skip to main content
research-article

Active volumetric musculoskeletal systems

Published:27 July 2014Publication History
Skip Abstract Section

Abstract

We introduce a new framework for simulating the dynamics of musculoskeletal systems, with volumetric muscles in close contact and a novel data-driven muscle activation model. Muscles are simulated using an Eulerian-on-Lagrangian discretization that handles volume preservation, large deformation, and close contact between adjacent tissues. Volume preservation is crucial for accurately capturing the dynamics of muscles and other biological tissues. We show how to couple the dynamics of soft tissues with Lagrangian multi-body dynamics simulators, which are widely available. Our physiologically based muscle activation model utilizes knowledge of the active shapes of muscles, which can be easily obtained from medical imaging data or designed to meet artistic needs. We demonstrate results with models derived from MRI data and models designed for artistic effect.

Skip Supplemental Material Section

Supplemental Material

a152-sidebyside.mp4

mp4

12.9 MB

References

  1. Agur, A. M., Ng-Thow-Hing, V., Ball, K. A., Fiume, E., and McKee, N. H. 2003. Documentation and three-dimensional modelling of human soleus muscle architecture. Clinical Anatomy 16, 4, 285--293.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A Finite Element Method for Animating Large Viscoplastic Flow. ACM Trans. Graph. 26, 3 (July), 16:1--16:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Blemker, S. S., and Delp, S. L. 2005. Three-dimensional representation of complex muscle architectures and geometries. Annals of Biomedical Engineering 33, 5 (May), 661--673.Google ScholarGoogle Scholar
  4. Chen, D. T., and Zeltzer, D. 1992. Pump it up: Computer animation of a biomechanically based model of muscle using the finite element method. SIGGRAPH '92, 89--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Coros, S., Martin, S., Thomaszewski, B., Schumacher, C., Sumner, R., and Gross, M. 2012. Deformable objects alive! ACM Transactions on Graphics (TOG) 31, 4, 69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Delp, S. L., et al. 2007. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54, 1940--1950.Google ScholarGoogle ScholarCross RefCross Ref
  7. English, R. E., Qiu, L., Yu, Y., and Fedkiw, R. 2013. Chimera grids for water simulation. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 85--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Fan, Y., Litven, J., Levin, D. I. W., and Pai, D. K. 2013. Eulerian-on-lagrangian simulation. ACM Trans. Graph. 32, 3 (July), 22:1--22:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Faure, F., Gilles, B., Bousquet, G., and Pai, D. K. 2011. Sparse meshless models of complex deformable solids. In ACM Transactions on Graphics (TOG), vol. 30, ACM, 73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Geijtenbeek, T., van de Panne, M., and van der Stappen, A. F. 2013. Flexible muscle-based locomotion for bipedal creatures. ACM Transactions on Graphics (TOG) 32, 6, 206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gilles, B., Reveret, L., and Pai, D. 2010. Creating and animating subject-specific anatomical models. In Computer Graphics Forum, vol. 29, Wiley Online Library, 2340--2351.Google ScholarGoogle Scholar
  12. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., and Grinspun, E. 2007. Efficient simulation of inextensible cloth. ACM Transactions on Graphics (TOG) 26, 3, 49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Herzog, W. 2004. History dependence of skeletal muscle force production: implications for movement control. Hum Mov Sci 23 (Nov), 591--604.Google ScholarGoogle ScholarCross RefCross Ref
  14. Holzbaur, K., Murray, W., and Delp, S. 2005. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Annals of biomedical engineering 33, 6, 829--840.Google ScholarGoogle ScholarCross RefCross Ref
  15. Hughes, T. 2000. The finite element method: linear static and dynamic finite element analysis. Dover Publications.Google ScholarGoogle Scholar
  16. Irving, G., Schroeder, C., and Fedkiw, R. 2007. Volume conserving finite element simulations of deformable models. ACM Transactions on Graphics (TOG) 26, 3, 13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ito, K., and Kunisch, K. 2008. Lagrange Multiplier Approach to Variational Problems and Applications. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lee, S.-H., and Terzopoulos, D. 2008. Spline joints for multibody dynamics. In ACM Transactions on Graphics (TOG), vol. 27, ACM, 22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lee, S., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Transactions on Graphics (TOG) 28, 4, 99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lee, D., Glueck, M., Khan, A., Fiume, E., and Jackson, K. 2012. Modeling and simulation of skeletal muscle for computer graphics: A survey. Foundations and Trends in Computer Graphics and Vision 7, 4, 229--276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Levin, D. I. W., Litven, J., Jones, G. L., Sueda, S., and Pai, D. K. 2011. Eulerian solid simulation with contact. ACM Transactions on Graphics (TOG) 30, 4, 36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Levin, D. I. W., Gilles, B., Mädler, B., and Pai, D. K. 2011. Extracting skeletal muscle fiber fields from noisy diffusion tensor data. Medical Image Analysis 15, 3, 340--353.Google ScholarGoogle ScholarCross RefCross Ref
