skip to main content
research-article

Relating shapes via geometric symmetries and regularities

Published:27 July 2014Publication History
Skip Abstract Section

Abstract

In this paper we address the problem of finding correspondences between related shapes of widely varying geometry. We propose a new method based on the observation that symmetry and regularity in shapes is often associated with their function. Hence, they provide cues for matching related geometry even under strong shape variations. Correspondingly, we decomposes shapes into overlapping regions determined by their regularity properties. Afterwards, we form a graph that connects these pieces via pairwise relations that capture geometric relations between rotation axes and reflection planes as well as topological or proximity relations. Finally, we perform graph matching to establish correspondences. The method yields certain more abstract but semantically meaningful correspondences between man-made shapes that are too difficult to recognize by traditional geometric methods.

Skip Supplemental Material Section

Supplemental Material

a119-sidebyside.mp4

mp4

12.5 MB

References

  1. Allen, B., Curless, B., and Popović, Z. 2003. The space of human body shapes: Reconstruction and parameterization from range scans. ACM Trans. Graph. 22, 3, 587--594. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bokeloh, M., Berner, A., Wand, M., Seidel, H.-P., and Schilling, A. 2009. Symmetry detection using line features. Computer Graphics Forum (Proc. Eurographics).Google ScholarGoogle Scholar
  3. Bokeloh, M., Wand, M., Seidel, H.-P., and Koltun, V. 2012. An algebraic model for parameterized shape editing. ACM Transactions on Graphics 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cullen, B., and O'Sullivan, C. 2011. Symmetry hybrids. In Proceedings of the International Symposium on Computational Aesthetics in Graphics, Visualization, and Imaging, ACM, New York, NY, USA, CAe '11, 33--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Fisher, M., Savva, M., and Hanrahan, P. 2011. Characterizing structural relationships in scenes using graph kernels. ACM Trans. Graph. 30, 4 (July), 34:1--34:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Gal, R., Sorkine, O., Mitra, N., and Cohen-Or, D. 2009. iwires: An analyze-and-edit approach to shape manipulation. ACM Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Gelfand, N., and Guibas, L. J. 2004. Shape segmentation using local slippage analysis. In Proc. SGP, 214--223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gelfand, N., Mitra, N. J., Guibas, L. J., and Pottmann, H. 2005. Robust global registration. In Proc. SGP, 197--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hahn, T. 2002. International Tables for Crystallography, Volume A: Space Group Symmetry. Springer Verlag, Berlin.Google ScholarGoogle Scholar
  10. Hauagge, D. C., and Snavely, N. 2012. Image matching using local symmetry features. In Proc. CVPR, 206--213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Henderson, T. C., Cohen, E., Joshi, A., Grant, E., Draelos, M., and Deshpande, N. 2012. Symmetry as a basis for perceptual fusion. In Multisensor Fusion and Integration for Intelligent Systems (MFI), 2012 IEEE Conference on, 101--107.Google ScholarGoogle Scholar
  12. Huang, Q., Zhang, G., Gao, L., Hu, S., Bustcher, A., and Guibas, L. 2012. An optimization approach for extracting and encoding consistent maps in a shape collection. ACM Transactions on Graphics 31, 125:1--125:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kalogerakis, E., Hertzmann, A., and Singh, K. 2010. Learning 3d mesh segmentation and labeling. ACM Trans. Graph. 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2003. Rotation invariant spherical harmonic representation of 3D shape descriptors. In Symposium on Geometry Processing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2004. Symmetry descriptors and 3d shape matching. In Proc. Symposium on Geometry Processing (SGP). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kim, V. G., Li, W., Mitra, N., DiVerdi, S., and Funkhouser, T. 2012. Exploring collections of 3d models using fuzzy correspondences. In ACM SIGGRAPH 2012 papers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Leordeanu, M., and Hebert, M. 2006. Efficient map approximation for dense energy functions. ICML '06, 545--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lipman, Y., Chen, X., Daubechies, I., and Funkhouser, T. 2010. Symmetry factored embedding and distance. ACM Trans. Graph. 29 (July), 103:1--103:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Liu, T., Kim, V. G., and Funkhouser, T. 2012. Finding surface correspondences using symmetry axis curves. Computer Graphics Forum (Proc. SGP) (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Martinet, A. 2007. Structuring 3D Geometry based on Symmetry and Instancing Information. PhD thesis, INP Grenoble.Google ScholarGoogle Scholar
  21. Mitra, N. J., Guibas, L. J., and Pauly, M. 2006. Partial and approximate symmetry detection for 3d geometry. ACM Trans. Graph. 25, 3, 560--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Mitra, N. J., Yang, Y.-L., Yan, D.-M., Li, W., and Agrawala, M. 2010. Illustrating how mechanical assemblies work. ACM Transactions on Graphics 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Nguyen, A., Ben-Chen, M., Welnicka, K., Ye, Y., and Guibas, L. 2011. An optimization approach to improving collections of shape maps. Computer Graphics Forum (Proc. SGP), 1481--1491.Google ScholarGoogle Scholar
  24. Ovsjanikov, M., Li, W., Guibas, L., and Mitra, N. 2011. Exploration of continuous variability in collections of 3d shapes. ACM Trans. Graph. (Proc. Siggraph). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., and Guibas, L. 2008. Discovering structural regularity in 3D geometry. ACM Transactions on Graphics 27, 3, #43, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., and Cohen-Or, D. 2011. Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans. Graph. 30, 6 (Dec.), 126:1--126:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Simari, P., Nowrouzezahrai, D., Kalogerakis, E., and Singh, K. 2009. Multi-objective shape segmentation and labeling. Computer Graphics Forum 28, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Thrun, S., and Wegbreit, B. 2005. Shape from symmetry. In Proc. ICCV'05, 1824--1831. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. van Kaick, O., Zhang, H., Hamarneh, G., and Cohen-Or, D. 2011. A survey on shape correspondence. Computer Graphics Forum 30, 6, 1681--1707. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. van Kaick, O., Xu, K., Zhang, H., Wang, Y., Sun, S., Shamir, A., and Cohen-Or, D. 2013. Co-hierarchical analysis of shape structures. ACM Trans. Graph. (Proc. Siggraph) 32, 4 (July), 69:1--69:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wang, Y., Xu, K., Li, J., Zhang, H., Shamir, A., Liu, L., Cheng, Z., and Xiong, Y. 2011. Symmetry hierarchy of man-made objects. Computer Graphics Forum (Proc. EUROGRAPHICS) 30, 2.Google ScholarGoogle ScholarCross RefCross Ref
  32. Wang, Y., Xu, K., Zhang, H., Cohen-Or, D., and Shamir, A. 2012. Structural co-hierarchy of a set of shapes. Tech. rep.Google ScholarGoogle Scholar
  33. Xu, K., Zhang, H., Tagliasacchi, A., Liu, L., Li, G., Meng, M., and Xiong, Y. 2009. Partial intrinsic reflectional symmetry of 3d shapes. ACM Transactions on Graphics, (Proceedings SIGGRAPH Asia 2009) 28, 5, 138:1--138:10. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Relating shapes via geometric symmetries and regularities

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 33, Issue 4
        July 2014
        1366 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2601097
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2014
        Published in tog Volume 33, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader