
ar
X

iv
:1

40
2.

08
04

v1
 [

cs
.D

C
]

 4
 F

eb
 2

01
4

A Measurement-based Analysis of the
Energy Consumption of Data Center Servers∗

Jordi Arjona∗, Angelos Chatzipapas+,∗, Antonio Fernandez Anta+, and Vincenzo Mancuso+,∗

∗University Carlos III of Madrid, Spain +Institute IMDEA Networks, Madrid, Spain

{jorge.arjona, angelos.chatzipapas, antonio.fernandez, vincenzo.mancuso}@imdea.org

ABSTRACT
Energy consumption is a growing issue in data cen-
ters, impacting their economic viability and their pub-
lic image. In this work we empirically characterize the
power and energy consumed by different types of servers.
In particular, in order to understand the behavior of
their energy and power consumption, we perform mea-
surements in different servers. In each of them, we ex-
haustively measure the power consumed by the CPU, the
disk, and the network interface under different configu-
rations, identifying the optimal operational levels. One
interesting conclusion of our study is that the curve that
defines the minimal CPU power as a function of the load
is neither linear nor purely convex as has been previ-
ously assumed. Moreover, we find that the efficiency of
the various server components can be maximized by tu-
ning the CPU frequency and the number of active cores
as a function of the system and network load, while the
block size of I/O operations should be always maximized
by applications. We also show how to estimate the en-
ergy consumed by an application as a function of some
simple parameters, like the CPU load, and the disk and
network activity. We validate the proposed approach by
accurately estimating the energy of a map-reduce com-
putation in a Hadoop platform.

Categories and Subject Descriptors
B.8.2 [Performance and reliability]: Performance
Analysis and Design Aids ; C.4 [Performance of sys-

tems]: Measurement techniques .

General Terms
Measurement, Performance, Experimentation.

Keywords
Measurements; Power and Energy consumption; DVFS;
Network; Disk I/O.

1. INTRODUCTION
∗Partially supported by Comunidad de Madrid grant
S2009TIC-1692, MICINN grant TEC2011-29688-C02-01,
and National Natural Science Foundation of China grant
61020106002. The authors would like to thank Luis Núñez
Chiroque, Philippe Morere, and Miguel Peón for their help
with some experiments.

Massive data centers are becoming common nowa-
days. Large companies such as Google, Yahoo!, Ama-
zon or Microsoft have deployed large data centers, hous-
ing tens of thousands of servers, and consuming a huge
amount of energy every year. According to Van Hed-
deghem and Lambert [8], data centers’ total energy con-
sumption in 2012 was about 270 TWh, which corre-
sponds to almost 2% of the global electricity consum-
ption, and has an approximated annual growth rate of
4.3%. This trend has driven researchers all over the
world to focus on energy efficiency in data centers. Ex-
amples of energy saving techniques proposed during the
recent years are virtualization plus consolidation and
scheduling optimization [12, 17]. However, industry re-
quirements keep increasing, and more research is neces-
sary.
In this paper, out of all possible components of a data

center, e.g., servers, routers, switches, etc., we concen-
trate on the characterization of servers and the energy
they consume. Indeed, in order to obtain full bene-
fit of the aforementioned energy-efficient techniques, it
is crucial to have a good characterization of servers in
the data center, as a function of the utilization of the
server’s components. That is, it is necessary to know
and understand the energy and power consumption of
servers and how this changes under the different con-
figurations. There is a large body of literature on char-
acterizing servers’ energy and power consumption. Ho-
wever, the existing literature does not jointly consider
phenomena like the irruption of multicore servers and
dynamic voltage and frequency scaling (DVFS) [21],
which are key to achieve scalability and flexibility in
the architecture of a server. With these new parame-
ters, more variables come into play in a server configu-
ration. Learning how to deal with these new parameters
and how they interact with other variables is important
since this may lead to larger savings.
It has been traditionally considered that the CPU is

responsible for most of the power being consumed in a
server, and that this power increases linearly with the
load. Although the power consumed by the CPU is
significant, we believe that the power incurred by other

http://arxiv.org/abs/1402.0804v1

elements of the server, like disks and NICs (Network In-
terface Cards) are not negligible, and have to be taken
into account. Moreover, we believe that the assumption
that CPU power consumption depends linearly from the
load in a server may be too simplistic, especially when
the server has multiple cores and may operate at multi-
ple frequencies. In fact, even the way load is expressed
has to be carefully defined (e.g., it cannot be defined as
a proportion of the maximal computational capacity of
the CPU, since this value changes with the operational
frequency). Therefore, more complex/complete models
for the power consumed by a server are necessary. In
order to be consistent, these models have to be based
on empirical values. However, we found that there is a
lack of empirical work studying servers energy behavior.
Our work tries to partially fill this void by proposing a

measurement-based characterization—which is the first
of its kind—of the energy consumption of a server with
DVFS and multiple cores. We evaluate here different
server machines and evaluate what is the contribution
to their power consumption of the CPU, hard drive disk,
and network card (NIC). Our results support, for in-
stance, our belief that more complex models than lin-
ear are required for CPU power consumption. From the
measurements obtained from the servers we evaluate,
we propose a holistic energy consumption characteriza-
tion, that accounts for the power consumed by CPU,
disk, and NIC. Our approach captures the influence of
the processing frequency and the multiple cores, not
only to the CPU power consumption, but also to that
of disk input/output (I/O) and NIC activity.

Main results and contributions.
Our main contributions are of two kinds: (i) we pro-

pose a methodology for empirically characterizing the
energy consumption of a server, and (ii) we provide
novel insights on the power and energy consumption
behavior of the most relevant server’s components.
As concerns the methodology, we observe that active

CPU cycles per second (ACPS) is a convenient metric
of CPU load in architectures using multiple frequencies
and cores. We show how to isolate the contribution to
energy/power consumption due to CPU, disk I/O oper-
ations, and network activity by just measuring the total
server power consumption and a few activity indicators
reported by the operating system. We also show that
the baseline power consumption of a server—i.e., the
power consumed just because the server is on—has a
strong weight on the total server consumption.
As concerns the components’ characterization, we show

that, besides the baseline component, the CPU has the
largest impact among all components, and its power
consumption is not linear with the load. Disk I/O oper-
ations are the second highest cause of consumption, and
their efficiency is strongly affected by the I/O block size

used by the application. Eventually, network activity
plays a minor yet not negligible role in the energy/power
consumption, and the network impact scales almost lin-
early with the network transmission rate. All other
components can be accounted for in the baseline power
consumption, which is subject to minor variations un-
der different operational conditions.
The main results of our campaign of measurements

and analysis can be listed as follows:

• The CPU consumption depends on the number of ac-
tive cores, the CPU frequency, and the load (in ACPS
units). Our measurements confirm that the power
consumption with a single active core at constant fre-
quency can be closely approximated by a linear func-
tion of the load. However, given a CPU frequency,
the power consumption is a concave function of the
load and can be approximated by a low-order poly-
nomial. The power consumption for a fixed load is,
in general, minimized by using the highest number of
cores and the lowest frequency at which the load can
be served. However, the minimum achievable power
consumption is a piecewise concave function of the
load.