  23. Li, D., Sueda, S., Neog, D. R., and Pai, D. K. 2013. Thin skin elastodynamics. ACM Transactions on Graphics (TOG) 32, 4, 49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Liu, L., Yin, K., Wang, B., and Guo, B. 2013. Simulation and control of skeleton-driven soft body characters. ACM Transactions on Graphics (TOG) 32, 6, 215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Maas, H., and Sandercock, T. G. 2010. Force transmission between synergistic skeletal muscles through connective tissue linkages. J. Biomed. Biotechnol. 2010, 575--672.Google ScholarGoogle ScholarCross RefCross Ref
  26. Misztal, M., Erleben, K., Bargteil, A., Fursund, J., Christensen, B., Bærentzen, J., and Bridson, R. 2012. Multiphase flow of immiscible fluids on unstructured moving meshes. In Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 97--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Nardinocchi, P., and Teresi, L. 2007. On the active response of soft living tissues. Journal of Elasticity 88, 1, 27--39.Google ScholarGoogle ScholarCross RefCross Ref
  28. Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006. Physically based deformable models in computer graphics. In Computer Graphics Forum, vol. 25, 809--836.Google ScholarGoogle ScholarCross RefCross Ref
  29. Ng-Thow-Hing, V., and Fiume, E. 2002. Application-specific muscle representations. In Graphics Interface, vol. 2, Citeseer, 107--16.Google ScholarGoogle Scholar
  30. Ng-Thow-Hing, V., Agur, A., and McKee, N. 2001. A muscle model that captures external shape, internal fibre architecture, and permits simulation of active contraction with volume preservation. In INTERNATIONAL SYMPOSIUM ON COMPUTER METHODS IN BIOMECHANICS & BIOMEDICAL ENGINEERING (5.: 2001: Rome). Anais. Rome.Google ScholarGoogle Scholar
  31. Pai, D. K. 2010. Muscle mass in musculoskeletal models. J. Biomechanics 43, 11 (August), 2093--2098. DOI: 10.1016/j.jbiomech.2010.04.004.Google ScholarGoogle ScholarCross RefCross Ref
  32. Patterson, T., Mitchell, N., and Sifakis, E. 2012. Simulation of complex nonlinear elastic bodies using lattice deformers. ACM Transactions on Graphics (TOG) 31, 6, 197. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Schmid, J., Sandholm, A., Chung, F., Thalmann, D., Delingette, H., and Magnenat-Thalmann, N. 2009. Musculoskeletal simulation model generation from mri data sets and motion capture data. In Recent Advances in the 3D Physiological Human. Springer, 3--19.Google ScholarGoogle Scholar
  34. Schumacher, C., Thomaszewski, B., Coros, S., Martin, S., Sumner, R., and Gross, M. 2012. Efficient simulation of example-based materials. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sifakis, E., and Barbic, J. 2012. Fem simulation of 3d deformable solids: a practitioner's guide to theory, discretization and model reduction. In ACM SIGGRAPH 2012 Course Notes. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Simo, J. C., and Taylor, R. L. 1991. Quasi-incompressible finite elasticity in principal stretches. continuum basis and numerical algorithms. Computer Methods in Applied Mechanics and Engineering 85, 3, 273--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Sueda, S., Kaufman, A., and Pai, D. K. 2008. Musculotendon simulation for hand animation. ACM Transactions on Graphics (TOG) 27, 3, 83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Sueda, S., Jones, G. L., Levin, D. I., and Pai, D. K. 2011. Large-scale dynamic simulation of highly constrained strands. In ACM Transactions on Graphics (TOG), vol. 30, ACM, 39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Teran, J., Blemker, S., Hing, V., and Fedkiw, R. 2003. Finite volume methods for the simulation of skeletal muscle. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, 68--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Teran, J., Sifakis, E., Blemker, S., Ng-Thow-Hing, V., Lau, C., and Fedkiw, R. 2005. Creating and simulating skeletal muscle from the visible human data set. Visualization and Computer Graphics, IEEE Transactions on 11, 3, 317--328. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Computer Graphics (Proceedings of SIGGRAPH 87), vol. 21, ACM, 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wei, Q., and Pai, D. 2008. Physically consistent registration of extraocular muscle models from MRI. In Proc. IEEE Engineering in Medicine and Biology Society (EMBS) Annual Conference, 2237--2241.Google ScholarGoogle Scholar
  43. Wei, Q., Sueda, S., Miller, J. M., Demer, J. L., and Pai, D. K. 2009. Template-based reconstruction of human extraocular muscles from magnetic resonance images. In ISBI'09. IEEE International Symposium on Biomedical Imaging, IEEE, 105--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Weiss, J. A., Maker, B. N., and Govindjee, S. 1996. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Computer methods in applied mechanics and engineering 135, 1, 107--128.Google ScholarGoogle Scholar
  45. Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O'Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29 (July), 49:1--49:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Zajac, F. E. 1989. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. CRC Critical Reviews of Biomedical Engineering 17, 4, 359--411.Google ScholarGoogle Scholar

Index Terms

  1. Active volumetric musculoskeletal systems

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 33, Issue 4
        July 2014
        1366 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2601097
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2014
        Published in tog Volume 33, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader