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In this paper, we investigate the use of weighted triangulations as discrete,
augmented approximations of surfaces for digital geometry processing. By
incorporating a scalar weight per mesh vertex, we introduce a new notion
of discrete metric that defines an orthogonal dual structure for arbitrary tri-
angle meshes and thus extends weighted Delaunay triangulations to surface
meshes. We also present alternative characterizations of this primal-dual
structure (through combinations of angles, areas, and lengths) and, in the
process, uncover closed-form expressions of mesh energies that were previ-
ously known in implicit form only. Finally, we demonstrate how weighted
triangulations provide a faster and more robust approach to a series of ge-
ometry processing applications, including the generation of well-centered
meshes, self-supporting surfaces, and sphere packing.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Curve, surface, solid, and object
representations

Additional Key Words and Phrases: discrete differential geometry, discrete
metric, weighted triangulations, orthogonal dual diagram.
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1. INTRODUCTION

Triangle meshes are arguably the predominant discretization of sur-
faces in graphics, and by now there is a large body of literature
on the theory and practice of simplicial meshes for computations.
However, many geometry processing applications rely, overtly or
covertly, on an orthogonal dual structure to the primal mesh. The
use of such a dual structure is very application-dependent, with cir-
cumcentric and power duals being found, for instance, in physi-
cal simulation [Elcott et al. 2007; Batty et al. 2010], architecture
modeling [Liu et al. 2013; de Goes et al. 2013] and parameteriza-
tion [Mercat 2001; Jin et al. 2008]. While most of these results are
limited to planar triangle meshes, little attention has been paid to
exploring orthogonal duals for triangulated surface meshes.

In this paper, we advocate the use of orthogonal dual structures
to enrich simplicial approximations of arbitrary surfaces. We in-
troduce an extended definition of metric for these discrete surfaces
with which one can not only measure length and area of simplices,
but also length and area of dual elements. Our approach builds on
the concept of weighted triangulations [Glickenstein 2005], i.e., tri-
angle meshes equipped with a scalar weight per vertex, that gener-
alize Delaunay/Voronoi and weighted-Delaunay/power dualities to
arbitrary surface meshes (Fig. 1). While leveraging a number of
theoretical results, our work is directly applicable and beneficial to
common geometry processing tasks such as meshing.

1.1 Related Work

Our contributions relate to a number of research efforts and appli-
cations in computer graphics, computational geometry, and discrete
mathematics. We briefly discuss the most relevant topics next.

Primal-Dual Meshes. While a discrete surface is often de-
scribed as just a triangle mesh, an increasing number of meth-
ods make use of an orthogonal dual structure as well: this form
of Poincaré duality [Munkres 1984] is valuable in modeling (e.g.,
for mesh parameterization [Mercat 2001]) and physical simulation
(e.g., for fluid flows [Batty et al. 2010]) alike. Orthogonal dual
meshes are most commonly constructed by connecting neighboring
triangle circumcenters [Meyer et al. 2002]. However, this choice
of dual mesh is only appropriate for so-called pairwise-Delaunay
triangulations (see, e.g., [Dyer and Schaefer 2009; Hirani et al.
2013]), while most triangulations require combinatorial alterations
for this dual to be well formed [Fisher et al. 2007]. This construc-
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Fig. 1. Weighted Triangulation. Example of a triangle mesh equipped
with vertex weights (left) displayed as spheres with squared radii corre-
sponding to the weight magnitudes and colors according to their signs
(red+, blue−). The set of weights endows the triangulation with an orthog-
onal, non-circumcentric dual structure (right).

tion is thus often too restrictive for the demands of many graphics
applications such as the generation of well-centered meshes [Van-
derZee et al. 2010; Mullen et al. 2011] or the construction of dis-
crete Laplacian operators with only positive coefficients [Wardet-
zky et al. 2007; Vouga et al. 2012]. To overcome these issues,
weighted triangulations [Glickenstein 2005] were introduced as an
alternative with much greater flexibility in the location of dual ver-
tices while maintaining primal-dual orthogonality. These orthogo-
nal primal-dual structures have found recent adoption in geometry
processing for mesh optimization [Mullen et al. 2011] and architec-
tural design [Liu et al. 2013; de Goes et al. 2013]. In this paper, we
present further theoretical foundations and computational methods
required for the construction of weighted triangulations and their
use in geometry processing.

Discrete Metric. Edge lengths are commonly used to define the
discrete metric on triangle meshes: once edge lengths are given,
measurements such as angles, areas, and Gaussian curvatures are
easily computed [Regge 1961]. However, alternative representa-
tions of the discrete metric have also been shown effective in many
geometry processing applications. Angles, for instance, are known
to characterize the intrinsic geometry of a triangle mesh up to a
global scaling. In fact, Rivin [Rivin 1994] even studied the use of
angle sums (per vertex, or per edge) as a more concise encoding of
the metric. His ideas were further explored and applied to circle pat-
terns [Bobenko and Springborn 2003; Kharevych et al. 2006] and
conformal equivalence [Springborn et al. 2008]: while the former
derives the metric of a triangle mesh by assigning an angle-based
curvature per edge, the latter determines the metric as a length cross
ratio per edge and a curvature per vertex. More recently, Zeng et
al. [2012] proved that the ubiquitous cotan formula [MacNeal 1949;
Pinkall and Polthier 1993], used in the discrete Laplace-Beltrami
operator, also determines all the edge lengths of a triangle mesh up
to a global scaling and thus encodes its discrete metric. The notion
of discrete metric for weighted triangulations has, comparatively,
received far less attention. Our work presents several characteriza-
tions of the augmented metric resulting from the orthogonal primal-
dual structure of weighted triangulations.

Circle packing. Weighted triangulations are closely related to
the circle packing problem, as each vertex weight can be interpreted
as the squared radius of a vertex-centered circle. This problem goes
back to an unpublished work by W. Thurston that presented cir-
cle packing as a discrete notion of conformal mapping [Thurston

1976]. Packing circles on triangle meshes has been extensively
investigated in graphics. The assignment of circles per triangle,
for instance, corresponds to the circle pattern problem for which
convex functionals were introduced in [Rivin 1994; Bobenko and
Springborn 2003; Bobenko et al. 2010] and applied to mesh pa-
rameterization [Kharevych et al. 2006]. Another example, used
in graphics to compute geometric flows [Jin et al. 2008], is the
Andreev-Thurston circle packing [Stephenson 2003; Chow and
Luo 2003] which defines a family of vertex-centered circles such
that the circles incident to any edge intersect. This idea was fur-
ther extended to non-intersecting circles through inversive dis-
tance circle packing [Guo 2009; Yang et al. 2009; Luo 2010],
while tangency of neighboring circles corresponds to sphere pack-
ing [Colin de Verdière 1991]. Schiftner et al. [2009] showed that
sphere packing only exists for triangle meshes in which the in-
circles of neighboring triangles are also tangent. Our definition
of the augmented metric of weighted triangulations encompasses
(and helps put in perspective) all these variants of the circle pack-
ing problem on arbitrary triangulated surfaces. In particular, our
methodology to construct orthogonal dual meshes provides a novel
and reliable computational framework to generate sphere and incir-
cle packing.

1.2 Contributions and Overview

We begin our exposition by introducing our geometric construction
of weighted triangulations in Sec. 2. We then define an admissible
set of discrete metrics for these weighted triangulations in Sec. 3.
We detail in Sec. 4 how this augmented metric can be directly
used to derive discrete differential operators, such as the Laplace-
Beltrami operator, that retain important properties of their smooth
counterparts. We then present in Sec. 5 three alternative represen-
tations of the metric of a weighted triangulation, tying together a
large number of previous works. In Sec. 6, we use our definition
of metric on weighted triangulations to design new algorithms for
meshing: we first offer an alternative to [Liu et al. 2013] in order to
construct self-supporting triangulations with constant relative mean
curvature through a convex optimization (Sec. 6.1), we then extend
the work of [Mullen et al. 2011] to generate well-centered surface
meshes (Sec. 6.2), and finally we provide a new approach to sphere
packing on surfaces that improves robustness compared to [Schift-
ner et al. 2009] (Sec. 6.3). We conclude in Sec. 7 with a discussion
of open problems and future work.

2. DISCRETIZING SURFACES

In this section we describe the discretization of surfaces through
weighted triangulations. We first set basic definitions about discrete
surfaces and introduce the notion of orthogonal dual diagrams. We
then present weighted triangulations and provide closed-form ex-
pressions that relate the construction of orthogonal dual diagrams
to weighted triangle meshes.

2.1 Primal Mesh

We begin with the common definition of piecewise linear triangle
meshes to approximate smooth surfaces.

DEFINITION 1. A primal mesh T is a piecewise linear triangu-
lation with vertices V , edges E, and faces F , defining a discrete
orientable manifold surface of any topology in R3, with or without
boundary.

For the remainder of the paper, we use single indices (e.g., i) to
refer to vertices of T , pairs of indices (e.g., ij) for edges, and triples
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(e.g., ijk) for triangles. The positions of the vertices are denoted as
xi, and an edge ij can be seen as a 3D vector eij = xj −xi.
The length of edge ij is denoted by lij = |eij | ∈ R+, while
aijk ∈ R+ represents the area of triangle ijk. We use ψi to refer
to the piecewise linear basis function over T for the vertex i (i.e.,
ψi(xj)=δij∀j∈V ), with which nodal values can be linearly inter-
polated over T . Angles in T are indexed by the triangle they live in,
with the middle index referring to the originating vertex: αijk thus
denotes the tip angle of triangle ijk at vertex j (Fig. 2, left). Addi-
tionally, we define θi ∈ R+ as the sum of all tip angles at vertex i,
and φij ∈ (0, 2π) as the sum of the (up to two) angles opposite to
edge ij. Finally, we call Ωi the set of simplices incident to vertex i.

2.2 Dual Diagram

We enrich the surface discretization by incorporating a dual di-
agram to the triangulation T , defined via the duality map ∗ that
transforms a simplex of T into its dual element [Munkres 1984].

DEFINITION 2. The dual diagram of T associates every trian-
gle ijk to a dual vertex ∗ijk, every edge ij to a dual edge ∗ij
connecting the dual vertices of its adjacent triangles, and every
vertex i to the dual cell ∗i formed by the cycle of its neighboring
dual edges.

Note that this notion of a dual diagram is purely combinatorial
since the actual locations of dual vertices (and thus of the edges)
are not given yet. We now focus on the case where dual vertices are
placed within the plane of their associated triangles.

DEFINITION 3. A dual diagram is denoted intrinsic to T if ev-
ery dual vertex ∗ijk is located at a position cijk restricted to the
plane supporting triangle ijk.

From this definition any dual edge ∗ij of T can be constructed by
isometrically unfolding the pair of adjacent triangles ijk and imj
into the plane, and joining the dual vertices cijk and cimj with a
straight path (Fig. 2, right). We hence refer to such dual edges as in-
trinsically straight segments. We finally introduce an orthogonality
condition between primal and dual edges.

DEFINITION 4. An orthogonal dual diagram is an intrinsic
dual diagram in which the supporting line of each isometrically
unfolded dual edge is orthogonal to its respective primal edge.

A common example of an orthogonal dual diagram consists of
associating each dual vertex ∗ijk to its triangle circumcenter, i.e.,
the point in the plane of the triangle that is equidistant from the
three vertices xi, xj , and xk. In the case of Delaunay triangu-
lations, these circumcentric dual diagrams correspond to Voronoi

Fig. 2. Notations. (left) The various measurements and positions of the
elements of a triangle are labeled based on the indices of its vertices as
indicated above; (right) for every pair of adjacent triangles, the primal edge
and its dual edge are orthogonal in the hinge map, i.e., when the pair is
isometrically unfolded in the plane.

diagrams. Hereafter we use c�ijk to denote the circumcenter of tri-
angle ijk.

2.3 Weighted Triangulations

Our work focuses on weighted triangulations [Glickenstein 2005],
a family of triangulations that provides explicit control over the
construction of orthogonal dual diagrams.

DEFINITION 5. A weighted triangulation Tw is a primal mesh
T with an additional set of real numbers w={wi}, called weights,
assigned to the vertices of T .

From these additional weights, we define the position cijk of the
dual vertex ∗ijk as the displacement of the circumcenter c�ijk by
(half) the local gradient of the linear function defined by the vertex
values wi, wj , and wk.

DEFINITION 6. The location cijk of the dual vertex ∗ijk in Tw
is defined as:

cijk = c�ijk − 1
2

(∇w)ijk

= c�ijk − 1
2

(wi∇ψi + wj∇ψj + wk∇ψk) .
(1)

Note that the displacement per triangle occurs within the trian-
gle’s supporting plane, and thus the dual diagram of any Tw is
by construction intrinsic to the primal mesh T . Moreover, a gra-
dient vector is unchanged if one adds a constant to all weights;
thus, weights add |V |−1 degrees of freedom to a primal mesh T .
It is worth pointing out that this construction does not necessarily
result in dual nodes being inside their own triangle. This notion of
“off-centered” dual is well documented in the specific case of cir-
cumcentric dual for obtuse triangles [Meyer et al. 2002], and our
construction is no different.

We can further show that the dual structure of any Tw is an or-
thogonal diagram.

PROPOSITION 1. A weighted triangulation Tw defines an or-
thogonal dual diagram.

PROOF. Based on Eq. (1), one can check analytically that both
vertices of the dual edge ∗ij orthogonally project onto the support-
ing line of the primal edge ij at the same point:

cij = xi +

(
l2ij + wi − wj

2 l2ij

)
eij .

As a result, the supporting line of ∗ij passes through cij and is
indeed orthogonal to the primal edge.

With the dual diagram in place, we can introduce explicit formu-
lae for the signed measures of the elements in an orthogonal dual
diagram. We first define the signed distance between a vertex xi
and point cij as dij , with a positive sign if (xi−cij)·(xi−xj) ≥ 0,
and negative otherwise; i.e.,

dij =
l2ij + wi − wj

2 lij
, dji =

l2ij + wj − wi
2 lij

. (2)

Note that dij+dji= lij . We also define the “height” distance hjki
to be the signed distance between cijk and cij , with a positive sign
if the triangle (cijk,xi,xj) has the same orientation as the triangle
(xi,xj ,xk), and negative otherwise; i.e.,

hjki=
lij cotαjki

2
+

cotαkij
2 lij

(wj−wk)+
cotαijk

2 lij
(wi−wk). (3)
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This height definition allows us to define a signed length l∗ij of the
dual edge ∗ij associated with a primal edge ij common to ijk and
imj as:

l∗ij = hjki + himj . (4)

Note that this choice of signs matches the traditional sign conven-
tion for circumcentric duals (see [Hirani et al. 2013] for a recent
exposition). Finally one can compute the signed area a∗i of a dual
cell ∗i as the sum of the signed areas of triangles formed by vertex
i and each surrounding dual edge, resulting in:

a∗i =
1

2

∑
j∈Ωi

dij l
∗
ij . (5)

2.4 Discussion

Our embedding of dual vertices in R3 through displacements of
circumcenters links to previous work in many aspects. By rewrit-
ing the gradient of basis function ψi in triangle ijk as e⊥jk/(2 aijk)

(where ⊥ denotes in-plane ccw rotation by π/2) and using the ge-
ometric expression of the circumcenter c�ijk given in [Alliez et al.
2005], we can reexpress the dual position as:

cijk = xi +
1

4 aijk

∑
p∈{j,k}

(
(|xi−xp|2 + wi−wp) e⊥ip

)
. (6)

This is the expression given in [Mullen et al. 2011] to define dual
vertices as weighted circumcenters. We thus conclude that our no-
tion of weighted triangulation matches their work, as well as the
work of [Glickenstein 2005] that they built upon. Our new geomet-
ric interpretation of the dual embedding will be, however, crucial
in the remainder of this paper.

Weighted circumcenters define a notion of triangle center that
is equidistant to the triangle vertices based on an altered Euclid-
ian distance, known as power distance. These centers are closely
related to weighted Delaunay triangulations, an extension of De-
launay meshes that triangulates points enriched with a weight as-
signment [Aurenhammer 1987]. As in the Delaunay/Voronoi du-
ality, weighted Delaunay triangulations also define an orthogo-
nal dual diagram with positive dual lengths (l∗ij ≥ 0), named
power diagram. The duality of weighted Delaunay triangulations
and power diagrams has found recent applications in graphics in-
cluding mesh optimization [Mullen et al. 2011], displacement inter-
polation [Mérigot 2011], blue noise sampling [de Goes et al. 2012],
and architecture modeling [Liu et al. 2013; de Goes et al. 2013].

Weighted triangulations are, instead, a generalization of
weighted Delaunay triangulations that decouples mesh connectiv-
ity from weight assignment. In fact, any weighted triangulation can
be converted to a weighted Delaunay triangulation through a series
of edge flips to enforce positive dual lengths [Aurenhammer 1987].
Glickenstein [2005] showed that, for simply connected domains,
the family of weighted triangulations includes all possible pairs of
orthogonal primal and dual meshes. The case of meshes with ar-
bitrary topology was recently addressed in [de Goes et al. 2013],
where additional topological degrees of freedom were identified to
fully span the space of orthogonal dual diagrams. While we lever-
age these previous results, our work explores the use of weighted
triangulations to define an augmented notion of metric for discrete
surfaces, as we described next.

3. METRIC OF WEIGHTED TRIANGULATIONS

The metric of a smooth surface defines an inner product between
tangent vectors, thus allowing to measure length, area, and Gaus-

sian curvature on the surface. On a triangle mesh, this notion of
metric needs to be properly discretized in order to provide the
same set of measurements. We now revisit the definition of met-
ric on discrete surfaces and present validity conditions for the case
of weighted triangulations.

3.1 Primal Metric

A triangulation represents a piecewise flat surface, hence the metric
of the primal mesh alone is piecewise Euclidian. Arguably the most
common representation of this metric is through |E| edge lengths,
used in many scientific contexts, including early work in numeri-
cal relativity [Regge 1961]. In order to define valid triangles, the
lengths of a mesh must be positive and satisfy triangle inequalities.

DEFINITION 7. A primal metric in Tw is a set of edge lengths
{lij} such that

∀ij ∈ E : lij > 0,

∀ijk ∈ F : lij + ljk − lki > 0,
ljk + lki − lij > 0,
lki + lij − ljk > 0.

(7)

We hereafter denote by L the set of primal metrics.

3.2 Dual Metric

Our weight-based construction of a dual brings about the need to
measure dual elements as well, for which the primal lengths alone
do not suffice. With lengths and weights, one can express the mea-
sure of each dual edge and cell as described in Sec 2.3. The dual
structure generated by the weights is, however, unique to the dis-
crete case since the distinction between primal and dual vanishes
in the smooth limit. We thus define a dual metric as a restricted set
of |V |−1 weights whose range vanishes as the mesh is appropri-
ately refined (see, e.g., [Hildebrandt et al. 2006]) towards a smooth
surface.

DEFINITION 8. A dual metric in Tw is a set of vertex weight
{wi} such that

∀ij ∈ E : |wi − wj | ≤ l2ij . (8)

Using Eq. (2), we can reexpress this condition as dij ≥ 0. Ge-
ometrically, this means that the supporting line of each (isometri-
cally unfolded) dual edge of Tw intersects the interior of its asso-
ciated primal edge. The dual structure is therefore constrained to
“follow” the primal structure as it converges to a smooth surface
under refinement. Note, however, that this condition does not en-
force positivity of the dual edge lengths.

3.3 Augmented metric

Once primal and dual metrics are known, one can measure any
mesh element of a weighted triangulation Tw, be it primal or dual.
We thus refer to the pair (l, w) of edge lengths l={lij} (determin-
ing the primal mesh) and weights w={wi} (defining the orthogo-
nal dual mesh) as the augmented metric of Tw.

DEFINITION 9. We define LW as the set of augmented metrics
(i.e., with lengths and weights satisfying Definitions 7 and 8), with
a total of |E|+|V |−1 degrees of freedom.

4. DISCRETE DIFFERENTIAL OPERATORS

Equipped with an augmented metric we can derive discrete opera-
tors, useful in geometry processing, which make use of both primal
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and dual meshes. Discrete Exterior Calculus (DEC) is a particu-
larly convenient language to easily deduce such operators [Bossavit
1998; Desbrun et al. 2007; Grady and Polimeni 2010].

4.1 DEC on weighted triangulations

In exterior calculus, computations on a smooth surface often in-
volve the Hodge star operator, which is a metric-dependent map
from differential p-forms to (2−p)-forms (p=0, 1, 2), and the exte-
rior derivative that maps p-forms to (p+ 1)-forms [Abraham et al.
1988]. In DEC, the primal-dual orthogonality is exploited to define
a discrete Hodge star operator as a diagonal matrix containing ra-
tios between the volumes of dual and primal elements. This defini-
tion remains directly applicable to weighted triangulations, leading
to the following three expressions for discrete stars operating on
primal two-, one-, and zero-forms:

Primal two-forms: F2 = diag({?ijk}ijk∈F ), with
?ijk = 1/aijk. (9)

Primal one-forms: F1 = diag({?ij}ij∈E), with
?ij = l∗ij/lij . (10)

Primal zero-forms: F0 = diag({?i}i∈V ), with
?i = a∗i. (11)

Observe that since the dual structure for constant weights corre-
sponds to the circumcentric dual, the Hodge star for one-forms re-
duces to the well known cotan formula in this case [MacNeal 1949].
We will use ?�ij to denote this “unweighted” star, i.e., for an edge
ij between triangles ijk and imj,

?�ij ≡ ?ij

∣∣∣
w=const

=
1

2

(
cotαjki + cotαimj

)
. (12)

Based on Eqs. (3) and (4), the weighted version of the Hodge star
for one-forms is therefore:

?ij = ?�ij +
cotαkji

2l2ij
(wi−wk) +

cotαjik

2l2ij
(wj−wk)

+
cotαijm

2l2ij
(wi−wm) +

cotαmij

2l2ij
(wj−wm).

(13)

The definition of the discrete exterior derivative, on the other hand,
is unchanged by the weights as it is a combinatorial operator, and
thus only depends on the connectivity of the mesh [Munkres 1984].

4.2 Discrete Laplace-Beltrami operator

A particularly common operator, used in countless geometry pro-
cessing tools, is the Laplace-Beltrami operator. Using the DEC
framework, we can define it for weighted triangulations as the
matrix ∆w = dt0F1d0, where d0 is the discrete exterior deriva-
tive on zero-forms [Desbrun et al. 2007]. This extends the familiar
cotan-Laplacian matrix ∆� [Pinkall and Polthier 1993], which cor-
responds to the Laplace-Beltrami operator with zero weights (or,
equivalently, constant weights). Note that ∆w is a symmetric ma-
trix providing the “weak” (i.e., integrated) version of the operator,
while the “strong” (i.e., pointwise) version is simply the generally
non-symmetric matrix F−1

0 ∆w.
It bears pointing out that, due to the inherent primal-dual orthog-

onality of weighted triangulations, the operator ∆w shares struc-
tural properties with the smooth Laplace-Beltrami operator such as
symmetry, locality, scale invariance, as well as linear precision on
flat domains [Wardetzky et al. 2007]. Based on our definition of
dual metric, we can analyze further properties of this operator. Un-
der the assumption that a sequence of triangle meshes converges

to a smooth surface in the Hausdorff distance [Hildebrandt et al.
2006], the validity of dual metrics (Eq. (8)) implies that the weights
become constant in the limit. As a consequence, ∆w tends to the
same operator in the limit as ∆�, and thus converges to the smooth
Laplace-Beltrami operator. We also notice that Eq. (8) corresponds
to a sufficient condition introduced in [Glickenstein 2005] (Theo-
rem 36) to enforce that the weighted Laplace-Beltrami operator is
positive semi-definite with only constant functions in its kernel, and
therefore satisfies Lax-Milgram theorem. We thus conclude that our
definition of the Laplace-Beltrami operator for weighted triangula-
tions shares the same properties as the cotan-Laplacian, while of-
fering additional control over the construction of the dual diagram.

4.3 Discussion

While we showed how DEC can be conveniently leveraged to
derive discrete differential operators on weighted triangulations,
one can also use more classical approximation schemes. For in-
stance, the weighted Laplace operator we introduced above was
recently presented through a finite element derivation in [Desbrun
et al. 2013] while a finite volume approach was used in [de Goes
et al. 2013]. In these two related works, weights were approxi-
mating a divergence-free metric, i.e., a positive definite symmet-
ric matrix field whose columns are divergence-free vector fields.
Building upon this observation, the augmented metric can be inter-
preted as the piecewise Euclidian metric additively perturbed by a
divergence-free matrix associated to the weights. This perturbation
is visible in Eq. (13) as the extra term in ?ij added to ?�ij .

Regarding numerical analysis, tight error bounds of DEC op-
erators on weighted triangulations were previously addressed
in [Mullen et al. 2011]. This work demonstrated that the inclusion
of weights not only extends the typical finite element operators on
meshes, but can also improve the accuracy of the discrete operators
(without affecting the order of convergence). The authors proposed
to compute weights as the minimizer of a family of energies that
measures the discretization error of the diagonal Hodge star oper-
ators in Eqs. (9,10,11). We finally point out that higher order ac-
curacy can be achieved, if necessary, through the use of high-order
approximations of the Hodge star [Buffa et al. 2010; Arnold 2013].

5. METRIC CHARACTERIZATION

While edge lengths and vertex weights are a convenient way to
represent the metric of a weighted triangulation of a given connec-
tivity, they are far from being the only set of geometrically rele-
vant coefficients carrying the same information. In fact, depend-
ing on the targeted applications, more convenient descriptions of
the weighted metric are available. In this section, we present three
alternative representations of the metric which we will utilize in
Sec. 6, each being a set of measurements on Tw from which the
lengths and weights of the weighted triangulation can be recovered
(Fig. 3). We show their equivalence by describing an optimization
over the set of augmented metrics LW to convert each of these met-
ric representations back to the lengths-weights representation.

5.1 Edge-Angle / Vertex-Area

Our first metric characterization assumes that edge angle sums
{φij} and positive dual cell areas {a∗i} of Tw are given, along
with its connectivity (Fig. 3, top). We show that one can recover
the discrete metric (l, w) of Tw by solving two convex optimiza-
tions sequentially: first we recover the edge lengths l from {φij},
after which we deduce the weights w based on {a∗i}.
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Fig. 3. Metric Characterizations of Weighted Triangulations: We offer
three approaches to recover the augmented metric (edge lengths and vertex
weights) of a weighted triangulation based on familiar geometric measure-
ments: (top) angle sums φ per edge and discrete Hodge star values F0 per
vertex corresponding to dual areas; (center) angle sums θ per vertex and dis-
crete Hodge star values F1 per edge corresponding to primal-dual length
ratios; (bottom) angle sums θ per vertex and inversive distances η per edge
corresponding to the cosine of intersecting angles of vertex-centered circles.

The prescribed values {φij} and {a∗i} must satisfy necessary
conditions in order to be associated to a discrete metric (l, w). We
first notice that φij is a sum of two triangle angles, which implies
that 0 < φij < 2π. Also, since our discrete surface is made out
of Euclidean triangles for which interior angles sum to π, one has∑
ij φij = π|F |. Accounting for this linear constraint, the set of

edge angles and vertex areas provide |E|+|V |−1 values, like LW.

Circle Pattern Energy. Finding edge lengths {lij} associated to
the prescribed edge angle sums {φij} in Tw is akin to the cir-
cle pattern problem [Rivin 1994; Bobenko and Springborn 2003].
We can thus solve for lengths by minimizing a convex energy P
as introduced in [Bobenko et al. 2010]. We start by adopting the
change of variables uij = log lij . Note, however, that this loga-
rithmic map transforms the triangle inequalities from linear func-
tions of {lij} (Eq. (7)) into non-linear functions of length scalings
{uij}, and thus the convex set L becomes a non-convex set logL.
We overcome this issue by extending logL to a convex set as pro-
posed in [Springborn et al. 2008], at the cost of violating the va-
lidity of primal metrics (Sec. 3.1). Within this space of variables
u = {uij} ∈ logL, we define P as follows.

DEFINITION 10. The circle pattern energy P is defined as

P(u) =
∑
ijk

(
L(αijk) + L(αjki) + L(αkij)

)
+
∑
ij

(
uij(φij − φij)

)
,

(14)

where L(·) denotes the Lobachevsky function [Milnor 1982], and
the angles {αijk} and {φij} depend on u.

We can now deduce the first and second derivatives of P as
shown in the Appendix, and present the following theorem.

THEOREM 11. Assume that a connectivity and angle sums
{φij} are given for Tw. Also assume that 0 < φij < 2π and∑
ij φij = π|F |. There exists at most one primal metric {lij} (up

to a global scaling) that recovers the prescribed edge angle sums.

PROOF. First, we notice that the gradient of P simplifies to

∂uij
P = φij − φij ,

so that ∇uP = 0 iff the prescribed angles are recovered. We then
point out that the Hessian of P is a positive semi-definite matrix
with only constant functions in its null-space. This indicates that
the energy P is convex in u. Since the extended domain of P is
defined as a convex set, we conclude that the minimization of P is
a convex optimization and, if a solution {lij = euij} exists, it is
unique up to a global scaling.

We can further determine the global scaling of {lij} from the
prescribed dual cell areas {a∗i}, since their sum is equal to the total
area of the mesh. We thus pick the properly scaled {lij} so that:∑

ijk

aijk =
∑
i

a∗i. (15)

Capacity Constrained Energy. Once the edge lengths are recov-
ered, we compute the weights w = {wi} from the prescribed dual
cell areas {a∗i} by observing that these values simply impose a
“capacity” constraint for each vertex of Tw. Such a capacity con-
strained problem turns out to be a known optimal transport problem
for which a variational principle was introduced in [Aurenhammer
et al. 1998], and a closed form expression of the energy’s Hessian
was recently given in [de Goes et al. 2012]. Note that our context is
different from [Aurenhammer et al. 1998; de Goes et al. 2012] since
both of them were restricted to weighted Delaunay triangulations.
Yet, we can modify their formulation to weighted triangulations
with metrics in LW by introducing the energy C.

DEFINITION 12. The capacity constraint energy C is defined as:

C(w)=
∑
i

wi
(
a∗i − a∗i

)
−
∑
ijk∈F

(d3
ijhjki

4
+
dijh

3
jki

12

)
. (16)

Note that the domain of C is the set of dual metrics w = {wi} for
a given primal metric {lij} in L, and it is thus a convex polytope
(Eq. (8)). We also point out that the second term of C is a weighted
version of the Centroidal Voronoi Tessellation energy [Du et al.
1999] introduced in [Mullen et al. 2011]. With the derivatives of
C given in the Appendix, we find weights {wi} satisfying the pre-
scribed dual cell areas {a∗i} based on the following theorem.

THEOREM 13. Assume that a primal metric {lij} and positive
dual cell areas {a∗i} are given for Tw so that Eq. (15) holds. There
exists at most one dual metric w = {wi} (up to an additive con-
stant) that recovers the prescribed dual cell areas.

PROOF. The gradient of C is found to be

∂wi
C = a∗i − a∗i,

showing that ∇w C = 0 iff the prescribed dual cell areas are
matched. The Hessian of C is one half of the Laplace-Beltrami op-
erator ∆w introduced in Sec. 2. This matrix is thus positive semi-
definite for any metric in LW, and its null-space only contains con-
stant vectors, corresponding to the fact that the weights are deter-
mined up to an additive constant. Since the domain of C is convex,
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we finally conclude that the minimization of C is a convex opti-
mization, and its solution is unique.

5.2 Edge-Star / Vertex-Angle

Our second metric representation is complimentary to the first one,
as we now assume a primal-dual length ratio ?ij given per edge,
and an angle sum θi given per vertex (Fig. 3, center). However,
we will use a single variational principle to recover, up to scale,
the discrete metric (l, w) of a weighted triangulation Tw that the
length ratios and angle sums derive from.

Note that prescribing the sum of tip angles θi around vertex i is
equivalent to constraining the discrete Gaussian curvature (or ex-
cess angle) κi of the surface since κi = 2π − θi for non-boundary
vertices. Moreover, since the tip angles of each triangle sum to π, a
necessary condition for the existence of a metric (l, w) for a given
connectivity is that

∑
i θi = π|F |. On the other hand, prescribing

the primal-dual length ratio ?ij is equivalent to specifying the di-
agonal Hodge-star for one-forms and consequently determines the
discrete Laplace-Beltrami operator ∆w. Although the edge ratios
and vertex angles involve |E|+|V |−1 values in total, they are in-
variant to scaling and thus this characterization only recovers the
metric up to a global scaling.

Conformal Energy. Our formulation is based on the conformal
energy, a functional that commonly arises in geometry process-
ing [Pinkall and Polthier 1993; Mercat 2001; Desbrun et al. 2002;
Lévy et al. 2002].

DEFINITION 14. The conformal energy of a piecewise-linear
map f between a triangle mesh T and another mesh T of identical
connectivity is defined as:

Ec(f) =
1

2

∑
ij

?ij‖fi − fj‖2 −Area(f), (17)

where the first term is the Dirichlet energy of f (measuring the
smoothness of f in the metric of T ), and the second term is the
area of the image of f (i.e., the total area of T ).

Given that ‖fi − fj‖2 = l2ij where {lij} are the edge lengths
of T and Area(f) = 1

2

(∑
ij ?ij l

2
ij

)
= 1

2

(∑
ij ?

�
ij l

2
ij

)
as the total

surface area is equal to the sum of all disjoint partition areas, no
matter how the surface is partitioned, we can rewrite Ec as:

Ec(l2) =
1

2

∑
ij

(
?ij − ?ij

)
l2ij =

1

2

∑
ij

(
?ij − ?�ij

)
l2ij . (18)

Observe that the domain of Ec is the space L2 of squared edge
lengths satisfying Eq. (7), and thus corresponds to a convex set
homeomorphic to L [Zeng et al. 2012]. The partial derivatives of
Ec are surprisingly simple despite the non-linear dependence of ?�ij
on lengths (see Appendix):

∂l2ij
Ec = 1

2

(
?ij − ?�ij

)
. (19)

We thus conclude that the energy Ec is, in fact, a closed-form ex-
pression of the variational formulation introduced in [Zeng et al.
2012]: their energy, given in implicit form, admits the same gra-
dient with respect to squared lengths. We can consequently reuse
their results and present the following theorem.

THEOREM 15. Assume that the connectivity and length ratios
{?ij} for an unweighted mesh T are given. There exists at most
one primal metric {lij} (up to a global scaling) that recovers the
prescribed length ratios.

PROOF. From Eq. (19), we have that {?ij} are recovered iff
∇l2Ec = 0. Zeng et al. [2012] showed that the derivatives corre-
sponding to the Hessian of Ec define a positive semi-definite ma-
trix, with global scaling in its kernel, and thus Ec is a convex energy.
Since the domain of Ec is a convex set, we conclude that the mini-
mization of Ec in l2 is a convex optimization and thus the solution
{l2ij} is unique up to a global scaling.

Notice that Ec is zero at its minimum since ∇l2Ec = 0 implies
the equality of (unweighted) stars, and hence a null conformal en-
ergy. However, in our context of weighted triangulations, we want
to match the weighted Hodge star instead.

Curvature Constrained Conformal Energy. In order to extend
the energy Ec to the augmented metric (l, w), we consider a modi-
fied energy L that adds target vertex angles {θi}.

DEFINITION 16. The curvature constrained conformal energy
L is defined as

L(l2, w) = Ec(l2)− 1

2

∑
i

wi

(
θi − θi

)
. (20)

We provide an intuitive interpretation of our energy: L corresponds
to the Lagrangian function of the minimization of Ec subject to
constraints {θi=θi}, where the weights play the role of (twice the)
Lagrangian multipliers. Remarkably, the gradient of

∑
i wi(θi−θi)

with respect to l2 contains exactly the weighted terms of the Hodge
star for one-forms, and hence summing this with Eq. (19) turns the
unweighted star ?�ij into a full Hodge star ?ij .

THEOREM 17. The stationary points of L correspond to dis-
crete metrics (l, w) of Tw that recover the prescribed measures
{θi} and {?ij}.

PROOF. As detailed in the Appendix, the first derivatives of L
are:  ∂l2ij

L = 1
2

(
?ij − ?ij

)
,

∂wi
L = 1

2

(
θi − θi

)
.

(21)

Therefore, the prescribed edge ratios and vertex angles are recov-
ered iff ∇l2,wL = 0.

Note that our theorem does not address the uniqueness of the
critical point of L. In fact, the Hessian of L is in general indefinite,
and L is thus non-convex. While the uniqueness of a solution of L
remains an open question, we present instead additional analysis of
its solution space.