• The power consumed by hard disks for reading and
writing depends on CPU frequency and I/O block
sizes. Both reading and writing costs increase slightly
with the CPU frequency. While the consumption due
to reading is not affected by block size, the power
consumed when writing increases with the block size.
The reading efficiency (expressed in MB/J) is barely
affected by the CPU frequency, while writing effi-
ciency is a concave function of the block size since
it boosts the throughput of writing until a saturation
value is reached.

• The power consumption and the efficiency of the NIC,
both in transmission and reception, depends on the
CPU frequency, the packet size, and the transmission
rate. The efficiency of data transmission increases al-
most linearly with the transmission rate, with steeper
slopes corresponding to lower CPU frequencies. Al-
though a linear relation between transmission rate
and efficiency holds for data reception as well, small
packet sizes yield higher efficiency in reception.

• Overall, we provide a holistic energy consumption
model that only requires a few calibration parame-
ters for every different server that we want to eval-
uate (a universal power model will be too simplistic
and inaccurate). We validate our model by means of
a server computing the pagerank metric of a graph in
a Hadoop platform, with bulky network activity, and
we found that the error due our energy estimates is
below 7%.

2. METHODOLOGY

In this section we introduce the measurement tech-
niques we used to characterize the power consumption
of CPU activity, disk access (read and write operations),
and network activity. Our measurements start charac-
terizing the CPU power consumption, from where we
obtain information about the baseline power consum-
ption of the system. After CPU and baseline characte-
rization, we follow with experiments for the other two
components, namely, disk and network. Note that CPU
and baseline measurements are of capital importance in
order to evaluate the other components, because any
operation run in a machine is like a puzzle with multi-
ple pieces and we must know what is the contribution of
each one of these pieces. Consider that, we are paying
a cost just for having a server switched on and the op-
erating system running on it. Similarly, every time we
run a task in the system, some CPU cycles are needed
in order to execute it as well as to use the component
that has to perform the task. Hence, in order to un-
derstand the contribution of any component, we first
need to identify the contribution of the CPU and com-
pute the difference with respect to the aforementioned
baseline.
To explore the possible parameters determining the

power consumption of a server and to gain statistic con-
sistency we run our experiments multiple times. Simi-
larly, we run these experiments in different servers and
architectures in order to validate our results and give
consistency to our conclusions.

2.1 Collecting system data and fixing frequency
parameters

One prerequisite for our experiments was having Linux
machines due to the kind of commands and benchmarks
we wanted to use and, mainly, because of the possibil-
ity of adding some kernel modules and utilities,1 which
allows us to change CPU frequencies at will. In a Linux
system, CPU activity stats are constantly logged, so we
can periodically read the core frequency and the number
of active and passive CPU ticks at each core.2 Once we
have the number of ticks and the core frequency, since
a tick represents a hundredth of second, cycles can be
calculated as 100 ticks/frequency.
We use active cycles per second (ACPS) instead of

CPU load percentage to characterize CPU load because
the latter depends on the CPU frequency used, as the
higher the frequency the more the work that can be pro-
cessed. Hence, a percentage of load is not comparable
when different frequencies are used, while the amount

1For instance cpufrequtils, acpi-cpufreq.
2File /proc/stat reports the number of ticks since the com-
puter started devoted to user, niced and system processes,
waiting (iowait), processing interrupts (i.e., irq and softirq),
and idle. In our experiments we count both waiting and idle
ticks as passive ticks, while we denote the aggregated value
of the rest of ticks as active.

of ACPS that can be processed can be considered as
an absolute magnitude. In order to get and set infor-
mation about the operative frequency of the system we
used the cpufrequtils package.3 With those tools, we
can monitor the CPU frequency at which the system
works and assign different frequencies to the cores. Ho-
wever, to limit the number of possible combinations to
characterize, we fix the frequency to be the same for all
cores.

2.2 CPU
In order to evaluate the CPU power consumption we

prepared a script based on the benchmark application,
namely lookbusy.4 Note that lookbusy allows us to
load one or more CPU cores with the same load.Our
lookbusy-based experiment follows the next steps: we
first fix the CPU frequency to the lowest possible fre-
quency in the system; then we run lookbusy with fixed
amount of load for one core during timeslots of 30 sec-
onds, starting with the maximum load and then de-
creasing the load gradually. After the last lookbusy run
we measure the power consumed during an additional
timeslot with no lookbusy load offered. We register the
active cycles and the power used during each timeslot.
After taking these different samples for one frequency

we move to the immediately higher frequency (we can
list and change frequencies thanks to cpufrequtils)
and repeat the previous steps. After going through all
the available frequencies, we restart the whole process
but increasing by one the number of active cores. We
repeat this whole process until all the cores of the server
are active. Note that when we change the frequency of
the cores we change it in all of them, active or not, for
consistency. Similarly, when we have more than one
active core, the load for all the active cores will be the
same.
Once explained the scheme of our experiments, we

must clarify the meaning of running a timeslot with no
load. Note that zero-load is clearly not possible as there
is always going to be load in the system due to, e.g.,
the operating system. However, during the timeslot in
which we do not run lookbusy, we measure the power
corresponding to the operational conditions which are
as close as possible to the ones of an idle system. More-
over, the decision of using timeslots of 30 seconds is to
guarantee enough, yet not excessive, time for the mea-
surements. In fact, as we start and stop lookbusy at the
beginning and end of the timeslots, we need to ignore
the first and the last few seconds of measurements in
each timeslot to avoid measurement noise due to power
ramps and operational transitions.
The measured values of load (in ACPS) and power in

each timeslot are used to obtain a least squares polyno-

3https://wiki.archlinux.org/index.php/CPU_Frequency_Scaling
4http://www.devin.com/lookbusy.

https://wiki.archlinux.org/index.php/CPU_Frequency_Scaling
http://www.devin.com/lookbusy

mial fittings curve. These fittings characterize the CPU
power consumption for each combination of frequency
and number of active cores. We will use as baseline
power consumption of each one of these configurations
the zero-order coefficient of the polynomial of these fit-
tings curves.

2.3 Disks
The power consumption of the hard drive was evalu-

ated using 2 different scripts (for reading and writing)
based on the dd linux command.5 We chose dd as it al-
lows us to read files, write files from scratch, control the
size of the blocks we write (read), control the amount of
blocks written (read) and force the commit of writing
operations after each block in order to reduce the effect
of operating system caches and memory. We combine
this tool with flushing the RAM and caches after each
reading experiment.
In both our scripts we perform write (read) opera-

tions for a set of different I/O block sizes and for dif-
ferent data volumes to be written (read). In each case
we record the CPU active cycles, the total power and
time consumed in each one of these operations for each
combination of block size and available frequency.
Finally, we identify the contribution of the hard drive

to the total power consumption by subtracting the con-
tribution of both the baseline and the CPU consum-
ption from the measured total power.
Disk I/O experiments shed light on the relevance of

the block sizes when reading or writing as well as whether
there is an influence of the frequency on these opera-
tions.

