
ing the power-law approximation, ¢ = 1.5 (pq B)_D'g (shown in
Figure 10). The effect of perceptual weighting on MLS compres-
sion is shown in Figure 11. Graphs of relative pressure estimates
(9) and the resulting allocated per-mode error levels €, are shown
in Figure 12 for several objects.

Figure 10: Amplitude Just No- o]’
ticeable Differences are given o '
for a 1 kHz tone at different am- _oss
plitudes, along with the power- %
law approximation we use.
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Figure 11: Benefits of perceptual weighting: Perceptually based
error allocation allows fewer points to be used for quieter modes,
compared to setting a constant €goq = 0.037 (0.32 dB)—the small-

est error our model will assign. (Results are for the Dinner Plate.)

7 Results

We present compression statistics in Table 1 for numerous mod-
els. The most complex nonsymmetric and symmetric models are
the Heptoroid (see Figure 1) and the Large Bowl, respectively, and
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woal are used for modes which are either quieter

or occur at frequencies of less perceptual importance; (Bottom) representative far-field modal pressures (normalized to 60dB) used in our
error model, with ISO-226 weighting applied. Note that quieter modes are allocated larger MLS error goals, whereas the loudest modes are

allocated the smallest errors. We clamp the maximum error to 1.

Model Geometry MLS Transfer Symmetry
Uncompressed ~ Adaptive ~ Optimized  Optimized | Multipole  Sym Multipole Symmetry-  # of congruent
vertices M D (cm) size (kB) size (kB) size (kB) R size (kB) size (kB) only R pairs
Large Bowl 70276 1194 200 983311 14835 7366 133:1 215715 163762 42:1 286
Backhoe Bucket 99253 494 96 574582 19734 9989 57:1 16353 16353 1.1:1 0
Heptoroid 81884 194 30 186158 6497 3064 60: 1 470 470 1.0:1 0
Bell 41974 134 30 65912 408 200 329:1 2026 1668 1.6:1 23
Lego (huge) 7706 121 10 10927 319 183 59:1 111 88 32:1 26
Dinner Plate 50214 59 23 34718 74 39 897:1 182 135 46:1 17
Wine Glass 51434 46 19 27726 41 26 1061 : 1 108 69 57:1 16
Number 8 7843 37 30 3401 90 38 89:1 199 199 1.6:1 0
Letter A 7534 34 30 3002 88 42 71:1 167 167 20:1 0
Ellipsoid DB 6916 3037 40 251488 3602 2515 100: 1 30463 30463 51:1 0
Rocks 3057 2727 26 101338 8444 3720 27:1 5606 5606 1:1 0

Table 1: Compression Statistics including compression ratios (R), transfer sizes, symmetry information, and the diameter (D) are given for
various models. For transfer sizes, we report the total size and the size if only one of each congruent pair is stored. For the ellipsoid database
of 71 ellipsoids, and the collection of 38 rock models, we report the total sizes and compression ratios, as well as the average number of

vertices per model.

both cases observe excellent compression. For brevity, selected
representative results are provided for collections of processed ob-
jects: plastic letters of the alphabet and plastic numerals. Please see
the accompanying video for demonstrations, and comparisons of
sounds generated using the uncompressed (before) and compressed
(after) models. We provide comparisons for (i) before/after point-
like impact sounds, and (ii) before/after sounds produced by various
animations involving rigid-body contact dynamics. In both cases,
compression introduces very negligible (if any) audible sound dif-
ferences, as desired.

For all models, the surface mesh we use is the surface of the tetra-
hedral mesh used for the eigenmode analysis. The tetrahedral mesh
was chosen to conform to the original geometry well. The num-
ber of surface vertices directly determines the uncompressed size
of the eigenmode matrix, and while coarser meshes could be used,
they will give coarser approximations of the eigenmodes.

Implementation details: Modal analysis and acoustic transfer
computations are done using the implementation described in
[Zheng and James 2010]. Rigid-body dynamics are simulated using
a solver based on [Guendelman et al. 2003]. All timing statistics are
run on a machine with four Intel Xeon 7560 processors at 2.27GHz.

