
HARD INSTANCES OF ALGORITHMS AND PROOF SYSTEMS

YIJIA CHEN, JÖRG FLUM, AND MORITZ MÜLLER

Abstract. Assuming that the class Taut of tautologies of propositional logic
has no almost optimal algorithm, we show that every algorithm A deciding
Taut has a polynomial time computable sequence witnessing that A is not
almost optimal. The result extends to every Πp

t -complete problem with t ≥ 1;
however, we show that assuming the Measure Hypothesis there is a problem
which has no almost optimal algorithm but has an algorithm without hard
sequences.

1. Introduction

Let A be an algorithm deciding a problem Q. A sequence (xs)s∈N of strings in Q
is hard for A if it is computable in polynomial time and the sequence (tA(xs)s∈N)
is not polynomially bounded in s.1 Here, tA(x) denotes the number of steps the
algorithm A takes on input x. Clearly, if A is polynomial time, then A has no
hard sequences. Furthermore, an almost optimal algorithm for Q has no hard
sequences either. Recall that an algorithm A is almost optimal for Q if for every
input x ∈ Q the running time tA(x) is polynomially bounded in tB(x) for any other
algorithm B deciding Q. In fact, if (xs)s∈N is a hard sequence for an algorithm,
then one can polynomially speed up it on {xs | s ∈ N}, so it cannot be almost
optimal.

Central to this paper is the question: To what extent can we show that al-
gorithms which are not almost optimal have hard sequences? Our main result
states:

(a) If a coNP-complete problem Q has no almost optimal algorithm, then
every algorithm deciding Q has hard sequences.

Perhaps one would expect that one can strengthen (a) and show that even if
a coNP-complete problem Q has an almost optimal algorithm, then every algo-
rithm, which is not almost optimal and decides Q, has a hard sequence. However,
we show:

If the Measure Hypothesis holds, then every coNP-complete prob-
lem with padding and with an almost optimal algorithm has an
algorithm which is not almost optimal but has no hard sequences.

1All notions will be defined in a precise manner later.
1

2 YIJIA CHEN, JÖRG FLUM, AND MORITZ MÜLLER

Even though we can extend the result (a) to Πp
t -complete problems (with t ≥ 1),

apparently there are some limitations as we derive the following result:

If the Measure Hypothesis holds, then there is a problem Q which
has no almost optimal algorithm but has an algorithm without hard
sequences.

In particular, there are algorithms deciding such a Q and polynomially speeding
up a given algorithm. That is, this notion of speeding up (e.g. considered in
[13, 9]) differs from our notion of the existence of a hard sequence.

Assume that a coNP-complete problem Q has no almost optimal algorithm.
Can we even effectively assign to every algorithm deciding Q a hard sequence?
We believe that under reasonable complexity-theoretic assumptions one should
be able to show that such an effective procedure or at least a polynomial time
procedure does not exist, but we were not able to show it. However, recall that
by a result due to McCreight and Meyer [9] and redicovered by Messner [11] we
know:

For every EXP-hard problem Q there is a polynomial time effec-
tive procedure assigning to every algorithm solving Q a sequence
hard for it.

Hence, if EXP = NP, then for every NP-hard (and hence for every coNP-
hard) problem Q there is a polynomial time effective procedure assigning a hard
sequence to every algorithm deciding Q.

Our proof of (a) generalizes to nondeterministic algorithms. This “nondeter-
ministic statement” yields a version of a result due to Kraj́ıček which he derived
for non-optimal propositional proof systems: If Taut, the set of tautologies of
propositional logic, has no optimal proof system, then for every propositional
proof system P there is a polynomial time computable sequence (αs)s∈N of propo-
sitional tautologies αs with s ≤ |αs| which only have superpolynomial P-proofs.
While it is well-known that nondeterministic algorithms for Taut and propo-
sitional proof systems are more or less the same (so that the nondeterministic
version of (a) essentially is Kraj́ıc̆ek’s result), the relationship between determin-
istic algorithms deciding Taut and propositional proof systems is more subtle.
Nevertheless, we are able to use (a) to derive a statement on hard sequences for
propositional proof systems in case that Taut has no polynomially optimal proof
system.

As a byproduct, we obtain results in “classical terms” for which we do not
know proofs avoiding the machinery we develop here; for example, we get:

Let Q be coNP-complete. Then, Q has an almost optimal algo-
rithm if and only if Q has a polynomially optimal proof system.

If Taut has no almost optimal algorithm, then every coNP-
hard problem has no almost optimal algorithm.

HARD INSTANCES OF ALGORITHMS AND PROOF SYSTEMS 3

It is still open whether there exist problems outside of NP with optimal proof
systems. We show their existence (in NE) assuming the Measure Hypothesis.
Kraj́ıc̆ek and Pudlák [7] proved that E = NE implies that Taut has an optimal
proof system.

If for an algorithm A deciding a problem Q we have a hard sequence (xs)s∈N
satisfying s ≤ |xs|, then {xs | s ∈ N} is a hard set for A, that is, a polynomial
time decidable subset of Q on which A is not polynomial time. Messner [11] has
shown for any Q with padding that all algorithms deciding Q have hard sets if
and only if Q has no polynomially optimal proof system. We show for arbitrary Q
that the existence of hard sets for all algorithms is equivalent to the existence of
an effective enumeration of all polynomial time decidable subsets of Q, a property
which has turned out to be useful in various contexts (cf. [12, 2, 3]). We analyze
what Messner’s result means for proof systems.

The content of the sections is the following. In Section 2 we recall some con-
cepts. We deal with hard sequences for algorithms in Section 3 and for proof
systems in Section 4. Section 5 is devoted to hard sets and Section 6 contains the
results and the examples of problems with special properties obtained assuming
that the Measure Hypothesis holds. Finally Section 7 gives an effective proce-
dure yielding hard sequences for nondeterministic algorithms for coNEXP-hard
problems.

2. Preliminaries

We denote by Σ the alphabet {0, 1} and by |x| the length of a string x ∈ Σ∗.
We identify problems with subsets of Σ∗. In this paper we always assume that Q
denotes a decidable and nonempty problem.

We denote by P (NP) the class of problems Q such that x ∈ Q is solvable by
a deterministic (nondeterministic) Turing machine in |x|O(1) steps (formally, nO(1)

denotes the class of polynomially bounded functions on the natural numbers). A
problem Q ⊆ Σ∗ has padding if there is a function pad : Σ∗×Σ∗ → Σ∗ computable
in logarithmic space having the following properties:

– For any x, y ∈ Σ∗, |pad(x, y)| > |x|+|y| and
(
pad(x, y) ∈ Q ⇐⇒ x ∈ Q

)
.

– There is a logspace algorithm which, given pad(x, y) recovers y.

By 〈. . . , . . .〉 we denote some standard logspace computable tupling function with
logspace computable inverses.