2.4 Network
In order to evaluate the contribution of the network

to the power consumption of a server, we devised a set
of experiments based on the iperf6 tool as well as on
our own UPD-client-server C script.
There are several aspects that we consider relevant

in order to characterize the impact of the NIC on the
total power consumption of a server and that led us to
choose these two tools. The first is the ability of per-
forming tests where the computer under study acts as
a server (sender) or as a client (receiver) of the commu-
nication, in order to observe its behavior when sending
data or receiving it. For the sake of clarity, we will use,
from now on, the terms sender, for the server inject-
ing traffic to the network, and receiver for the server
accepting traffic from the network. The second aspect
consists in the ability to change several parameters that
we consider relevant for this characterization, namely,
the packet size and the offered load, jointly with the
frequency of the system.

5http://linux.die.net/man/1/dd.
6http://iperf.fr/

Table 1: Characteristics of the servers under study

Component
Servers

Survivor Nemesis Erdos

CPU (# cores) 4 4 64
freqs 8 11 5

Freqs List

1.2 GHz,
1.333 GHz,
1.467 GHz,
1.6 GHz,
1.733 GHz,
1.867 GHz,
2 GHz,
2.133 GHz

1.596 GHz,
1.729 GHz,
1.862 GHz,
1.995 GHz,
2.128 GHz,
2.261 GHz,
2.394 GHz,
2.527 GHz,
2.666 GHz,
2.793 GHz,
2.794 GHz

1.4 GHz,
1.6 GHz,
1.8 GHz,
2.1 GHz,
2.3 GHz

RAM 4 GB 4 GB 512 GB

Disk 2 TB 2 + 3 TB 2× 146GB
4× 1 TB

Network 1 Gbps 3× 1 Gbps 4 × 1 Gbps,
2× 10 Gbps

Our experiments consist, then, on measuring the data
rate achieved, the CPU active cycles and the total power
consumption of the server under study acting as sender
or receiver when using different packet sizes and differ-
ent rates. We run each experiment multiple times for
statistical consistency.
Finally, in order to isolate the consumption from the

network, we characterize with the CPU active cycles
measured in the experiment the consumption due to
the CPU and the baseline and subtract them from our
measurements.

3. MEASUREMENTS

3.1 Devices and Setup
In order to monitor and store the instantaneous power

consumed by a server during the different experiments
we used a Voltech PM1000+ power analyzer,7 which
is able to measure the total instantaneous power con-
sumed by the server under test on a per-second basis.
In order to take our measurements we connected the
server being measured to the power analyzer and the
latter to the power supply. In the experiments where
the network was not involved (CPU and disk), we un-
plugged the network cable from the server, which has
an impact on the power consumption as the port goes
idle. In the network based experiments we established
an Ethernet connection between the server under study
and a second machine in order to study the server be-
havior, both as a receiver as well as as a sender.
We evaluated three different servers: Survivor, Neme-

sis, and Erdos. We will now present these servers al-
though their main characteristics, including their sets
of available CPU frequencies, can be also found in Ta-
ble 1. Survivor has an Intel Xeon E5606 4-core pro-
cessor, with 4 GB of RAM, a 2 TB Seagate Barracuda
XT hard drive and a 1 Gigabit Ethernet card integrated
7http://www.farnell.com/datasheets/320316.pdf

http://linux.die.net/man/1/dd
http://iperf.fr/
http://www.farnell.com/datasheets/320316.pdf

in the motherboard. Nemesis is a Dell Precision T3500
with an Intel Xeon W3530 4-core processor, 4 GB of
RAM, 2 hard drives (a 2 TB Seagate Barracuda XT
and a 3 TB Seagate Barracuda), a 1 Gigabit Ether-
net card integrated in the motherboard, and a sepa-
rate Ethernet card with two 1 Gigabit ports. In this
study we only evaluate the Seagate Barracuda XT disk
and the integrated Ethernet card. Both Survivor and
Nemesis use the Ubuntu Server edition 10.4 LTS Linux
distribution. Finally, Erdos is a Dell PowerEdge R815
with 4 AMD Opteron 6276 16-core processors (i.e., 64
cores in total), 512 GB of RAM, two 146 GB SAS hard
drives configured as a single RAID1 system (which is
the “disk” analyzed here) and four 1 TB Near-line SAS
hard drives. It also includes four 1 Gigabit and two
10 Gigabit ports. Erdos is a high-end server and uses
Linux Debian 7 Wheezy.

3.2 Baseline and CPU
As mentioned in the previous section, for each server

we have measured the power it consumes without disk
accesses nor network traffic. We assume that the power
consumption observed is the sum of the baseline con-
sumption plus the power consumed by the CPU. We
have obtained samples of the power consumed under dif-
ferent configurations that vary in the number of active
cores used, the frequency at which the CPU operates
(all cores operate at the same frequency), and the load
of the active cores (all active cores are equally loaded).
The list of available and tested CPU frequencies and
cores can be found in Table 1. We tune the total load
ρ by using lookbusy, as described in the previous sec-
tion. Each experiment lasts 30 s and it is repeated 10
times. Results are summarized in terms of average and
standard deviation. Specifically, in the figures reported
in this section, the power consumption for each tested
configuration is depicted by means of a vertical segment
centered on the average power consumption measured,
and with segment size equal to two times the standard
deviation of the samples.
The results of these experiments for each of the 3

servers are presented in Figure 1 (the measurements for
some frequencies and some number of cores are omitted
for clarity). Here, for each configuration of number of
active cores, frequency, and load in ACPS, the mean
and standard deviation of all the experiments with that
configuration are presented. Also the least squares poly-
nomial fitting curve for the samples is shown for each
number of cores and frequency. The curves shown are
for polynomials of degree 7, but we observed that using
a degree 3 polynomial instead does not reduce drasti-
cally the quality of the fit (e.g., the relative average
error of the fitting increases from 0.7% with 7-th degree
polynomials to 1.5% with degree equal to 3 for Erdos,
while it remains practically stable and below 0.7% for

0 1 2 0 1 2 3 4 0 1 2 3 4 5 6 7 8 9

65

70

75

80

85

90

95

100

Load ρ [ACPS]

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 P

B
C

 [
W

]

× 109

1 Core 4 Cores
2.133 GHz

1.867 GHz

1.467 GHz

1.2 GHz

2 Cores

(a) Survivor

0 1 2 3 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 10 11 12
80

90

100

110

120

130

140

150

160

Load ρ [ACPS]

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 P

B
C

 [
W

]

× 109

1 Core 2 Cores 4 Cores

2.794 GHz

2.527 GHz

1.995 GHz

1.596 GHz

(b) Nemesis

0 3 0 10 0 10 20 30 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
200

300

400

500

600

Load ρ [ACPS]

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 P

B
C

 [
W

]

× 109

1 Core

16 Cores 64 Cores
2.3 GHz

1.4 GHz

2.1 GHz

1.8 GHz

1.6 GHz

4 Cores

(c) Erdos

Figure 1: Power consumption of 3 servers (Survivor,
Nemesis, and Erdos) for baseline and CPU characteri-
zation experiments.