COROLLARY 18. If a critical point of L exists with primal met-
ric {lij}, then the dual metric is unique up to an additive constant.

PROOF. We deduce from Eq. (21) that:

∇l2L=0 =⇒ ?ij l
2
ij=?ij l

2
ij ∀ij =⇒

∑
j∈Ωi

?ij l
2
ij =

∑
j∈Ωi

?ij l
2
ij ∀i.

Since ?ij is linear in weights (Eq. (13)), we can express the deduced
equalities as a Poisson linear system:

∆� w = b, (22)

where bi =
∑
j∈Ωi

l2ij
(
?ij − ?�ij

)
. Note that the kernel of ∆� only

contains constant vectors. Thus, for a critical point of L, b is in the
range of ∆�, and there is a unique set of weights (up to an additive
constant) satisfying Eq. (22).
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Finally, we show that the space of weighted Hodge stars for one-
forms is strictly larger than the space of unweighted Hodge stars,
confirming the flexibility added by weighted triangulations in the
discretization of differential operators.

COROLLARY 19. Assume a weighted mesh T̂w of metric (l̂, ŵ)
is given, with non-constant weights. Then, for any unweighted mesh
T with the same connectivity as T̂w: ?ij 6= ?̂ij ∀ij.

PROOF. Our proof is by contradiction. Suppose there exists a
triangle mesh T of edge length l = {lij} and constant weights
w = {wi} such that the equality ?ij = ?̂ij holds. The length
assignment l is then a global minimum of the convex energy Ec
with prescribed discrete Hodge star ?ij ≡ ?̂ij . Note, however, that
l̂ = {l̂ij} is also a global minimizer of Ec since Ec(l̂ ) = Ec(l ) = 0

(see Eq. (18)). Due to the convexity of Ec, we conclude that l̂ = sl,
where the scalar s indicates a global scaling factor. Now, observe
that the linear system in Eq. (22) for these two meshes differs just
in b̂ = s2b. Thus ŵ = s2w and is constant, contradicting the initial
assumption that ŵ is non-constant.

5.3 Inversive Distance Circle Packing

Our third and last metric characterization involves the concept
of circle packing, a topic that has attracted a lot of efforts since
Thurston [1976] linked it to conformal mapping (see [Stephenson
2003] for a survey). We show that the discrete metric (l, w) of Tw
can be determined by solving an inversive distance circle packing
problem, from prescribed angle sums {θi} per vertex, and addi-
tional positive values {ηij} per edge known as the inversive dis-
tances (Fig. 3, bottom).

Overview. One can think of the weight wi as the square of the
radius of an intrinsic circle centered at vertex i. These circles de-
fine, within each triangle’s supporting plane, a unique circle orthog-
onal to them, and the center of this circle per triangle is our dual
vertex cijk as shown, e.g., in [Glickenstein 2005]. It is therefore
no surprise that weighted triangulations are relevant in the context
of circle packing. The circle packing problem defines a relation be-
tween edge lengths and vertex weights of the form:

l2ij = wi + wj + 2
√
wiwj ηij . (23)

This resembles the law of cosines where ηij indicates how neigh-
boring circles intersect. By scaling vertex circles, one can then de-
form edge lengths while keeping the values {ηij} invariant. The
original circle packing problem (used, e.g., in [Jin et al. 2008]) as-
sumes positive weights and intersecting circles with acute angles
(i.e., 0 ≤ η ≤ 1), while inversive distance circle packing [Yang
et al. 2009] extends this concept to non-intersecting circles (i.e.,
η ≥ 0). Arbitrarily signed weights can further be treated as dis-
cussed in [Aurenhammer 1987; Pedoe 1988].

Circle Packing Energy. Recent results [Guo 2009; Luo 2010]
have shown the existence of an energy (with no known explicit
form) that recovers, at its critical point, an augmented metric (l, w)

from vertex angles {θi} and inversive distances {ηij}. They also
showed that this energy relies on the change of variables ui =
1
2
logwi, and Eq.(23) is then rewritten as:

l2ij = e2ui + e2uj + 2eui+ujηij . (24)

Yang et al. [2009] later derived that the Hessian of this energy as a
function of vertex scalings {ui} is the weighted Laplacian ∆w de-
fined in Sec. 4. We can then use the augmented metric set LW in or-
der to guarantee that the operator ∆w is positive semi-definite and

thence that the circle packing energy is convex. Lastly, Guo [2009]
proved that the space of vertex scalings is convex once η ≥ 0, and
the minimization of the circle packing energy is thus reduced to a
convex optimization. In the following theorem, we summarize the
metric characterization of Tw based on the inversive distance circle
packing.

THEOREM 20. Assume that connectivity, vertex angles {θi}
and positive inversive distances {ηij} are given for Tw. There
exists a convex energy such that its unique minimum (if any) is
reached at vertex scalings {ui} defining the augmented metric
(l, w) that recovers the prescribed values {θi} and {ηij}.

5.4 Discussion

Our metric characterizations relate to and tie together several prob-
lems and energies that commonly arise in geometry processing.
Circle patterns (Eq. (14)) and conformal energies (Eq. (18)), for
instance, are standard methods to compute mesh parameteriza-
tions [Lévy et al. 2002; Kharevych et al. 2006]. We employed the
little known edge-scaling-based version of the circle pattern energy
from [Bobenko et al. 2010] instead of the original circumradius-
based energy [Bobenko and Springborn 2003]. In fact, the rele-
vance of the energies P (Eq. (14)) and Ec (Eq. (18)) are not a mere
coincidence. Recently, Luo [Luo 2010] showed the existence of a
whole family of implicit energies that uniquely characterize the
edge lengths of a triangle mesh, for which P and Ec correspond
to two special cases (in Luo’s notation, h = 0 and h = −2, re-
spectively). Our work revealed simple closed-form expressions for
these energies. Moreover, we made use of recent work on the ca-
pacity constrained problem, another example of a core theoretical
result with applications in graphics such as displacement interpola-
tion [Mérigot 2011] and blue noise generation [de Goes et al. 2012].
While previous work addressed capacity constraints on weighted
Delaunay triangulations (for which connectivity is induced by the
weights), we instead extend this formulation to any weighted trian-
gulations with metric (l, w) ∈ LW.

The representation of weighted triangulations as circle pack-
ings also offers an interesting counterpart to the discrete conformal
equivalence of unweighted triangle meshes introduced in [Spring-
born et al. 2008]: while they employ a primal mesh with |E| values
to define the metric, |E|−(|V |−1) cross ratios to define the confor-
mal invariants, and |V |−1 curvatures to complete the picture, we
assume a weighted triangulation instead, with |E|+|V |−1 values
defining the metric, |E| inversive distances defining the conformal
invariants, and |V |−1 curvatures to complete the picture. These two
approaches are, however, closely related and come from special
cases of a more general notion of discrete conformal equivalence
introduced in [Glickenstein 2011]. We can in fact derive an addi-
tional insight connecting these two conformal structures. Consider
the family of meshes Tw with primal metric {l̂ij} and constant dual
metric {ŵi ≡ γ}. In this particular case, inversive distances can be
rewritten as ηij = 1

2γ
l̂2ij − 1, and plugging this form into Eq. (24)

we have:

l2ij = e2ui + e2uj + 2eui+uj
(

1
2γ
l̂2ij − 1

)
=
(
eui − euj

)2
+ 1

γ
eui+uj l̂2ij .