If A is a deterministic or nondeterministic algorithm and A accepts the string
x, then we denote by tA(x) the minimum number of steps of an accepting run of
A on x; if A does not accept x, then tA(x) is not defined. By L(A) we denote
the language accepted by A. We use deterministic and nondeterministic Turing
machines with Σ as alphabet as our basic computational model for algorithms
(and we often use the notions “algorithm” and “Turing machine” synonymously).
If necessary we will not distinguish between a Turing machine and its code, a

4 YIJIA CHEN, JÖRG FLUM, AND MORITZ MÜLLER

string in Σ∗. By default, algorithms are deterministic. If an algorithm A on
input x eventually halts and outputs a value, we denote it by A(x).

3. Hard sequences for algorithms

In this section we derive the results concerning the existence of hard sequences
for coNP-complete problems.

Let Q ⊆ Σ∗. A deterministic (nondeterministic) algorithm A deciding (accept-
ing) Q is almost optimal if for every deterministic (nondeterministic) algorithm
B deciding (accepting) Q we have

tA(x) ≤
(
tB(x) + |x|

)O(1)

for all x ∈ Q. Note that nothing is required for x /∈ Q.
Clearly, every problem in P has an almost optimal algorithm and every problem

in NP has an almost optimal nondeterministic algorithm. There are problems
outside P with an almost optimal algorithm (see Messner[11, Corollary 3.33]; we
slightly improve his result in Section 6). However, it is not known whether there
are problems outside NP having an almost optimal nondeterministic algorithm
and it is not known whether there are problems with padding outside P having
an almost optimal algorithm. We show in Section 6 that the former is true if the
Measure Hypothesis holds.

We introduce the notion of hard sequence.

Definition 1. Let Q ⊆ Σ∗.
(1) Let A be a deterministic (nondeterministic) algorithm deciding (accepting)

Q. A sequence (xs)s∈N is hard for A if {xs | s ∈ N} ⊆ Q, the function
1s 7→ xs is computable in polynomial time, and tA(xs) is not polynomially
bounded in s.

(2) The problem Q has hard sequences for algorithms if every algorithm deciding
Q has a hard sequence.

(3) The problem Q has hard sequences for nondeterministic algorithms if every
nondeterministic algorithm accepting Q has a hard sequence.

The proof of the following lemma is straightforward; it shows that if (xs)s∈N is
hard for an algorithm A, then A can be polynomially speeded up on {xs | s ∈ N};
thus A can’t be almost optimal.

Lemma 2. Let A be a deterministic (nondeterministic) algorithm deciding (ac-
cepting) Q. If A has a hard sequence, then A is not almost optimal.

Proof. We prove the deterministic case, the nondeterministic case is obtained by
the obvious modifications. So assume that the algorithm A decides Q and has a
hard sequence (xs)s∈N; in particular,

(1) tA(xs) is not polynomially bounded in s.

HARD INSTANCES OF ALGORITHMS AND PROOF SYSTEMS 5

Let G be a polynomial time algorithm computing the function 1s 7→ xs. The
following algorithm G∗ accepts the set {xs | s ∈ N} and for x = xs runs in time
polynomial in s.

G∗ // x ∈ Σ∗

1. `← 0
2. for s = 0 to `
3. simulate the (`− s)th step of G on 1s

4. if this simulation outputs y and y = x
then accept and halt

5. `← ` + 1
6. goto 2.

We consider the algorithm A‖G∗ that on input x runs A and G∗ in parallel,
both on input x, and halts, when the first of these algorithms halts, then an-
swering in the same way. Hence, A‖G∗ accepts Q and tA‖G∗(xs) is polynomially
bounded in s. As |xs| ≤ sO(1), by (1) we see that tA(xs) is not polynomially
bounded in tA‖G∗(xs) + |xs|; thus A‖G∗ witnesses that A is not an almost optimal
algorithm. �

We state the main result of this section (Remark 7 contains extensions of the
result to further classes of problems Q). As already remarked in the Introduction
part (b) of this theorem is a straightforward consequence of the corresponding
result for propositional proof systems due to Kraj́ıc̆ek.

Theorem 3. Let Q be a coNP-complete problem. Then:
(a) Q has no almost optimal algorithm ⇐⇒ Q has hard sequences for algo-

rithms.
(b) Q has no almost optimal nondeterministic algorithm ⇐⇒ Q has hard

sequences for nondeterministic algorithms.

The proofs of the implications from right to left are clear by the previous lemma.
The following considerations will yield a proof of the converse direction. For a
nondeterministic algorithm A and s ∈ N let As be the algorithm that rejects all
x ∈ Σ∗ with |x| > s. If |x| ≤ s, then it simulates s steps of A on input x; if this
simulation halts and accepts, then As accepts; otherwise it rejects.

Recall that by L(A) we denote the language accepted by A. For Q ⊆ Σ∗ we
consider the deterministic (nondeterministic) algorithm subset problem Das(Q)
(Nas(Q))

Das(Q)
Instance: A deterministic algorithm A and 1s with

s ∈ N.
Question: L(As) ⊆ Q ?

6 YIJIA CHEN, JÖRG FLUM, AND MORITZ MÜLLER

Nas(Q)
Instance: A nondeterministic algorithm A and 1s

with s ∈ N.
Question: L(As) ⊆ Q ?

The following two lemmas relate the equivalent statements in Theorem 3 (a) (in
Theorem 3 (b)) to a statement concerning the complexity of Das(Q) (of Nas(Q)).
Lemma 4.
(a) If 〈A, 1s〉 ∈ Das(Q) is solvable in time sf (A) for some function f , then Q has

an almost optimal algorithm.
(b) If there is a nondeterministic algorithm V accepting Nas(Q) such that for

all 〈A, 1s〉 ∈ Nas(Q) we have tV(〈A, 1s〉) ≤ sf (A) for some function f , then
Q has an almost optimal nondeterministic algorithm.

Proof. Again we only prove (a). Let V be an algorithm deciding 〈A, 1s〉 ∈ Das(Q)
in time sf (A) for some function f . Further let Q be an algorithm deciding Q and let
A0,A1, . . . be an effective enumeration of all algorithms. Consider the following
algorithm A deciding Q.

A // x ∈ Σ∗

1. simulate Q on x and in parallel do the following
2. for i = 0 to |x| do in parallel
3. simulate Ai on x
4. if Ai accepts then
5. s← max{|x|, length of the run accepting x}
6. if V accepts 〈Ai, 1s〉 then accept and halt
7. else never halt
8. else never halt
9. if Q stops first then answer accordingly and halt.

It is easy to see that A decides Q. We show it is almost optimal. Let B be any
algorithm deciding Q. We choose iB ∈ N such that B = AiB . Note that V accepts
〈B, 1s〉 for all s. Hence for inputs x ∈ Q with |x| ≥ iB the algorithm A, for
i = iB, accepts x in Line 6 if it was not already accepted earlier. Thus, tA(x) is
polynomially bounded in

|x| + tB(x) + tV
(
〈B, 1max{|x|,tB(x)}〉

)
,

where the term tB(x) takes care of line 3. Hence, by assumption, it is polynomially

bounded in |x| + max{|x|, tB(x)}f (B)
. Altogether, tA(x) ≤

(
|x| + tB(x)

)O(1)
. �

If Q is coNP-complete, then the problem Nas(Q) and hence the problem
Das(Q) are in coNP, too (this is the reason why 1s and not just s is part of
the input of Nas(Q) and of Das(Q)). Thus, together with Lemma 4 the follow-
ing lemma yields the remaining claims of Theorem 3.