Nemesis). In general, we can use an expression like the
following to characterize the CPU power consumption:

PBC(ρ) =

n∑

k=0

αkρ
k, n ≤ 7, (1)

where PBC includes both the baseline power consum-
ption of the servers and the power consumed by the
CPU, and ρ is the load expressed in active cycles per
second. Therefore, coefficient α0 in Eq. 1 represents
the consumption of the system when the CPU activity
tends to 0, and we can thereby interpret α0 as the base-
line power consumption of the system. Note that the
polynomial fitting, and hence the baseline power con-
sumption α0, depends on the particular combination of
number of cores and frequency adopted. However, for

0 2 4 6 8 10 12

x 10
9

80

90

100

110

120

130

140

150

160

Load ρ [ACPS]

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 P

B
C

 [
W

]

P
min

(ρ)

(a) Minimal power.

0 2 4 6 8 10 12

x 10
9

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

8

Load ρ [ACPS]

E
ff

ic
ie

n
cy

 η
C

 [
A

C
/J

]

η
max

(ρ)

(b) Maximal efficiency.

Figure 2: CPU performance bounds of Nemesis.

0 5 10 15

x 10
10

200

250

300

350

400

450

500

550

600

650

Load ρ [ACPS]

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 P

B
C

 [
W

]

P
min

(ρ)

(a) Minimal power.

0 5 10 15

x 10
10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

8

Load ρ [ACPS]

E
ff

ic
ie

n
cy

 η
C

 [
A

C
/J

]

η
max

(ρ)

(b) Maximal efficiency.

Figure 3: CPU performance bounds of Erdos.

sake of readability, we do not explicitly account for such
a dependency in the notation.

A first observation of the fitting curves for each par-
ticular server in Figure 1 reveals that the power for near-
zero load is almost the same in curves (e.g., for Nemesis
this value is between 84 and 85 W). Observe that it is
impossible to run an experiment in which the load of
the CPU is actually zero to obtain the baseline power
consumption of a server. However, all the fitting curves
converge to a similar value for ρ → 0, which can be
assumed to represent the baseline power consumption.
A second observation is that for one core the curves

grow linearly with the load. However, as soon as two
or more cores are used, the curves are clearly concave,
which implies that for a fixed frequency the efficiency
grows with the load (we will discuss later the efficiency
in terms of number of active cycles per energy unit).
A third observation is that frequency does not signif-

icantly impact the power consumption when the load is
low. In contrast, at high load, the consumption clearly
increases with the CPU frequency. More precisely, the
power consumption grows superlinearly with the fre-
quency, for a fixed load and number of cores. This is
particularly evident in the curves characterizing Erdos,
which is the most powerful among our servers.
From the previous figures it emerges that the power

consumption due to CPU and baseline can be mini-
mized by selecting the right number of active cores and
a suitable CPU frequency. Similarly, we can expect that
the energy efficiency, defined as number of active cycles
per energy unit, can be maximized by tuning the same
operational parameters. We graphically represent the
impact of operation parameters on power consumption
and energy efficiency in Figures 2 and 3 respectively for
Nemesis and Erdos (results for Survivor are similar to
the ones shown for Nemesis and are omitted). In par-
ticular, Figures 2(a) and 3(a) report all possible fitting
curves for the power consumption measurements, plus
a curve marking the lowest achievable power consum-
ption at a given load. We name such a curve “minimal
power curve” Pmin(ρ), and we observe that (i) it only
depends on the load ρ, and (ii) it is a piecewise concave
function, which makes it suitable to formulate power
optimization problems. Finally, to evaluate the energy
efficiency of the CPU, we report in Figures 2(b) and
3(b) the number of active cycles per energy unit ob-
tained from our measurements respectively for Nemesis
and Erdos. We compute the power due to active cycles
as the power PBC −α0, i.e., by subtracting the baseline
consumption from PBC , and we obtain the efficiency ηC
by dividing the load (in active cycles per second) by the
power due to active cycles:

ηC =
ρ

PBC(ρ)− α0
. (2)

Also in this case we show the curve that maximizes the
efficiency at a given load, which we name“Maximal effi-
ciency curve”ηmax(ρ). Interestingly, we observe that (i)

10

15

20

80

85

90

95

100

105

1
.5

9
6

1
.7

2
9

1
.8

6
2

1
.9

9
5

2
.1

2
8

2
.2

6
1

2
.3

9
4

2
.5

2
7

2
.6

6
2

.7
9

3
2

.7
9

4
1

.5
9

6
1

.7
2

9
1

.8
6

2
1

.9
9

5
2

.1
2

8
2

.2
6

1
2

.3
9

4
2

.5
2

7
2

.6
6

2
.7

9
3

2
.7

9
4

1
.5

9
6

1
.7

2
9

1
.8

6
2

1
.9

9
5

2
.1

2
8

2
.2

6
1

2
.3

9
4

2
.5

2
7

2
.6

6
2

.7
9

3
2

.7
9

4
1

.5
9

6
1

.7
2

9
1

.8
6

2
1

.9
9

5
2

.1
2

8
2

.2
6

1
2

.3
9

4
2

.5
2

7
2

.6
6

2
.7

9
3

2
.7

9
4

Frequency [GHz]

P
o

w
e

r
P

Dr
 [

W
]

Measured Power
Disk Power
CPU + BL power

 1 MB 10 KB10 MB100 MB

(a) Power consumption during reading (Nemesis).

0

5

10

15

20

80

85

90

95

100

105

1
.5

9
6

1
.7

2
9

1
.8

6
2

1
.9

9
5

2
.1

2
8

2
.2

6
1

2
.3

9
4

2
.5

2
7

2
.6

6
2

.7
9

3
2

.7
9

4
1

.5
9

6
1

.7
2

9
1

.8
6

2
1

.9
9

5
2

.1
2

8
2

.2
6

1
2

.3
9

4
2

.5
2

7
2

.6
6

2
.7

9
3

2
.7

9
4

1
.5

9
6

1
.7

2
9

1
.8

6
2

1
.9

9
5

2
.1

2
8

2
.2

6
1

2
.3

9
4

2
.5

2
7

2
.6

6
2

.7
9

3
2

.7
9

4
1

.5
9

6
1

.7
2

9
1

.8
6

2
1

.9
9

5
2

.1
2

8
2

.2
6

1
2

.3
9

4
2

.5
2

7
2

.6
6

2
.7

9
3

2
.7

9
4

Frequency [GHz]

P
o

w
e

r
P

Dw
 [

W
]

Measured Power
Disk Power
CPU + BL power

100 MB 10 MB 1 MB 10 KB

(b) Power consumption during writing (Nemesis).

65
75
85
95

225
235
245
255
265
275
285
295
305
315
325
335

1
.4

1
.6

1
.8

2
.1

2
.3

1
.4

1
.6

1
.8

2
.1

2
.3

1
.4

1
.6

1
.8

2
.1

2
.3

1
.4

1
.6

1
.8

2
.1

2
.3

Frequency [GHz]

P
o

w
e
r

P
Dr

 [
W

]

Measured Power
Disk Power
CPU + BL power

100 MB 10 MB 1 MB 10 KB

(c) Power consumption during reading (Erdos).