Note that the second term of this expression corresponds to a map-
ping that preserves length cross ratio as introduced in [Springborn
et al. 2008], while the complete expression keeps the inversive dis-
tance invariant. Therefore, inversive distance circle packing can be
interpreted as a generalization of discrete conformal equivalence
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for weighted triangulations that maintains a packing structure on
the mesh, while trading off preservation of length cross ratios and
uniformity of vertex scalings.

6. APPLICATIONS

Weighted triangulations are amenable to most geometry process-
ing tasks due to their added flexibility for the construction of dis-
crete operators through the design of an extended set of orthogonal
dual meshes. In this section, we leverage the insights developed in
our work to provide concrete examples of weighted triangulations
applied to meshing. In particular, we show how to improve upon
recent methods in mesh generation and architecture modeling.

6.1 Self-Supporting Meshes

Self-supporting meshes are architectural structures that support ex-
ternal vertical loads with no need for additional reinforcement. The
design and analysis of such structures has received attention in
graphics in recent years [Vouga et al. 2012; Panozzo et al. 2013;
Liu et al. 2013; de Goes et al. 2013]. In particular, both the work
of [Liu et al. 2013] and [de Goes et al. 2013] noticed that any
simply-connected self-supporting mesh Tw described as a piece-
wise linear height function {zi(xi)} withstands an external load
{ρi} iff its orthographically projected planar mesh accepts a dual
metric w = {wi} with positive dual lengths (l∗ij ≥ 0) and satisfy-
ing the equilibrium equation:

∆wz = ρ. (25)

Moreover, Vouga et al. [2012] showed that the ratio of a vertex
load ρi and its dual cell area a∗i induced by the dual metric w is
equivalent to the concept of relative mean curvature borrowed from
the theory of isotropic geometry [Pottmann et al. 2009]. Based on
this observation and on Eq. (5), Liu et al. [2013] proposed to gener-
ate smooth self-supporting meshes through an iterative process that
estimates vertex weights by approximating a∗i = ρi/H for every
vertex i, where H indicates a constant relative mean curvature.

We point out that the construction of a dual metric w from a given
load function ρ and constant relative mean curvature H is akin to
the capacity-constrained problem described in Sec. 5.1. We can in-
deed set a∗i ≡ ρi/H and solve for the dual metric w associated to a

Fig. 4. Modelling self-supporting meshes. Based on the distribution of
vertical loads on a planar mesh (left, color ramp indicates load intensity
ranging from blue to red) and setting a target relative mean curvature (H=5
for both examples), we construct self-supporting meshes by first recovering
a dual metric w that minimizes the energy C in Eq. (16) (center), and then
recovering a height function from Eq. (25) (right).

Fig. 5. Well-centered Meshes. The hand model contains many triangles
with offcentered circumcenters. Even after optimizing the dual metric w
based on Eq. (27a), most dual vertices get closer to their respective triangle
barycenter (top), but a few still remain outside their triangles (see red lines).
We can generate a well-centered mesh by optimizing the same energy for
both vertex positions and weights, while retaining the original surface shape
(bottom).

planar primal mesh by minimizing the energy C (Eq. (16)) through
an efficient Newton’s solver [Nocedal and Wright 1999]. We can
further enforce positive dual lengths either by adding them as in-
equality constraints (as in [de Goes et al. 2013]) or by performing
edge flips (as in [Liu et al. 2013]). Once the 2D primal-dual mesh is
found, we can finally construct a self-supporting height function by
solving Eq. (25). As illustrated in Fig. 4, our approach offers a novel
tool for modeling self-supporting meshes based on prescribed dis-
tribution of vertex loads. Our implementation is based on the Ipopt
library [Wächter and Biegler 2006] (with default parameters) and
took three iterations to convergence.

6.2 Well-centered Meshes

In various meshing contexts, it is desirable to place dual vertices
inside their associated triangle while retaining orthogonality to
the primal mesh [Elcott et al. 2007; Batty et al. 2010]. However,
generating such “well-centered” meshes with circumcentric duals
are challenging [VanderZee et al. 2010]. Alternatively, Mullen et
al. [2011] proposed the use of weighted circumcenters to construct
well-centered triangulations in the plane. Their approach is based
on the minimization of the functional M that evaluates the cost of
coalescing mesh triangles ijk into their respective dual points cijk:

M(x, w) =
∑

ijk∈F

∫

ijk

‖y − cijk‖2dy. (26)

In the case of surface meshes, the authors restricted the mini-
mization of M only with respect to weights, and showed that
the weighted circumcenters move towards their respective triangle
barycenter as expected.
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In order to generate well-centered meshes over non-flat domains,
we first point out that the energy M can be expressed as a sum of
two terms:




Sb(x, w) =
∑
ijk

aijk‖bijk − cijk‖2, (27a)

V(x) =
∑
ijk

∫

ijk

‖y − bijk‖2dy. (27b)

Note that the first energy Sb measures how close the dual metric
w places the dual vertices {cijk} with respect to triangle barycen-
ters {bijk}, capturing the key property promoted by [Mullen et al.
2011]. The second energy V , on the other hand, corresponds to the
sum of second moments of the mesh triangles, and favors the for-
mation of evenly sized triangles. While Mullen et al. [2011] rec-
ommend the sum of these energies in the context of Hodge star
optimization, we propose to use only Sb to construct well-centered
surface meshes. We minimize the energy Sb by alternating opti-
mization of mesh positions {xi} and weights {wi}. We use a L-
BFGS method [Nocedal and Wright 1999] to optimize vertex po-
sitions. For weight optimization, we exploit our construction of
weighted orthogonal duals as displacements of the circumcentric
dual (Eq. (1)), and point out that this minimization amounts pre-
cisely to finding a gradient field ∇w on T that best matches (in
the L2 sense) a given vector per triangle. This particular problem
is well studied (e.g., in [Tong et al. 2003]) and can be efficiently
solved with a single linear system:

∆�w = ∇ · (c� − b), (28)

where [∇ · (c� − b)]i =
∑

ijk∈Ωi

(
c�ijk−bijk

)t
e⊥
jk. Fig. 5 com-

pares the results of weight-only versus position and weight opti-
mization. Note that the weights alone still generate off-centered
elements, while our full optimization places dual vertices at the
barycenters, and also improves the aspect ratio of the triangles. In
our experiments, we used our own implementation of the L-BFGS
method with limited memory of size 5, and the library [Davis 2011]
as our sparse linear solver. As the stopping criteria, we set a conver-
gence tolerance of 10−10 which was achieved in 10-20 iterations.

6.3 Incircle and Sphere Packing

We discussed in Sec. 5.3 the inversive distance circle packing prob-
lem and its link to weighted triangulations. A singular case of circle
packing occurs when vertex-centered circles are tangent, i.e., when
η = 1. This case, called sphere packing, has been used in surface
modeling [Schiftner et al. 2009] to design torsion-free structures
relevant for architecture. In this same work, the authors noted that

Fig. 6. Incircle and sphere packing on surfaces. Examples of incircle
packing on triangulated surfaces with boundary, non-trivial topology, and
curved shapes. Incircle packing directly induces sphere packing and an or-
thogonal dual structure (left).

a sphere packing corresponds to a triangle mesh with pairwise tan-
gent incircles, a property that induces an orthogonal dual structure
where incenters are dual vertices. We can thus modify Eq. (27a) to
generate incircle and sphere packing through minimization of the
energy:

Si(x, w) =
∑
ijk

aijk‖iijk − cijk‖2, (29)

where iijk denotes the incenter of triangle ijk. One can then al-
ternate the minimization of this energy with respect to weights wi

using the Poisson solve in Eq. (28), and with respect to points xi

using a L-BFGS method [Nocedal and Wright 1999] (with the same
parameters as in Sec. 6.2). This approach turns out to be much more
robust than the two energies suggested in [Schiftner et al. 2009]:
while theirs require an initial guess that is close to be an incircle
packing in order to return valuable results, our approach is robust
to local minima and handles bad initial guesses quite well as Fig. 7
demonstrates. Our approach successfully generates incircle pack-
ings on highly curved shapes, with or without boundaries, and with
arbitrary topology as shown in Fig. 6.