HARD INSTANCES OF ALGORITHMS AND PROOF SYSTEMS 7

Lemma 5.
(a) Assume that Das(Q) ≤p Q, that is, that Das(Q) is polynomial time reducible

to Q. If 〈A, 1s〉 ∈ Das(Q) is not solvable in time sf (A) for some function f ,
then Q has hard sequences for algorithms.

(b) Assume that Nas(Q) ≤p Q. If there is no nondeterministic algorithm V
accepting Nas(Q) such that for all 〈A, 1s〉 ∈ Nas(Q) we have tV(〈A, 1s〉) ≤
sf (A) for some function f , then Q has hard sequences for nondeterministic
algorithms.

Proof. Again we only prove part (a).

Claim. Assume that 〈A, 1s〉 ∈ Das(Q) is not solvable in time sf (A) for some
function f . Then there is no algorithm W deciding Das(Q) such that for all
algorithms A with L(A) ⊆ Q there is a cA ∈ N such that for all s ∈ N we have
tW(〈A, 1s〉) ≤ scA .

Proof of the Claim. By contradiction, assume that such a W exists. Let V be the
algorithm that, on an arbitrary input 〈A, 1s〉, in parallel runs W on 〈A, 1s〉 and
computes

rA := the least r such that L(Ar) 6⊆ Q

by systematically checking for r = 0, 1, . . . whether L(Ar) 6⊆ Q (this is done by
running for all x with |x| ≤ r the algorithm A at most r steps on input x and
a decision procedure for Q on x). Note that rA is not defined if L(A) ⊆ Q. If
W stops first, V answers accordingly; if rA is obtained first, then V accepts if
s < rA and otherwise it rejects. It should be clear that the algorithm V decides
〈A, 1s〉) ∈ Das(Q) in ≤ sf (A) steps for some function f . a

By assumption, there is a polynomial time reduction S from Das(Q) to Q. Let
B be an arbitrary algorithm deciding Q. Then the algorithm B ◦ S, which on
input x first simulates S on x and then B on S(x), decides Das(Q). Hence, by
the Claim, there exists an algorithm A with L(A) ⊆ Q such that tB◦S(〈A, 1s〉) is
not polynomially bounded in s. For s ∈ N we set xs := S(〈A, 1s〉). Then xs ∈ Q
for all s and the function 1s 7→ xs is polynomial time computable. Furthermore

tB◦S(〈A, 1s〉) ≤ O
(
tS(〈A, 1s〉) + tB(S(〈A, 1s〉))

)
≤ sO(1) + O

(
tB(xs)

)
.

As the left hand side is not polynomially bounded in s, neither is tB(xs). Hence
(xs)s∈N is hard for B. �

Remark 6. Assume that Q is coNP-complete and has padding (the set Taut
is an example of such a Q). If Q has no almost optimal algorithm, then every
algorithm B deciding Q has a hard sequence (xs)s∈N with s ≤ |xs|. Then, in
particular

{xs | s ∈ N} ∈ P and B is not polynomial time on {xs | s ∈ N}.

8 YIJIA CHEN, JÖRG FLUM, AND MORITZ MÜLLER

In fact, it is well-known that for Q with padding we can replace any polynomial
time reduction to Q by a length-increasing one. Hence, in the previous proof we
may assume that S is length-increasing and therefore s ≤ |xs|.
Remark 7. In the proof of Theorem 3 we used the assumption that Q is coNP-
complete only to ensure that Nas(Q) ≤p Q (cf. Lemma 5). This condition is
also fulfilled for every Q complete, say, in one of the classes Πp

t with t ≥ 1, E or
Pspace. Thus the statements of Theorem 3 hold for such Q.

The argument in the last part of Lemma 5 shows (an instance of) the following
simple lemma. Nevertheless, note that it is important that we do not require
s ≤ |xs| in our definition of hard sequence.

Lemma 8. Assume that S is a polynomial time reduction from Q to Q′ and let
B be a (nondeterministic) algorithm deciding (accepting) Q′. If (xs)s∈N is a hard
sequence for B ◦ S, then (S(xs))s∈N is a hard sequence for B.

Therefore, if Q ≤p Q
′ and Q has hard sequences for (nondeterministic) algo-

rithms then so does Q′.

We do not know proofs of the following results not using the machinery developed
here.

Theorem 9. Let Q be coNP-complete. Then, Taut has an almost optimal al-
gorithm if and only if Q has an almost optimal algorithm.

Proof. Immediate by the previous lemma and Theorem 3. �

We remark that the implication from left to right in the previous result was
already known [7] (see also Theorem 12 below).

Theorem 10. Assume that Taut has no almost optimal algorithm. Then every
coNP-hard problem has no almost optimal algorithm.

Proof. By assumption and Theorem 3, Taut has hard sequences for algorithms
and so does every coNP-hard Q by Lemma 8. Now the claim follows from
Lemma 2. �

4. Hard sequences for proof systems

In this section we translate the results on hard sequences from algorithms to proof
systems. We first recall some basic definitions.

A proof system for Q is a polynomial time algorithm P computing a function
from Σ∗ onto Q. If P(w) = x, we say that w is a P-proof of x. Often we
introduce proof systems implicitly by defining the corresponding function; then
this definition will suggest a corresponding algorithm.

Definition 11. Let P and P′ be proof systems for Q. An algorithm T is a
translation from P′ into P if P(T(w′)) = P′(w′) for every w′ ∈ Σ∗. Note that
translations always exist. A translation is polynomial if it runs in polynomial
time.

HARD INSTANCES OF ALGORITHMS AND PROOF SYSTEMS 9

A proof system P for Q is p-optimal or polynomially optimal if for every proof
system P′ for Q there is a polynomial translation from P′ into P. A proof system
P for Q is optimal if for every proof system P′ for Q and every w′ ∈ Σ∗ there is a
w ∈ Σ∗ such that P(w) = P′(w′) and |w| ≤ |w′|O(1). Clearly, every p-optimal proof
system is optimal.

We often will make use of the following relationship between the optimality
notions for algorithms and that for proof systems (see [7, 11]).

Theorem 12.
(1) For every Q we have (a) ⇒ (b) and (b) ⇒ (c); moreover (a), (b), and (c)

are all equivalent if Q has padding. Here
(a) Q has a p-optimal proof system.
(b) Q has an almost optimal algorithm.
(c) There is an algorithm that decides Q and runs in polynomial time on

every subset X of Q with X ∈ P.
(2) For every Q we have (a) ⇐⇒ (b), (b) ⇒ (c), and (c) ⇒ (d); moreover

(a)–(d) are all equivalent if Q has padding. Here
(a) Q has an optimal proof system.
(b) Q has an almost optimal nondeterministic algorithm.
(c) There is a nondeterministic algorithm that accepts Q and runs in poly-

nomial time on every subset X of Q with X ∈ NP.
(d) There is a nondeterministic algorithm that accepts Q and runs in poly-

nomial time on every subset X of Q with X ∈ P.