Ellipsoidal proxy soundbank: We compressed ellipsoid sound
models from the ellipsoidal soundbank of [Zheng and James 2010].
Each ellipsoid was processed at the maximum size it could be used
at (we chose to scale each ellipsoid so the maximum bounding box
dimension was 40cm). For each ellipsoid mode with index m, the

final compression level was calculated as &g, = min eém]. This
j>m b

thresholding ensures that whenever the ellipsoid pro;ies are scaled
down, the error level for each mode never increases. Despite these

conservative error levels, by exploiting symmetry, we achieved a
high compression ratio (100X ) without introducing perceptible er-
ror (see Table 1). Surprisingly, at these compression rates, all
compressed eigenmodes of the soundbank consume nearly as little
memory as a single uncompressed model, greatly improving prac-
tical uses.

Symmetry: Applying intra- and inter-mode symmetry-based com-
pression alone we observed up to 5.7 x compression (see Table 1).
Models with a large number of inter-mode congruent pairs, such
as cylindrical models, e.g., 286/1194 modes (24%) for Large Bowl,
were a particularly effective source of compression.

Comparison (Varying MLS polynomial degree, m): While we
tend to use cubic m = 3 degree MLS approximations due to their
good compression, lower degrees are also possible when faster re-
construction is desired. A comparison of compression and recon-
struction costs for varying degree, m, is shown in Table 2.

Opt. Adaptive Opt. Adaptive Avg. vertex
m | size (kB) size (kB) time (m) time(s) MLS time (us)
1 37 71 40 56 2.8
Wine Glass | 2 27 48 23 31 7.8
3 26 43 45 91 33
1 416 493 153 139 3.7
Lego (huge) | 2 226 383 308 87 8.8
3 183 327 388 96 34

Table 2: Dependence of compression and reconstruction costs
on polynomial degree, m.




8 Conclusion

We have presented a method for significantly compressing eigen-
mode matrices used in 3D modal sound synthesis using moving
least squares approximations, and by exploiting symmetry. A per-
ceptually based error model is proposed which allows the use of
larger errors for modes at perceptually quieter frequencies. Over-
all, the method is able to achieve high compression rates, at the cost
of a small runtime evaluation cost at sparse contact points.

Limitations and Future Work: While compressed modes result in
very small differences in the rendered sounds, uncompressed modes
should be used for the best quality. Building complex 3D modal
sound models is expensive, and compression further increases pre-
process times. Faster compression schemes (with better than “adap-
tive MLS” performance) would be useful. Preprocesses which di-
rectly estimate compressed representations would be helpful. Some
applications may wish to use greater compression, which can be
done at the cost of introducing noticeable sound differences. Run-
time evaluation costs are reduced for lower MLS degree, m, which
may be better for real-time applications. Compression factors are
larger (smaller) if higher (lower) resolution meshes are used. Our
perceptual weighting model is based on radiative power, which re-
quires acoustic transfer models for best results. Our approxima-
tion model is based on average-case (relative ¢2) error of the sound
input-output model, however large pointwise relative errors can still
occur depending on the specific location of the contact (input) and
the listener (output). Also, frequency-dependent hearing sensitiv-
ities vary between listeners, and with amplitude, and users may
or may not be able to hear differences. Future perceptual mod-
els might exploit inter-mode masking effects, which can be signif-
icant. Symmetry handling is approximate, and future works could
better exploit it when large perceptual errors are admissible, and
when approximate symmetries exist. Mode compression can result
in acoustic transfer data dominating memory footprints for large
objects, and future work should address the need for perceptually
based transfer models.
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A Derivation of relative mode importance

We now derive the expression for the relative average far-field pres-
sure as proportional to ||[u’|| ||c?||F/(w”)? used when allocating
relative mode errors. Given the pressure is O(|p||q|), we estimate
|g| using the modal response to an impulse £ §(¢),

atBw? £ll=1
q(t) = Le” 5 tsin(wt)(uef) = |q| < % < HWLH
We estimate O(|p|) as proportional to the square-root of (far-field)
radiated power. Consider a unit-amplitude vibration of a single
mode, with acoustic transfer p(x) of (2). The time-averaged radi-
ated power through a surrounding sphere Sr of radius R, is propor-

tional to Pr = [g Ip|?dS = Jsn Ip(z)|? sin @ R? dfd¢ [Howe
1998]. For the far-field power (R — o0) only leading-order 1/r
contributions from p contribute. Since the Hankel functions have
R (kr) ~ i"'e ™" /kr as kr — oo, and using the orthogo-
nality of the spherical harmonics, we find that
Poo =32 300 Smenlen|” = fzllc|%

We then estimate the mode-relative amplitude of the space- and
time-averaged far-field transfer as |p| = v/ P ~ ||c|| 7 /k. It follows
that the relative modal importance is given by ||u’|| ||c? ||/ (w?)?.
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