Fig. 7. Incircle Packing Comparison. While the optimization method
of [Schiftner et al. 2009] (left) is sensitive to bad initial meshes, our ap-
proach (right) reliably generates incircle packing on surfaces of arbitrary
shape and topology.

7. CONCLUSION AND FUTURE WORK

In this paper, we advocate the use of weighted triangulations in ge-
ometry processing: the additional weights on vertices provide flex-
ibility in the design of basic tools used in our community. While
our work focused on defining foundations for weighted triangula-
tions and demonstrating a number of applications in the context
of mesh design, we expect that additional benefits will be derived
from further studies. On the theoretical side, we are now investigat-
ing necessary conditions for the existence of critical points of our
metric characterization in Sec. 5. In particular, we conjecture that
any weighted Hodge star for one-forms requires at most one set
of Gaussian curvatures to be fully determined. This conjecture, if
proven correct, would extend the global rigidity theorem presented
in [Zeng et al. 2012] from triangle meshes to weighted triangula-
tions. Discrete metrics of non-orthogonal primal-dual meshes and
polyhedral meshes are also of interest, as well as the extension of
our construction to non-intrinsic dual vertices. Further insights may
be gathered by linking our characterizations to the use of weighted
circle patterns [Springborn 2008; Dimitrov 2012]. Finally, on the
practical side, we believe our geometric dual meshes can bring
added robustness to numerous computational tools, and lead to new
approaches for geometry processing as demonstrated in Sec. 6; in
particular, it may help extend recent methods that process shapes
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not solely based on the usual vertex positions, but on discrete differ-
ential geometric quantities [Lipman et al. 2005; Crane et al. 2011;
Wang et al. 2012].
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Appendix: Derivatives

In this section, we give explicit expressions for the derivatives of
the energies introduced in Sec. 5. We spell out these expressions per
triangle (we will use a triangle ijk of circumradius R) to facilitate
direct implementation. We will also use two identities derived from
the cosine law:

∂l2ij
αkij= −cotαijk

2l2ij
, ∂l2ij

αjki=
cotαijk + cotαkij

2l2ij
=

1

4aijk
.

Circle-Pattern Energy. The energy P in Eq. (14) restricted to a
single triangle ijk and with uij = log lij is expressed as:

P(uij , ujk, uki) = L(αijk) + L(αjki) + L(αkij)

+uij
(
αjki − φij

)
+ ujk

(
αkij − φjk

)
+ uki

(
αijk − φki

)
.

The Lobachevsky function L(·) [Milnor 1982] and its derivative
are given as:

L(x) = −
∫ x

0

log(2 sin t)dt, L′(x) = − log(2 sinx).

Note that we disregarded the absolute value in L since all the tip
angles are assumed to be in the interval (0, π). Partial derivatives
of P are then:

∂uij
P =

(
αjki−φij

)
+
(
uij−log(2 sinαjki)

)
∂uij

αjki+(
ujk−log(2 sinαkij)

)
∂uij

αkij+
(
uki−log(2 sinαijk)

)
∂uij

αijk.

By applying the sine law, we have for any edge ij:

uij − log(2 sinαjki) = log(lij/(2 sinαjki)) = log(R).

Since ∂uij

(
αijk + αjki + αjki

)
= 0, we thus conclude:

∂uij
P = αjki − φij = φij

∣∣∣
ijk
− φij .

The Hessian of P is now expressed as:

∂ujk
∂uij
P = − cotαijk, ∂uij

∂uij
P = cotαijk + cotαkij .

This matrix corresponds to half of the Laplacian restricted to the tri-
angle derived with non-conforming finite elements (see, e.g, [Polth-
ier and Preuss 2003]), and it is therefore positive semi-definite.
Consequently, the energy P inside ijk (and thus its sum over the
whole mesh) is convex within LW.

Capacity-Constrained Energy. The energy C in Eq. (16) for a
single triangle ijk is expressed as:

C(wi,wj ,wk) = wi
(
a∗i−a∗i

)
+ wj

(
a∗j−a∗j

)
+ wk

(
a∗k−a∗k

)
− 1

4

((
d3
ij + d3

ji

)
hjki +

(
d3
jk + d3

kj

)
hkij +

(
d3
ki + d3

ik

)
hijk

)
− 1

12

(
lijh

3
jki + ljkh

3
kij + lkih

3
ijk

)
.

Based on Eqs. (2) and (3) and a few steps of algebra, one can show
that ∂wi

C = a∗i−a∗i. As a∗i is a quadratic function of the weights
(Eq. (5)), we can further deduce the Hessian of C as:

∂wj
∂wi
C = − 1

2

hjki

lij
, ∂wi

∂wi
C = 1

2

(
hjki

lij
+

hijk

lki

)
,
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which corresponds to one half of the Laplace-Beltrami operator ∆w

restricted to the triangle ijk. Since this operator is positive semi-
definite for (l, w) ∈ LW, C is convex.

Conformal Energy. The energy Ec in Eq. (18) in a single triangle
ijk of area aijk is defined as:

Ec(l2ij , l2jk, l2ki) = 1
2

(
?ij l

2
ij + ?jkl

2
jk + ?kil

2
ki

)
− aijk.

By noticing that ∂l2ijaijk = cotαjki/4, one can show:

∂l2ij
Ec = 1

2

(
?ij −

cotαjki

2

)
= 1

2

(
?ij − ?�ij

∣∣∣
ijk

)
.

As derived in [Zeng et al. 2012], the Hessian matrix of Ec is a pos-
itive semi-definite matrix and its elements are:

∂l2
jk
∂l2ij
Ec = −R2 cotαijk/(2l

2
jkl

2
ij),

∂l2ij
∂l2ij
Ec = R2

(
cotαijk + cotαkij

)
/(2l4ij).

The null-space of such a matrix contains only the vector of squared
lengths {l2ij}.

Curvature-Constrained Conformal Energy. At last, we derive
closed-form expressions for the derivatives of the energy L in
Eq. (20) defined in a single triangle ijk as:

L(l2, w) = Ec(l2ij , l2jk, l2ki)− wi
(
θi − αkij

)
/2

−wj
(
θj − αijk

)
/2− wk

(
θk − αjki

)
/2.

Since Ec does not depend on w, the w-derivatives are:

∂wi
L = 1

2
(αkij − θi) = 1

2
(θi

∣∣∣
ijk
− θi).

For the partial derivatives w.r.t length, one has instead:

∂l2ij
L= 1

2

(
?ij−?�ij

∣∣∣
ijk

+ wi∂l2ij
αkij + wj∂l2ij

αijk + wk∂l2ij
αjki

)
= 1

2

(
?ij −

cotαjki

2
− (wi − wk)

cotαijk

2l2ij
− (wj − wk)

cotαkij

2l2ij

)
= 1

2
(?ij −

hjki

lij
) = 1

2
(?ij − ?ij

∣∣∣
ijk

).
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