We use our results of Section 3 to extend the equivalence between (a) and (b) of
part (1) to arbirary coNP-complete problems:

Theorem 13. Let Q be coNP-complete. Then: Q has a p-optimal proof system
⇐⇒ Q has an almost optimal algorithm.

Proof. By Theorem 12 (1) the left side implies the right side. Now assume that
Q has an almost optimal algorithm. As Q × Σ∗ is coNP-complete too, it has
an almost optimal algorithm (by Theorem 9). As Q × Σ∗ has padding, it has a
p-optimal proof system P (cf. Theorem 12 (1)). Now it is routine to show that
the algorithm P′ that on input w computes P(w) and outputs its first component
is a p-optimal proof system for Q. �

We already mentioned that for everyQ ⊆ Σ∗ there is a well-known and straight-
forward correspondence between proof systems and nondeterministic algorithms
preserving the optimality notions, so that the proof of the equivalence between
(a) and (b) in Theorem 12 (2) is immediate, In fact, if P is a proof system for Q,
then the nondeterministic algorithm A(P) accepts Q, where A(P) on input x ∈ Σ∗

guesses a string w and accepts if P(w) = x. Conversely, if A is a nondeterministic
algorithm accepting Q, then for every fixed x0 ∈ Q a proof system PA for Q is

10 YIJIA CHEN, JÖRG FLUM, AND MORITZ MÜLLER

defined by

PA(w) :=

{
x, if w is a computation of A accepting x

x0, otherwise.

The proof of the corresponding equivalence in Theorem 12 (1) is more involved
and mostly, more or less explicitly, it is based on a theorem due to Levin on
inverters. As we need this result, too, we recall it.

Let F be an algorithm computing a function from Σ∗ to Σ∗. An inverter of
F is an algorithm I that given y in the range of F halts with some output I(y)
such that F(I(y)) = y. On inputs not in the range of F, the algorithm I may do
whatever it wants. Levin [8] proved the following result.

Theorem 14. Let F be an algorithm computing a function from Σ∗ into Σ∗.
Then there is an optimal inverter that is, an inverter OF of F such that for every
inverter I of F and all y in the range of F we have

tOF(y) ≤
(
tI(y) + tF(I(y)) + |y|

)O(1)
.

Furthermore, OF does not halt on inputs y not in the range of F.

We turn to hard sequences for proof systems.

Definition 15. Let P be a proof systems for Q. A sequence (xs)s∈N is hard
(length-hard) for P if {xs | s ∈ N} ⊆ Q, the function 1s 7→ xs is computable in
polynomial time, and there is no polynomial time (nondeterministic) algorithm
W with P(W(1s)) = xs for all s ∈ N.

For nondeterministic W by the unusual notation P(W(1s)) = xs we mean that for
every run of W on 1s outputting a string w we have P(w) = xs and that there
is at least one run that outputs a string. In more conventional terms, instead of
“there is no polynomial time nondeterministic algorithm W with P(W(1s)) = xs,”
we equivalently could require that the function mapping 1s to the minimum length
in unary of a P-proof of xs is not polynomially bounded.

Definition 16. The problem Q has hard (length-hard) sequences for proof sys-
tems if every proof system for Q has a hard (length-hard) sequence.

As already remarked in the Introduction part (b) of the following result is due
to Kraj́ıc̆ek [6] who proved it by quite different means. Part (a) is already known
for Q = Taut (see e.g. the survey [1, Section 11]). We give a new proof that
works for any, not necessarily paddable coNP-complete problem Q.

Theorem 17. Let Q be a coNP-complete problem. Then:
(a) Q has no p-optimal proof system iff Q has hard sequences for proof systems.
(b) Q has no optimal proof system iff Q has a length-hard sequence for proof

systems.

Proof. First we present a proof of the directions from right to left. Let P be
any proof system for Q. By our assumption on Q there is a hard (length-hard)

HARD INSTANCES OF ALGORITHMS AND PROOF SYSTEMS 11

sequence (xs)s∈N for P. We consider the proof system P′ for Q by

P′(w′) := P(w), if w′ = 0w; P′(w′) := xs, if w′ = 1s;

and P′(w′) := z0 for some fixed element z0 of Q otherwise. By hardness (length-
hardness) no translation from P′ into P is polynomial (polynomially bounded): In
fact, assume that (xs)s∈N is, say, length-hard for P and by contradiction that the
translation T from P′ into P is polynomially bounded. Let q be a polynomial such
that |T(w′)| ≤ q(|w′|) for all w′. Then, the nondeterministic algorithm W that
on input 1s guesses a string w of length ≤ q(s) and outputs it in case P(w) = xs

runs in polynomial time.

Now we present a proof of the direction from left to right; we do that only
for (a) as that for (b) follows immediately from the result for algorithms by the
simple correspondence between proof systems and nondeterministic algorithms
mentioned above. So, assume that Q has no p-optimal proof system. By The-
orem 13, Q has no almost optimal algorithm and hence has hard sequences for
algorithms by Theorem 3.

Let P be any proof system for Q. By Theorem 14, we have an inverter OP of
P which is optimal, that is, for every inverter I of P and x ∈ Q we have

(2) tOP(x) ≤
(
tI(x) + tP(I(x)) + |x|

)O(1) ≤ (tI(x) + |x|)O(1),

where the second inequality holds as tP(w) ≤ |w|O(1) and hence tP(I(x)) ≤ |I(x))|O(1)

≤ tI(x)O(1). Moreover, for x /∈ Q the algorithm OP will not halt on input x.
We choose an arbitrary algorithm Q that decides Q and consider the algorithm

S that on input x in parallel simulates Q and OP, both on input x. If Q halts
first, then it answers accordingly and if QP halts first, then it accepts. Obviously
S decides Q and for every x ∈ Q we have

(3) tS(x) ≤ O
(
tOP(x)

)
.

As Q has hard sequences for algorithms, there is a polynomial time computable
algorithm G generating a hard sequence for S, that is, G on input 1s computes
xs ∈ Q in polynomial time such that

(4) tS(xs) is not polynomially bounded in s.

Let G+ be the variant of the algorithm G∗ in the proof of Lemma 2 obtained by
replacing Line 4 by

if this simulation outputs y and y = x then output 1s and halt.

Of course, on input x = xs the algorithm G+ runs in time polynomial in s. We
show that (xs)s∈N is a hard sequence for P. So by contradiction, assume that W
is a polynomial time algorithm with P(W(1s)) = xs for all s ∈ N. We consider the
inverter I of P that on input x in parallel simulates OP and G+, both on input
x. If OP halts, then it outputs the output of OP and halts; if G+ halts, then it
simulates W on G+(x), outputs W(G+(x)), and halts.