25
35
45
55
65
75
85
95

235
245
255
265
275
285
295
305
315
325
335
345
355
365
375

1
.4

1
.6

1
.8

2
.1

2
.3

1
.4

1
.6

1
.8

2
.1

2
.3

1
.4

1
.6

1
.8

2
.1

2
.3

1
.4

1
.6

1
.8

2
.1

2
.3

Frequency [GHz]

P
o

w
e
r

P
Dw

 [
W

]

Measured Power
Disk Power
CPU + BL power

100 MB 10 MB 1 MB 10 KB

(d) Power consumption during writing (Erdos).

Figure 4: Instantaneous power consumption for a reading/writing operations. Results are presented for every
frequency and for 4 different block sizes for each one of our servers.

ηmax(ρ) presents multiple local maxima, (ii) for a given
configuration of frequency and number of active cores,
the efficiency is maximized at the highest achievable
load, (iii) all local maxima corresponds to the use of all
available active cores, but (iv) the absolute maximum
is not achieved neither at the highest CPU frequency
nor at the lowest.

3.3 Disks
We now characterize the power and energy consum-

ption of disk I/O operations. During the experiments,
we continuously commit either read or write operations,
while keeping the CPU load ρ as low as possible (i.e., we
disconnect the network and we do not run other tasks).
Still, the power measurements obtained during the disk
experiments contain both the power used by the disk
and power due to CPU and baseline. Indeed, Figure 4
shows, for each experiment, the total measured power
Pt, the power PBC computed according to Eq. 1 at the
load ρ measured during the experiment, and the power
due to disk operations, computed as:

P x
D = Pt − PBC(ρ), x ∈ {r, w}, (3)

where superscripts r and w refer to reading and writ-
ing operations, respectively. We test sequentially all the
available frequencies for each server (see Table 1), and

I/O block sizes ranging from 10 KB to 100MB. Figure 4
shows average and standard deviation of the measures
over 10 experiment repetitions. Results for Survivor

are omitted since they are like Nemesis’ results. In-
deed, Survivor and Nemesis have similar disks and file
systems, while Erdos is equipped with SAS disks with
RAID. In all cases shown in the figure, the disk power
is small but not negligible with respect to the baseline
consumption. Furthermore, we can observe that the
two servers presented behave differently. Indeed, while
the power consumption due to writing is affected both
by the block size B for both machines, we observe that
Nemesis’ disk writing power Pw

D is not affected by the
CPU frequency, while Erdos’ results show an increase
with the frequency. Moreover, the results obtained with
Erdos are affected by a substantial amount of variabil-
ity in the measurements, which we believe is due to the
caching operations enforced by the RAID mechanism in
Erdos.
Similarly to what was described for the CPU, we now

comment on the energy efficiencies ηrD and ηwD of disk
reading and writing operations. Figure 5 reports ef-
ficiency as a function of the I/O block size, and shows
one line per each CPU frequency. The efficiency is com-
puted by subtracting the baseline power from the total
power, and by measuring the volume V of data read or

10
0

10
1

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

10
4

Block Size B [KB]

E
ff

ic
ie

n
cy

 [
K

B
/J

]

η
D
r

η
D
w

Figure 5: Disk reading and writing efficiencies for Erdos
(red dotted lines) and Nemesis (blue solid lines).

written in an interval T :

ηxD =
V

P x
DT

, x ∈ {r, w}. (4)

We can observe that results are similar for all the servers.
Specifically, the efficiency of reading is almost constant
at any frequency and for each block size, while writ-
ing is more efficient with large block sizes. We also
observe that the efficiency changes very little with the
adopted CPU frequency. Another observation is that
the efficiency saturates to a disk-dependent asymptotic
value, which is due to the mechanical constraints of the
disk (e.g., due to the non-negligible seek time, the num-
ber of read/write operations per second is limited). In
addition, although not visible in the figure due to the
log-scale adopted, ηwD is a concave function of the block
size B.

3.4 Network
The last server component that we characterize via

measurements is the network card. Similarly to the
cases described previously, we run experiments in which
only the operating system and our test scripts are ac-
tive. In this case, we run a script to either transmit
or receive UDP packets over a gigabit Ethernet connec-
tion and count the system active cycles ρ. We measure
the total power consumption Pt during the experiment,
so that the power due to network activity can be then
estimated as follows:

P x
N = Pt − PBC(ρ), x ∈ {s, r}, (5)

where superscripts s and r refer to the sender and the
receiver cases, respectively.
In the experiments, we sequentially test all the avail-

able frequencies for each server (see Table 1), and fix
the packet size S and the UDP transmission rate within
the achievable set of rates (which depends on the packet
size, e.g., < 950 Mbps for 1470-B packets). We report
results for the network energy in terms of efficiencies ηsN
and ηrN (volume of data transferred per unit of energy).

These efficiencies are computed as follows:

ηxN =
R

P x
N

, x ∈ {s, r}, (6)

where R is the transmission rate during the experiment.
Figure 6 shows the network efficiencies of Nemesis

and Survivor averaged over 3 samples per transmission
rate R.8 For sake of readability, the figure only shows
results for the extreme value used for the packet size,
and for three CPU frequencies: the lowest, the highest,
and an intermediate frequency in the set of available fre-
quencies reported in Table 1 for Nemesis and Survivor.
The figure also reports the polynomial fitting curves for
efficiency, which we found to be at most of second order.
Since the efficiency is represented in terms of network
activity only, in the fitting we force the zero-order co-
efficient of the polynomials to be 0. Therefore, we can
use the following expression to characterize the network
efficiencies of our servers:

ηxN = β1R+ β2R
2, x ∈ {s, r}, (7)

where the βi coefficients are computed by minimizing
the least square error of the fitting. Table 2 gives the
fitting coefficients for sending and receiving efficiencies
for the cases shown in Figure 6 and for other tested
configurations.
From both the figure and the table, we can observe

that efficiencies are almost linear or slightly superlinear
with the transfer rate, e.g., the receiving efficiency of
Survivor exhibits an evident quadratic behavior. In-
deed, our measurements show that the network power
consumption is independent from the throughput, which
is a well known result for legacy Ethernet devices. In
fact, the NICs of our servers are not equipped with
power saving features like, e.g., the recently standard-
ized IEEE 802.3az [9].
In all cases, the efficiency is strongly affected by the

selected CPU frequency. Moreover, efficiency is also af-
fected by packet size, although the impact of packet size
changes from server to server, e.g., Survivor sending
efficiency is only slightly affected by it.
Another observation is that, depending on the packet

size and frequency used, sending can be more energy ef-
ficient than receiving at a given transmission rate, and
using the highest CPU frequency is never the most ef-
ficient solution. Note also that the efficiency decreases
with the packet size, although this effect is particularly
evident at the receiver side, while it only slightly im-
pacts the efficiency of the packet sender. However, net-
work activity also causes non-negligible CPU activity,

8Network results are obtained by using a point-to-point
Ethernet connection between two controlled servers. Since
Erdos is located in a different building with respect to Neme-
sis and Survivor, it was not possible to test the network
efficiency of Erdos.

Table 2: Polynomial fitting for network efficiency. The table reports empirically evaluated coefficients for Eq. 7
(coefficients β1 are expressed in W−1 while coefficients β2 are in W−1 · bps−1).