12 YIJIA CHEN, JÖRG FLUM, AND MORITZ MÜLLER

By definition of G+ the algorithm I runs on input xs in time polynomial in s,
hence so does OP by (2) as |xs| ≤ sO(1). But then by (3), the same holds for the
algorithm S contradicting (4). �

In the previous proof the hard (length-hard) sequence (xs)s∈N constructed for
a proof system for Q was the hard sequence of a suitable (nondeterministic)
algorithm for Q. Hence, by Remark 6, for Q with padding, we can require in
Theorem 17 that for the claimed hard sequence (xs)s∈N we have s ≤ |xs|.

5. Hard subsets

As already remarked in the Introduction, if for an algorithm A deciding a problem
Q we have a hard sequence (xs)s∈N satisfying s ≤ |xs|, then {xs | s ∈ N} is
a polynomial time decidable subset of Q on which A is not polynomial time.
We then speak of a hard set for A even if its elements cannot be generated in
polynomial time. More precisely:

Definition 18. Let Q ⊆ Σ∗.
(1) Let A be a deterministic or nondeterministic algorithm accepting Q. A

subset X of Q is hard for A if X ∈ P and A is not polynomial time on X.
(2) The problem Q has hard sets for algorithms if every algorithm deciding Q

has a hard set.
(3) The problem Q has hard sets for nondeterministic algorithms if every non-

deterministic algorithm accepting Q has a hard set.

Using these notions the equivalences (a) ⇔ (c) in Theorem 12 can be expressed
in the following way:

Assume that Q has padding. Then

(1) Q has no almost optimal algorithm ⇐⇒ Q has hard sets for algorithms.
(2) Q has no almost optimal nondeterministic algorithm ⇐⇒ Q has hard

sets for nondeterministic algorithms.

Hence, we get (we leave the nondeterministic variant to the reader):

Corollary 19. Assume Q has padding.
(a) If Q has hard sequences for algorithms, then Q has hard sets for algorithms.
(b) If in addition Q is coNP-complete, then: Q has hard sequences for algorithms
⇐⇒ Q has hard sets for algorithms.

Proof. (a) If Q has hard sequences for algorithms, then, by Lemma 2, Q has no
almost optimal algorithm and thus, by the previous remark, Q has hard sets for
algorithms.

Again the previous remark together with Theorem 3 yields (b). �

Assume that Q has an almost optimal algorithm. Then, in general, one cannot
show that every algorithm deciding Q, which is not almost optimal, has a hard

HARD INSTANCES OF ALGORITHMS AND PROOF SYSTEMS 13

set. In fact, Messner [11, Corollary 3.33] has presented a P-immune Q0 with an
almost optimal algorithm. Of course, no algorithm deciding Q0 has a hard set.

For an arbitrary problem Q the existence of hard subsets is equivalent to a
(non-)listing property. We introduce this property.

Let C be the complexity class P or NP. A set X is a C-subset of Q if X ⊆ Q
and X ∈ C. Let C′ be also one of the classes P or NP. We write List(C, Q,C′)
and say that there is a listing of the C-subsets of Q by C′-machines if there is
an algorithm that, once having been started, lists Turing machines M1,M2, . . . of
type C′ such that

{L(Mi) | i ≥ 1} = {X ⊆ Q | X ∈ C}.
For Q with padding the equivalences in the following proposition were known [12].

Proposition 20.
(1) Q has hard sets for algorithms ⇐⇒ not List(P, Q,P).
(2) Every nondeterministic algorithm A accepting Q is not polynomial on at least

one subset X of Q with X ∈ NP ⇐⇒ not List(NP, Q,NP).

Proof. We only prove the first claim as the second one can be obtained along
the same lines. First we assume that not List(P, Q,P). Let A be an algorithm
deciding Q. For d ∈ N, by A(d) we denote the algorithm that on input x simulates
A on input x but rejects if the simulation exceeds time |x|d.

We show that there is a P-subset X of Q such that

for all d: X 6⊆ A(d)

Of course, then this X is hard for A.
Otherwise, we fix an effective enumeration D1,D2, . . . of all polynomial time

Turing machines. Then (Di(A(j))i,j≥1 is a listing of the P-subsets of Q, where
Di(A(j)) on input x, first simulates A(j) on x and if this algorithm accepts, then
it simulates Di on input x and answers accordingly. In fact, as A(j) has to accept
x, we have L(Di(A(j))) ⊆ Q. And if X is a P-subset of Q accepted by Di, we
choose a d such that X ⊆ A(d). Then L(Di(A(d))) = X.

Conversely, assume that Q has hard sets for algorithms. By contradiction as-
sume that L is a listing witnessing List(P, Q,P). Let Q be an algorithm deciding
Q. Consider the algorithm A that on input x simulates Q on x and in parallel
for i = 1, 2, . . . does the following:

– performs the ith step of L;
– if M1, . . . ,Ms are the machines listed by L so far, it performs an additional

step of each of the Mjs on x; if one of these accepts it accepts.

If Q halts first, it answers accordingly.
It should be clear that A accepts Q. By assumption, there is a set X hard for

A. Let Mi0 accept X. By definition of A it should be clear that A is polynomial
on X, a contradiction. �

14 YIJIA CHEN, JÖRG FLUM, AND MORITZ MÜLLER

We close this section by introducing hard subsets for proof systems and stating
the corresponding result.

Definition 21.
(1) Let P be a proof system for Q. A subset X of Q is hard (length-hard) for P

if X ∈ P and there is no polynomial time (nondeterministic) algorithm W
such that P(W(x)) = x for all x ∈ X (cf. the remark after Definition 15 for
the precise meaning of this last condition in the nondeterministic case).

(2) Q has hard (length-hard) sets for proof systems if every proof system for Q
has a hard (length-hard) set.

The following result can be obtained along the lines of the proof of Theorem 17.
Again, due to the close relationship between nondeterministic algorithms and
proof systems, part (b) can be viewed as a reformulation of the result for algo-
rithms.

Theorem 22. Let Q be a problem with padding. Then:
(a) Q has no p-optimal proof system if and only if Q has hard sets for proof

systems.
(b) Q has no optimal proof system if and only if Q has length-hard sets for proof

systems.

6. Assuming the Measure Hypothesis

In this section we present some examples of problems with special properties,
some yield limitations to possible extensions of results mentioned in this paper.
Most are proven assuming the Measure Hypothesis.

6.1. Complex sets with optimal algorithms and with optimal proof
systems. For every Q ∈ NP, say, accepted by the polynomial time nondeter-
ministic algorithm A, the proof system P is optimal, where P(w) := x if w is an
accepting computation of A on input x; and otherwise, P(w) := z0 for some fixed
element z0 of Q. The question whether there are sets outside of NP with optimal
proof systems was stated by Kraj́ıc̆ek and Pudlák [7] and is still open. As already
mentioned they proved that Taut has an optimal proof system if E = NE.

We prove that there are problems in NE and outside of NP with optimal proof
systems if the Measure Hypothesis holds. As a byproduct we get that there exist
problems in E and outside of P with optimal algorithms (thereby we do not need
the Measure Hypothesis). Here an algorithm A deciding Q is optimal if for every
algorithm B deciding Q we have

tA(x) ≤ (tB(x) + |x|)O(1)

for all x ∈ Σ∗. Clearly, every problem in P has an optimal algorithm.

Let C be a class of problems. Recall that a problem Q is C-immune if no
infinite subset of Q is in C; and it is C-bi-immune if Q and its complement Σ∗ \Q
are C-immune. For a function t : N→ N we denote by Dtime0(t) and Dtime(t)

HARD INSTANCES OF ALGORITHMS AND PROOF SYSTEMS 15

the class of problems decidable by a Turing machine M with tM(x) ≤ t(x) for
all x ∈ Σ∗ and tM(x) ≤ c · t(x) for all x ∈ Σ∗ and some constant c ∈ N. The
nondeterministic classes Ntime0(t) and Ntime(t) are defined accordingly. Hence
E =

⋃
d∈N Dtime(2d·n) and NE =

⋃
d∈N Ntime(2d·n).

Lemma 23. Let ` ∈ N with ` ≥ 1.
(a) If Q ∈ E is a Dtime0(2`·n)-bi-immune problem, then Q has an optimal

algorithm.
(b) If Q ∈ NE is a Ntime0(2`·n)-immune problem, then Q has an almost optimal

nondeterministic algorithm.

Proof. We prove (a); part (b) is obtained by the obvious modifications. Assume
that the Turing machine M decides the Dtime0(2`·n)-bi-immune problem Q in
time c · 2d·n for some c, d ∈ N. We claim that M is optimal.

Assume otherwise, then there is a machine M′ deciding Q and witnessing that
M is not optimal. Then for every i ∈ N there exists an xi such that

tM(xi) >
(
tM′(xi) + |xi|

)i
.

It follows that for every i ∈ N
c · 2d·|xi| ≥ tM(xi) > tM′(xi)i

Thus tM′(xi) ≤ 2`·|xi|/2 for all sufficiently large i ∈ N. Of course, infinitely many
of these xi’s are in Q, or they are in Σ∗\Q. In the first case consider the following
machine:

M′′ // x ∈ Σ∗

1. simulate M′ on x for at most 2`·|x|/2 steps
2. if the simulation halts and accepts then accept else reject.

It accepts an infinite subset of Q in time 2`·n. This contradicts our immunity
assumption. The second case is handled similarly. �

We use the following result due to Mayordomo [10]. Statement (b) of it uses
the Measure Hypothesis [5], that is, the assumption

NP does not have measure 0 in E.

For the corresponding notion of measure we refer to [10]. This hypothesis is
sometimes used in the theory of resource bounded measures.

Theorem 24. Let ` ≥ 1.
(a) The class of Dtime0(2`·n)-bi-immune problems has measure 1 in E. In par-

ticular, the class E contains Dtime0(2`·n)-bi-immune problems.
(b) If the Measure Hypothesis holds, then NP ∩ E contains Dtime0(2`·n)-bi-

immune problems.

From the previous lemma and theorem we get:

16 YIJIA CHEN, JÖRG FLUM, AND MORITZ MÜLLER

Corollary 25.
(1) There exist problems in E \P with optimal algorithms.
(2) If the Measure Hypothesis holds, then there exist problems in NP \ P with

optimal algorithms.

We already remarked that Messner [11] showed the existence of problems in E\P
with almost optimal algorithms.

Theorem 26. If the Measure Hypothesis holds, then there exist problems in
NE \NP with optimal proof systems.

Proof. It suffices to show that there is a Q ∈ NE which is Ntime0(2n)-immune.
Then, by Lemma 23, such a Q has an almost optimal nondeterministic algorithm
and hence, an optimal proof system by Theorem 12.

By Theorem 24 (b) there is a Q0 ∈ NP which is Dtime0(22n)-bi-immune
problem. We choose d ≥ 1 such that Q0 ∈ Ntime(nd). We set

Q :=
{

1m | m ∈ N and 12m ∈ Q0
}
.

Then Q ∈ NE. Furthermore, Q is infinite as otherwise the set {12m | m ∈ N
and 12m

/∈ Q0} would be an infinite subset of Σ∗ \ Q0 in P contradicting the
bi-immunity property of Q0. Finally we show that Q is Ntime0(2n)-immune. By
contradiction assume that there is an infinite S ⊆ Q accepted by a nondetermin-
istic algorithm S in time 2n. Then the set

S∗ := {1n | n = 2m for some m ∈ N and 1m ∈ S}
is an infinite subset of Q0. The algorithm that first computes m from 1n and
then deterministically simulates all possible runs of S on 1m runs in time

nO(1) + O(22m

) = nO(1) + O(2n) ≤ 22n

for sufficiently large n. This contradicts the Dtime0(22n)-immunity of Q0. �

6.2. Non-optimal algorithms without hard sequences. In this final part
we show that, assuming the Measure Hypothesis,

– every problem with padding and with an almost optimal algorithm has
an algorithm which is not almost optimal but has no hard sequence

– there is a problem without almost optimal algorithm having an algorithm
without hard sequence.

Our proofs are based on the following proposition.

Proposition 27. If the Measure Hypothesis holds, then there is a problem Q0 ∈
P such that
(a) there is an algorithm B deciding Q0 which is not almost optimal (or, equiv-

alently, is not polynomial time) but has no hard sequences;
(b) every algorithm A deciding Q0 with

tA(x) ≤ 2e·(log |x|)2

HARD INSTANCES OF ALGORITHMS AND PROOF SYSTEMS 17

for every x ∈ Σ∗ and some constant e ≥ 1 has no hard sequences;
(c) there is a proof system for Q0 which is not optimal but has no hard sequences.

In the proof we shall use:

Lemma 28. Let A be an algorithm deciding a problem Q0 with

(5) tA(x) ≤ 2e·(log |x|)2

for all x ∈ Σ∗ and some e ≥ 1. Assume that (xs)s∈N is a hard sequence for A.
Then there is a sequence s0 < s1 < s2 < . . . such that

lim
i→∞

log si

(log |xsi
|)2 = 0 i.e., si = 2o((log |xsi |)

2).

In particular, the set {xsi
| i ∈ N} is infinite.

Proof. Assume otherwise that for some ε > 0 and some n ∈ N and all s ≥ n

log s

(log |xs|)2 ≥ ε,

or equivalently, s ≥ 2ε·(log |xs|)2
; then s ≥ tA(xs)ε/e by assumption. This contradicts

the hardness of (xs)s∈N. �

Proof of Proposition 27. (a) and (b): By the Measure Hypothesis there is a
Dtime0(2n)-bi-immune Q1 ∈ NP. In particular, there exists a nondeterministic
Turing machine M with binary nondeterminism and a d ∈ N such that for all
y ∈ Σ∗ (with |y| ≥ 2) the machine M decides whether y ∈ Q1 in ≤ |y|d steps.

Thus for y ∈ Σ∗ every string x ∈ {0, 1}|y|d determines a unique run of M on y.
We set

Q0 := {x ∈ {0, 1}∗ |for some n ∈ N we have |x| = nd and

x determines an accepting run of M on input 1n}.