RECEIVER

Survivor Nemesis

pck size
freq

1.2 GHz 1.6 GHz 1.867 GHz 2.133 GHz
pck size

freq
1.596 GHz 1.995 GHz 2.394 GHz 2.794 GHz

β1 64 B
1.751e-2 1.314e-2 1.268e-2 1.254e-2

64 B
1.491e-2 1.410e-2 1.330e-2 1.227e-2

β2] 1.904e-5 2.160e-5 1.395e-5 1.031e-5
β1 500 B

1.736e-2 1.386e-2 1.144e-2 9.962e-3
500 B

1.565e-2 1.234e-2 1.107e-2 1.074e-2
β2 2.627e-6 1.595e-6 2.836e-6 3.541e-6
β1 1000 B

1.560e-2 1.296e-2 1.132e-2 1.029e-2
1000 B

1.170e-2 9.451e-3 7.712e-3 7.448e-3
β2 3.155e-6 1.736e-6 1.080e-6 1.208e-6
β1 1470 B

1.497e-2 1.216e-2 1.073e-2 2.684e-2
1470 B

1.072e-2 8.849e-3 8.207e-3 8.040e-3
β2 3.231e-6 4.006e-6 3.533e-6 -4.746e-6

SENDER

Survivor Nemesis

pck size
freq

1.2 GHz 1.6 GHz 1.867 GHz 2.133 GHz
pck size

freq
1.596 GHz 1.995 GHz 2.394 GHz 2.794 GHz

β1 64 B 2.239e-2 1.802e-2 1.582e-2 1.462e-2 64 B 1.642e-2 1.313e-2 1.029e-2 8.625e-3
β1 500 B 1.742e-2 1.576e-2 1.429e-2 2.205e-2 500 B 1.599e-2 1.130e-2 1.234e-2 1.014e-2
β1 1000 B 1.784e-2 1.634e-2 1.454e-2 2.230e-2 1000 B 1.767e-2 1.781e-2 1.824e-2 1.179e-2
β1 1470 B 1.801e-2 1.620e-2 1.461e-2 2.369e-2 1470 B 1.703e-2 1.863e-2 1.279e-2 1.134e-2

 0

 20

 40

 60

 80

 100

 120

 140

1.596

1.995

2.794

1.596

1.995

2.794

1.596

1.995

2.794

1.596

1.995

2.794

P
ow

er
 C

on
su

m
pt

io
n

[W
]

Frequency [GHz]

64-bytes 1470-bytes 64-bytes 1470-bytes
Sender Receiver

Baseline CPU Network

Figure 7: Power consumption with network activity for
Nemesis (64-B experiments were run with a transmis-
sion rate R = 150 Mbps, while R = 400 Mbps for the
experiments with 1470-B packets).

as shown in Figure 7 for a few experiment configura-
tions for Nemesis. Overall, the lowest CPU frequency
yields the lowest total power consumption during net-
work activity periods.

4. ESTIMATING ENERGY CONSUMPTION
While the results presented in the previous sections

are useful to understand the power consumption pat-
tern of CPU, disk and network, we believe that a much
more important use of these results is to estimate the
energy consumption of applications. In this section we
describe how this could be done from simple data about
the application, and validate the proposed process by es-
timating the energy consumed by map-reduce Hadoop
computations.

4.1 Energy Estimation Hypothesis
The process we propose to estimate the energy con-

sumed Eapp by an application has as basic assumption
that this energy is essentially the sum of the baseline
energy EB (the baseline power times the duration of
the execution), the energy consumed by the CPU EC ,

the energy consumed by the disk ED, and the energy
consumed by the network interface EN . I.e.,

Eapp = EB + EC + ED + EN . (8)

Hence, the process of estimating Eapp is reduced to es-
timating these four terms. In order to estimate the first
two terms, we need to know the total number of active
cycles that the application will execute, Capp, and the
load ρapp (in ACPS) that the execution will incur in
the CPU. From this, the total running time Tapp can be
computed as

Tapp = Capp/ρapp. (9)

Then, once the number of cores and the frequency that
will be used have been defined, it is also possible to
estimate the baseline power plus CPU power, PBC , from
the fitting curves of Figure 1. This allows to estimate
the sum of the first two terms of Eq. 8 as

EB + EC = PBCTapp = PBCCapp/ρapp. (10)

The energy consumed by the disk is simply the energy
consumed while reading and writing, i.e., ED = Er

D +
Ew

D. To estimate these latter values, the block size to
be used has to be decided, from which we can obtain an
estimate of the efficiency of reading, ηrD, and writing, ηwD
(see Figure 5). These, combined with the total volume
of data read and written by the application, denoted as
V r
D and V w

D respectively, allow to obtain the estimate
energy as

ED =
V r
D

ηrD
+

V w
D

ηwD
. (11)

Finally, to estimateEN , the transfer rateR and packet
size S has to be chosen, which combined with the fre-
quency used, yield sending and receiving efficiencies ηsN
and ηrN (see Figure 6). Then, if the total volume of data
to be sent and received is V s

N and V r
N , respectively,

EN =
V s
N

ηsN
+

V r
N

ηrN
. (12)

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

E
ffi

ci
en

cy
 η

N
r [M

B
/J

]

Transfer rate R [Mbps]

1.2GHz-64B
1.2GHz-1470B

1.6GHz-64B
1.6GHz-1470B
2.133GHz-64B

2.133GHz-1470B

(a) Receiver network efficiency (Survivor).

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

E
ffi

ci
en

cy
 η

N
r [M

B
/J

]

Transfer rate R [Mbps]

1.596GHz-64B
1.596GHz-1470B

1.995GHz-64B
1.995GHz-1470B

2.794GHz-64B
2.794GHz-1470B

(b) Receiver network efficiency (Nemesis).

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

E
ffi

ci
en

cy
 η

N
s [M

B
/J

]

Transfer rate R [Mbps]

1.2GHz-64B
1.2GHz-1470B

1.6GHz-64B
1.6GHz-1470B
2.133GHz-64B

2.133GHz-1470B

(c) Sender network efficiency (Survivor).

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

E
ffi

ci
en

cy
 η

N
s [M

B
/J

]

Transfer rate R [Mbps]

1.596GHz-64B
1.596GHz-1470B

1.995GHz-64B
1.995GHz-1470B

2.794GHz-64B
2.794GHz-1470B

(d) Sender network efficiency (Nemesis).

Figure 6: Network efficiencies for different frequencies and 64-B and 1470-B packets.

1.596 1.995 2.394 2.794 1.596 1.995 2.394 2.794
0

0.5

1

1.5

2

2.5
x 10

5

Frequency [GHz]

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

 [
J]

Baseline CPU Disk Network Error

64 bytes 1470 bytes

(a) Sender side.

1.596 1.995 2.394 2.794 1.596 1.995 2.394 2.794
0

0.5

1

1.5

2

2.5
x 10

5

Frequency [GHz]

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

 [
J]

Baseline CPU Disk Network Error

64 bytes 1470 bytes

(b) Receiver side.

Figure 8: Comparison of the real versus estimated en-
ergy consumption values.

All is left to do to obtain the estimate Eapp is to add
up the values obtained in Equations 10, 11, and 12.