Then Q0 is infinite, as otherwise the set {1n ∈ Q1 | n ∈ N} would be finite
contradicting the Dtime0(2n)-bi-immunity of Q1. Clearly Q0 ∈ P. Let A0 be an
algorithm deciding Q0 in polynomial time and let B be the algorithm deciding Q0

by first simulating A, and then making an appropriate number of dummy steps
such that for some e ≥ 1 and all y ∈ Σ∗

(6) tB(y) = 2e·(log |y|)2
.

Then A0 witnesses that B is not almost optimal.
We finish our proof by showing that for every algorithm A deciding Q0 such

that for some e ≥ 1 and all y ∈ Σ∗

tA(y) ≤ 2e·(log |y|)2
.

18 YIJIA CHEN, JÖRG FLUM, AND MORITZ MÜLLER

has no hard sequences. Towards a contradiction assume A has a hard sequence
(xs)s∈N. We set

L0 := {1n | for some s ∈ N, |xs| = nd and

xs determines an accepting run of M on 1n}.
Clearly, L0 ⊆ Q1. We choose a polynomial time algorithm G computing the
function 1s 7→ xs. The following algorithm C accepts L0.

C // y ∈ Σ∗

1. n← |y|
2. if y 6= 1n then reject
3. `← 0
4. for s = 0 to `
5. simulate the (`− s)th step of G on 1s

6. if the simulation outputs x with |x| = nd then accept
7. `← ` + 1
8. goto 3.

By (6) we can apply Lemma 28 to A and get a sequence s0 < s1 < s2 < For
i ∈ N we let

(7) ni := d
√
|xsi
|.

Hence, xsi
is an accepting run of M on input 1ni . We show that

(8) tC(1ni) = 2o((log ni)2).

In fact, as G runs in polynomial time, we have |xsi
| ≤ |si|O(1), and by (7) therefore,

|ni| ≤ |si|O(1). Now one easily sees that C accepts 1ni in time polynomial in si,
too. By Lemma 28

si = 2o((log |xsi |)
2).

Thus (7) implies that

si = 2o((log ni)2).
Hence, we get (8).

Finally, we consider the algorithm C∗ that on input y simulates C for 2|y| steps
and accepts if the simulation accepts. By (8), C∗ accepts an infinite subset of L0.
As L0 ⊆ Q1, this contradicts the Dtime0(2n)-bi-immunity of Q1.

(c) Let Q0 and B be as in part (a). We leave it to the reader to show that the
following proof system P for Q0 is not optimal but has no hard sequence. For
w ∈ Σ∗ let

P(w) := x, if w is a computation of B accepting x

and P(w) := z0 for some fixed z0 ∈ Q0 otherwise. �

HARD INSTANCES OF ALGORITHMS AND PROOF SYSTEMS 19

Theorem 29. Let Q be a problem with padding and with an almost optimal al-
gorithm. If the Measure Hypothesis holds, then there is an algorithm deciding Q,
which is not optimal, has hard sets but does not have hard sequences.

Proof. Let pad and O be a padding function and an almost optimal algorithm for
Q, respectively. With Proposition 27 (a) choose a Q0 ∈ P and an algorithm B
deciding Q0 which is not almost optimal but has no hard sequences. Fix z0 ∈ Q
and let A be the algorithm deciding Q that on input x first checks (in polynomial
time) whether x = pad(z0, y) with y ∈ Q0 (using the properties of the padding
function and a polynomial time algorithm deciding Q0); if so, it simulates B on
y; otherwise it simulates O on x.

Clearly, A is not almost optimal as it can be speeded up on the set {pad(z0, y) |
y ∈ Q0}, a hard set of A. By contradiction, assume (xs)s∈N is a hard sequence
for A and let y0 ∈ Q0. For s ≥ 1 we set

ys :=

{
y, if xs = pad(z0, y) with y ∈ Q0

ys−1, otherwise

and

zs :=

{
zs−1, if xs = pad(z0, y) with y ∈ Q0

xs, otherwise.

Then either (ys)s∈N is a hard sequence for B or (zs)s∈N is a hard sequence for O,
in both cases a contradiction. �

Corollary 30. If the Measure Hypothesis holds, then the following are equivalent:
(i) Every coNP-complete problem has no almost optimal algorithm.

(ii) Every non-almost optimal algorithm deciding a coNP-complete problem has
hard sequences.

Proof. We already know that (i) implies (ii) by Theorem 3 (a). Assume (ii) and
by contradiction, suppose that Q is a coNP-complete problem with an almost
optimal algorithm. By Theorem 9, we may assume that Q has padding. Then,
by the previous theorem, there is a non-almost optimal algorithm deciding Q
without hard sequences, contradicting (ii). �

The following example shows that the padding hypothesis is necessary in
Theorem 29.

Example 31. Let Q := {1n | n ∈ N}. As Q ∈ P, it has an almost algorithm.
However, the set Q itself is a hard set and (1s)s∈N a hard sequence for every
non-optimal (that is, for every superpolynomial) algorithm deciding Q.

Finally, we show that also problems without almost optimal algorithm may
have algorithms without hard sequences:

20 YIJIA CHEN, JÖRG FLUM, AND MORITZ MÜLLER

Theorem 32. If the Measure Hypothesis holds, there is a problem which has
hard sets for algorithms (and hence has no almost optimal algorithm) but has
algorithms without hard sequences.

Proof. Let Q0 ∈ P be a problem with the properties stated in Proposition 27.
We fix an effective enumeration

(9) A0,A1, . . . ,

of all algorithms such that there is an universal algorithm U which on every input
〈1i, x〉 simulates the algorithm Ai on input 〈1i, x〉 in such a way that

(10) tU
(
〈1i, x〉

)
≤ (i + 1) · tAi

(〈i, x〉)2.

For every i ∈ N we let

(11) Si :=
{
〈1i, x〉

∣∣∣ x ∈ Q0 and Ai does not accept 〈1i, x〉 in ≤ 2(log |x|)2
steps

}
.

Finally, we set

Q :=
⋃
i∈N

Si.

and show that Q is a problem with the properties mentioned in the theorem.

Claim 1. Let k ∈ N. If Ak

(
see (9)

)
decides Q, then Sk = {〈1k, x〉 | x ∈ Q0}.

Proof of Claim 1. Otherwise, there exists an x0 ∈ Q0 with 〈1k, x0〉 /∈ Sk. It
follows that

x0 ∈ Q0 with 〈1k, x0〉 /∈ Sk

=⇒ Ak accepts 〈1k, x0〉 in ≤ 2(log |x|)2
steps (by (11))

=⇒ Ak accepts 〈1k, x0〉
=⇒ 〈1k, x0〉 ∈ Q (as Ak decides Q)
=⇒ 〈1k, x0〉 ∈ Sk (since all Si’s are disjoint).

This is a contraction. a
Claim 2. Q has hard sets for algorithms.

Proof of Claim 2. Assume that Ak decides Q. By Claim 1, Sk = {〈1k, x〉 | x ∈ Q0}
and by (11) for every x ∈ Q0,

tAk

(
〈1k, x〉

)
> 2(log |x|)2

.

As Q0 ∈ P, thus Sk is a hard set for Ak. a
Claim 3. For all sufficiently large d ∈ N there is an algorithm Qd deciding Q such
that

tQd

(
〈1i, x〉

)
= (i + 1) · 2d·(log |x|)2

for every i ∈ N and x ∈ Σ∗.

Proof of Claim 3. By (10) and (11) as Q0 ∈ P. a

HARD INSTANCES OF ALGORITHMS AND PROOF SYSTEMS 21

Now we choose a sufficiently large d ∈ N and consider the algorithm Qd of
Claim 3. Assume that Qd has a hard sequence(

〈1is , xs〉
)

s∈N.

By (11) every xs is in Q0 and by hardness,

tQd

(
〈1is , xs〉

)
= (is + 1) · 2d·(log |xs|)2

is superpolynomial in s. Since the mapping 1s 7→ 〈1is , xs〉 is computable in
polynomial time, we have |is| ≤ |s|O(1). Therefore,

(12) 2d·(log |xs|)2
is superpolynomial in s.

As Q0 is decidable in polynomial time and d is sufficiently large, we have an
algorithm A deciding Q0 in time 2d·(log |x|)2

on every instance x ∈ Σ∗. Then
(12) implies that (xs)s∈N is a hard sequence for A, which contradicts Proposi-
tion 27 (b). �

7. Getting hard sequences in an effective way

We have mentioned in the Introduction that McCreight and Meyer [9] have shown
that for every EXP-hard problem Q there is a polynomial time procedure assign-
ing to every algorithm deciding Q a hard sequence. Based on their proof we
derive a “nondeterministic” version.

Theorem 33. Let Q be a coNEXP-hard problem. Then there is a polynomial
time computable function g : Σ∗×{1}∗ → Σ∗ such that for every nondeterministic
algorithm A accepting Q the sequence

(
g(A, 1s)

)
s∈N is hard for A.

Proof. Consider the problem

Q0

Instance: A nondeterministic algorithm A.
Question: Is it true that A does not accept A in at most

2|A| steps?

Claim 1. If B is a nondeterministic algorithm accepting Q0, then B ∈ Q0 and
therefore, tB(B) > 2|B|.

Proof of Claim 1. Assume that B /∈ Q0. Therefore, B does not accept B. Then,
by the definition of Q0, we have B ∈ Q0, a contradiction. a

To every nondeterministic algorithm A and every s ∈ N we can assign in time
polynomial in A and s a nondeterministic algorithm As with

(13) |As| ≥ s, L(As) = L(A), and tAs = tA

(say, by adding s new “dummy” states).

22 YIJIA CHEN, JÖRG FLUM, AND MORITZ MÜLLER

Claim 2. If A is a nondeterministic algorithm accepting Q0, then (As)s∈N is a
hard sequence for A.

Proof of Claim 2. It suffices to verify for all s ∈ N

As ∈ Q0(14)

tA(As) > 2s.(15)

By (13) we know that L(As) = L(A). Hence, (14) holds by Claim 1, which also
shows the first inequality in

tA(As) = tAs(As) > 2|As| ≥ 2s,

the second one and the equality holding by (13). a
Now let Q be coNEXP-hard. Since Q0 ∈ coNEXP there is a polynomial time

reduction S from Q0 to Q. Again, for a nondeterministic algorithm A let A◦S be
the nondeterministic algorithm that on input x ∈ Σ∗ first runs S on x and then
runs A on S(x).

For a nondeterministic algorithm A and s ∈ N we define

g(A, 1s) := S((A ◦ S)s).

Clearly, g is polynomial time computable. If A decides Q, then A ◦ S decides
Q0; therefore, ((A ◦ S)s)s∈N is a hard sequence for A ◦ S by Claim 2. Hence,(
g(A, 1s)

)
s∈N is a hard sequence for A by Lemma 8. �

Acknowledgements. The authors wish to thank the John Templeton Foundation
for its support under Grant #13152, The Myriad Aspects of Infinity. This re-
search also has been partially supported by the National Nature Science Foun-
dation of China (60970011), the Sino-German Center for Research Promotion
(GZ584). Yijia Chen is affiliated with BASICS and MOE-MS Key Laboratory
for Intelligent Computing and Intelligent Systems which is supported by National
Nature Science Foundation of China (61033002).

References

[1] O. Beyersdorff. On the correspondence between arithmetic theories and propositional
proof systems - a survey. Mathematical Logic Quarterly, 55(2):116–137, 2009.

[2] Y. Chen and J. Flum. On p-optimal proof systems and logics for PTIME. In Proceed-
ings of the 37th International Colloquium on Automata, Languages and Programming
(ICALP’10, Track B), volume 6199 of Lecture Notes in Computer Science, pp. 321–322,
2010.

[3] Y. Chen and J. Flum. Listings and logics. Electronic Colloquium on Computational Com-
plexity (ECCC), TR11-020, 2011.

[4] S. Cook and R. Reckhow. The relative efficiency of propositional proof systems.
The Journal of Symbolic Logic, 44:36–50, 1979.

[5] J.M. Hitchcock and A. Pavan. Hardness hypotheses, derandomization, and circuit com-
plexity. In Proceedings of the 24th Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’04), 336-347, 2004.

HARD INSTANCES OF ALGORITHMS AND PROOF SYSTEMS 23

[6] J. Kraj́ıc̆ek. Bounded arithmetic, propositional logic, and complexity theory. Cambridge
University Press, 1995.

[7] J. Kraj́ıc̆ek and P. Pudlák. Propositional proof systems, the consistency of first or-
der theories and the complexity of computations. The Journal of Symbolic Logic,
54:1063–1088, 1989.

[8] L. Levin. Universal search problems. Problems of Information Transmission, 9(3):
265-266, 1973.

[9] A. Meyer. A supervisor’s reminiscence what we were thinking. Talk at the Stockmeyer-
Symposium, 2005.

[10] E. Mayordomo. Almost every set in exponential time is P-bi-immune. Theoretical Com-
puter Science, 136(2): 487-506, 1994.

[11] J. Messner. On the simulation order of proof systems. PhD Thesis, University of Erlangen,
2000.

[12] Z. Sadowski. On an optimal propositional proof system and the structure of easy subsets
of TAUT. Theoretical Computer Science, 288(1):181–193, 2002.

[13] L. Stockmeyer. The Complexity of Decision Problems in Automata Theory. PhD. Thesis,
MIT 1974.

Yijia Chen
Shanghai Jiaotong Universit
China

E-mail address: yijia.chen@cs.sjtu.edu.cn

Jörg Flum
Albert-Ludwigs-Universität Freiburg
Germany.

E-mail address: joerg.flum@math.uni-freiburg.de

Moritz Müller
Centre de Recerca Matemàtica (CRM)
Spain.

E-mail address: mmueller@crm.cat