4.2 Empirical Validation
We test now the process and hypothesis presented

above for the estimation of the energy consumed by an
application. For that, we have chosen to execute in
Nemesis a map-reduce Hadoop application that com-
putes several iterations of the pagerank algorithm on
an Erdos-Renyi random (directed) graph with 1 million
nodes and average degree 5. Since the pagerank ap-
plication does not use the network, while it is running
we execute another process generating network traffic.
This provides a richer experiment.
An execution of the pagerank application has three

phases: preprocessing, map-reduce, and postprocess-
ing. On its side, the map-reduce phase is a sequence
of several homogeneous iterations of the pagerank al-
gorithm. For simplicity, we only estimate the energy
consumed during the map-reduce phase of the pager-
ank algorithm. In our experiments we run in Nemesis

one instance of the pagerank application with 10 iter-
ations in its map-reduce phase for each one of the 11
available frequencies. We run this experiment 4 times,
each with different characteristics of the network traffic
generated in parallel. In particular, we run experiments
with Nemesis behaving as a sender and as a receiving,
and using packets of 64 and 1470 bytes. Instead of es-
timating the energy for the whole sequence of 10 iter-

ations, it is simpler to estimate the energy for every
iteration separately. Then, for each iteration i we can
register the total active cycles executed Ci

app, the time

consumed T i
app, and the volume of data read and writ-

ten, V r,i
D and V w,i

D , respectively, and the transfer rate R
(the same for all iterations: 150 Mbps for experiments
with 64-B packets and 400 Mbps for experiments with
1470-B packets).
Unfortunately, we cannot measure the instantaneous

CPU load. Instead, we assume that the CPU load is
the same during the execution for a given frequency
and network configuration. Hence we estimate it as
ρiapp = Ci

app/T
i
app. Then, from this value we obtain

the estimate of the instantaneous power P i
BC using the

fitting curves as described above. Finally, using Eq. 10
we compute the estimate Ei

B + Ei
C .

In order to estimate the energy consumed by the disk
operations, we use the fact that Hadoop uses a block
size of 64 MB. This allows us to estimate the reading
and writing efficiencies, ηr,iD and ηw,i

D (see Figure 5).
Combining these values with the measured volume of
data read and written (V r,i

D and V w,i
D) as described in

Eq. 11, we obtain Ei
D.

Finally, to estimate the network consumption in one
iteration with Nemesis sending traffic (resp., receiving
traffic), the sending efficiency ηsN , (resp., receiving ef-
ficiency ηrN) is obtained from the transfer rate R, and
the frequency and packet size used (see Figure 6). The
amount of data sent (reps., received) is obtained as the
product of the rate R and the time T i

app. Then, the
energy of the network is obtained using Eq. 12.
Once we have computed the energy due to the dif-

ferent components in iteration i, the total energy Ei
app

is obtained by adding them. Adding these values for
the 10 iterations of an experiment we obtain the esti-
mate Eapp. The (approximate) total real energy Êi

app

consumed by iteration i is computed by obtaining the
average value of the power samples we registered with
our power analyzer during the iteration, and multiply-
ing it by Tapp. Again, the total energy consumed by the

experiment are obtained as Êapp =
∑10

i=1 Ê
i
app. The es-

timation error for each experiment is then computed as
Êapp − Eapp.
We show the results obtained for four selected fre-

quencies (the results for the rest are similar) in Figure
8(a), for the sender cases, and Figure 8(b) for the re-
ceiving cases. Each figure includes the results for the
two packet sizes used. As can be seen, the error is very
small (always below 7% of the total energy), being a bit
more relevant in the case of the highest frequency.

5. DISCUSSION
We discuss now some of the implications of our re-

sults. We start with consolidation. It has been typically
assumed that the best way of doing consolidation is to

fill servers as much as possible, to reduce the total num-
ber of servers being used, hence proposing bin-packing
based solutions [3, 15, 20] and not necessarily having
frequency into account. However, the results presented
in Figures 2(b) and 3(b) show that the highest frequency
is not the most efficient one, and this has been found to
be true for two different architectures (Intel and AMD).
This implies that, by running servers at the optimal
amount of load, and the right frequency, a considerable
amount of energy could be saved.
A second relevant aspect is the baseline consumption

of servers. The results presented for all 3 servers show
that their baselines are within a 30-50% of the max-
imum consumption. Then, it is straightforward that
more effort is to be done for reducing baseline consum-
ption. For instance, a solution could consist in switch-
ing off cores in real time, not just disabling them, or
in introducing very fast transitions between active and
lower energy states, i.e., to achieve real suspension in
idle state.
Finally, we refer to the CPU load associated to disk

and network activity. It can be observed in Figure 4
that disks do not incur much CPU overhead. In fact,
the power consumed by CPU plus baseline does not
change much across the experiments. Instead, the en-
ergy consumed by CPU due to network operations is
even larger than the energy consumed by the NIC (see
Figure 7). Some works [7] have already pointed out
that the way the packets are handled by the protocol
stack is not energy efficient. Our results reinforce this
feeling and point out that building a more efficient pro-
tocol stack would certainly reduce the amount of energy
consumed due to the network.

6. RELATED WORK
There is a large body of work in the field of model-

ing server power consumption and its components, both
theoretical and empirical. The consumption of servers
has been assumed as linear e.g., by Wang et al. [20],
Mishra et al. [15] or Beloglazov et al. [3], who assumed
models where consumption depended mainly on CPU
and linearly on its utilization, proposing bin-packing-
like algorithms to reduce power consumption. Other
works like the ones from Andrews et al. [1] or Irani et
al. [10] proposed non-linear models, claiming that en-
ergy could be saved by running processes at the lowest
possible speed.
Moving to the empirical field, we first classify works

in two different groups, those who consider the effect of
frequency on their analysis and those who do not con-
sider it. We start with those not considering frequency.
In this category we find articles proposing models where
server components follow a linear behavior like [11, 14,
19] or more complex ones, like in [2, 5, 13]. In [14], Liu
et al. propose a simple linear model and evaluate dif-

ferent hardware configurations and types of workloads
by varying the number of available cores, the available
memory, and considering also the contribution of other
components such as disks. Vasan et al. [19] monitored
multiple servers on a datacenter as well as the power
consumption of several of the internal elements of a
server. However, they considered that the behavior of
this server could be approximated by a model based
only on CPU utilization. Similarly, Krishnan et al. [11]
explored the feasibility of lightweight virtual machine
power metering methods and examined the contribution
of some of the elements that consume power in a server
like CPU, memory and disks. Their model depends lin-
early on each of these components. In [5], Economou
et al. proposed a non-intrusive method for modeling
full-system power consumption by stressing its compo-
nents with different workloads. Their resulting model
is also linear on the utilization of its components. Fi-
nally, Lewis et al. [13] and Basmasjian et al. [2] pre-
sented much more complex models which, apart from
the contribution of different components of the server,
considered extra parameters like temperature and cache
misses as well as multiple cores. In particular, Lewis
et al. [13] reported also an extensive study on the be-
havior of reading and writing operations in hard disk
and solid state drives. In contrast, we show that linear
models are not accurate and we complement the exist-
ing studies by showing the effect of different block sizes
and frequencies, e.g., on network and individual read or
write operations.
Now we move to the works which also considered fre-

quency in their analysis. Miyoshi et al. [16] analyzed
the runtime effects of frequency scaling on power and
energy. Brihi et al. [4] presented an exhaustive study
of DVFS using a cpufrequtils as we do. Main diffe-
rences with our work were that they studied four differ-
ent power management policies under DVFS and cen-
tered their study on the relationship between CPU uti-
lization and power consumption. However, they also
present interesting results about disk consumption that
match partially our results, showing a flat consumption
in reading operations and variations in the writing ones
that they attribute to the size of the files being written.
Although it was not the main objective of their work,
Raghavendra et al. [18] performed a per-frequency and
core CPU power characterization of two different blade
servers. However, they claimed that CPU power de-
pends linearly on its utilization. The main difference
with our analysis is that we consider that the load sup-
ported by a server increases with the number of active
cores and, hence, this load should not be represented in
percentage. Gandhi et al. [6] published a preliminary
analysis of power consumption versus frequency, based
on DVFS and DFS and gave some intuition about the
non-linearity of this relation. However, our analysis is

more complete as we present a per-component analysis
as well as enter into deeper details on the power versus
frequency analysis.

7. CONCLUSIONS
In this work we have reported our measurement-based

characterization of energy and power consumption in
a server. We have exhaustively measured the power
consumed by CPU, disk, and NIC under different con-
figurations, identifying the optimal operational levels,
which usually do not correspond to the static system
configurations commonly adopted. We found that, be-
sides the baseline component, which does not changes
significantly with the operational parameters, the CPU
has the largest impact on energy consumption among
all the three components. We observe that CPU con-
sumption is neither linear nor concave with the load.
Disk I/O is the second larger contributor to power con-
sumption, although performance changes sensibly with
the I/O block size used by the applications. Finally,
the NIC activity is responsible for a small but not neg-
ligible fraction of power consumption, which scales al-
most linearly with the network transmission rate. In
general, most of the energy/power performance figures
do not scale linearly with the utilization, in contrast
to what is commonly assumed in the literature. We
have then shown how to predict and optimize the en-
ergy consumed by an application via a concrete exam-
ple using network activity plus pagerank computation
in Hadoop. Our model achieves very accurate energy
estimates, within 7% or less from the measured total
power consumption.

8. REFERENCES
[1] Andrews, M., Antonakopoulos, S., and Zhang, L.

Minimum-cost network design with (dis)economies of scale.
In IEEE FOCS (2010), pp. 585–592.

[2] Basmadjian, R., Ali, N., Niedermeier, F., de Meer, H.,

and Giuliani, G. A methodology to predict the power
consumption of servers in data centres. In ACM e-Energy
(2011), pp. 1–10.

[3] Beloglazov, A., Abawajy, J., and Buyya, R.

Energy-aware resource allocation heuristics for efficient
management of data centers for cloud computing. Future
Generation Computer Systems 28, 5 (2012), 755–768.

[4] Brihi, A., and Dargie, W. Dynamic voltage and frequency
scaling in multimedia servers. In IEEE AINA (2013).

[5] Economou, D., Rivoire, S., Kozyrakis, C., and

Ranganathan, P. Full-system power analysis and
modeling for server environments. In Proceedings of

Workshop on Modeling, Benchmarking, and Simulation
(2006), pp. 70–77.

[6] Gandhi, A., Harchol-Balter, M., Das, R., and

Lefurgy, C. Optimal power allocation in server farms. In
ACM SIGMETRICS (2009), pp. 157–168.

[7] Garcia-Saavedra, A., Serrano, P., Banchs, A., and

Bianchi, G. Energy consumption anatomy of 802.11
devices and its implication on modeling and design. In
ACM CoNEXT (2012), pp. 169–180.

[8] Heddeghem, W. V., Lambert, S., Lannoo, B., Colle,

D., Pickavet, M., and Demeester, P. Trends in

worldwide ICT electricity consumption from 2007 to 2012.
Computer Communications (Submitted).

[9] IEEE Std. 802.3az. Energy Efficient Ethernet, 2010.
[10] Irani, S., Shukla, S., and Gupta, R. Algorithms for

power savings. ACM TALG 3, 4 (2007), 41.
[11] Krishnan, B., Amur, H., Gavrilovska, A., and Schwan,

K. VM power metering: feasibility and challenges. ACM
SIGMETRICS Performance Evaluation Review 38, 3
(2011), 56–60.

[12] Kusic, D., Kephart, J. O., Hanson, J. E., Kandasamy,

N., and Jiang, G. Power and performance management of
virtualized computing environments via lookahead control.
Cluster computing 12, 1 (2009), 1–15.

[13] Lewis, A. W., Ghosh, S., and Tzeng, N.-F. Run-time
energy consumption estimation based on workload in server
systems. HotPower’08 (2008), 17–21.

[14] Liu, C., Huang, J., Cao, Q., Wan, S., and Xie, C.

Evaluating energy and performance for server-class
hardware configurations. In IEEE NAS (2011),
pp. 339–347.

[15] Mishra, M., and Sahoo, A. On theory of vm placement:
Anomalies in existing methodologies and their mitigation
using a novel vector based approach. In IEEE CLOUD
(2011), pp. 275–282.

[16] Miyoshi, A., Lefurgy, C., Van Hensbergen, E.,

Rajamony, R., and Rajkumar, R. Critical power slope:
understanding the runtime effects of frequency scaling. In
ACM ICS’02 (2002), pp. 35–44.

[17] Moore, J. D., Chase, J. S., Ranganathan, P., and

Sharma, R. K. Making scheduling “cool”:
Temperature-aware workload placement in data centers. In
USENIX annual technical conference, General Track

(2005), pp. 61–75.
[18] Raghavendra, R., Ranganathan, P., Talwar, V.,

Wang, Z., and Zhu, X. No power struggles: Coordinated
multi-level power management for the data center. In ACM
SIGARCH Computer Architecture News (2008), vol. 36,
ACM, pp. 48–59.

[19] Vasan, A., Sivasubramaniam, A., Shimpi, V., Sivabalan,

T., and Subbiah, R. Worth their Watts? - An empirical
study of datacenter servers. In IEEE HPCA (2010),
pp. 1–10.

[20] Wang, M., Meng, X., and Zhang, L. Consolidating
virtual machines with dynamic bandwidth demand in data
centers. In IEEE INFOCOM (2011), pp. 71–75.

[21] Weiser, M., Welch, B., Demers, A., and Shenker, S.

Scheduling for reduced CPU energy. In Mobile Computing.
Springer, 1996, pp. 449–471.

	1 Introduction
	2 Methodology
	2.1 Collecting system data and fixing frequency parameters
	2.2 CPU
	2.3 Disks
	2.4 Network

	3 Measurements
	3.1 Devices and Setup
	3.2 Baseline and CPU
	3.3 Disks
	3.4 Network

	4 Estimating Energy Consumption
	4.1 Energy Estimation Hypothesis
	4.2 Empirical Validation

	5 Discussion
	6 Related Work
	7 Conclusions
	8 References

