
Injecting Quality Attributes into Software Architectures
with the Common Variability Language

Jose-Miguel Horcas
Universidad de Málaga,
Andalucía Tech, Spain
horcas@lcc.uma.es

Mónica Pinto
Universidad de Málaga,
Andalucía Tech, Spain
pinto@lcc.uma.es

Lidia Fuentes
Universidad de Málaga,
Andalucía Tech, Spain

lff@lcc.uma.es

ABSTRACT
Quality attributes that add new behavior to the functional 
software architecture are known as functional quality at-
tributes (FQAs). These FQAs are applied to pieces of soft-
ware from small components to entire systems, usually cross-
cutting some of them. Due to this crosscutting nature, 
modeling them separately from the base application has 
many advantages (e.g. reusability, less coupled architec-
tures). However, different applications may require differ-ent 
configurations of an FQA (e.g. different levels of secu-rity), so 
we need a language that: (i) easily expresses the variability of 
the FQAs at the architectural level; and that (ii) also 
facilitates the automatic generation of architectural 
configurations with custom-made FQAs. In this sense, the 
Common Variability Language (CVL) is extremely suited for 
use at the architectural level, not requiring the use of a 
particular architectural language to model base functional 
requirements. In this paper we propose a method based on 
CVL to: (i) model separately and generate FQAs cus-tomized 
to the application requirements; (ii) automatically inject 
customized FQA components into the architecture of the 
applications. We quantitatively evaluate our approach and 
discuss its benefits with a case study.

Keywords
CVL, quality attributes, SPL, variability, weaving

1. INTRODUCTION

The quality of a software system is measured by the ex-
tent to which it possesses a desired combination of quality
attributes (QAs) [2] such as usability, reliability, security and
scalability. Whether or not a system will be able to exhibit
its desired (or required) QAs is substantially determined by
its software architecture, through the use of different archi-
tectural tactics [3]. For some QAs, the architectural tactic

to be followed consists in the injection (i.e. introduction)
of specialized elements into the architecture (e.g. an autho-
rization mechanism to satisfy the security QA) [3]. These
QAs are normally known as functional quality attributes
(FQAs) [12], and are different from other QAs such as cost
or efficiency that can be mapped to architectural or imple-
mentation decisions, but not directly to functional compo-
nents. Examples of FQAs are error handling, security, con-
text awareness, usability, persistence, recovery, etc.

Our main idea is to give priority to the FQAs that are
required by an application from the early stages of the soft-
ware development, based on three main contributions: (1)
the specialized elements required for satisfying the FQAs
are modeled separately from the base software architecture;
(2) these elements are then semi-automatically injected into
the application architecture; and (3) the approach is imple-
mented using the Common Variability Language (CVL) [10].

The motivation for modeling FQAs separately from the
base architecture is that FQAs are normally required by sev-
eral applications — i.e. they are recurrent, and most of them
crosscut the system architecture. So, modeling them sepa-
rately from the base application has many advantages (e.g.
reusability, less coupled architectures, etc.). For instance, an
encryption algorithm used to encrypt the information does
not depend on the application that needs it. Also, different
applications may require different levels of an FQA (e.g. se-
curity). For example, a specific application may require ac-
cess control and anonymity while another may require only
encryption, or may require a different kind of encryption al-
gorithm. In other words, there is much variability in FQAs,
and the Software Architect (SA) should be able to select
the set of specialized architectural elements that need to be
injected to fulfill the application requirements regarding a
particular FQA, which is not a trivial task.

Regarding the second part of our approach, once we have
generated custom models of the FQAs for a given applica-
tion, these models need to be injected into the base model
of the application. Being inspired by Aspect-Oriented Mod-
eling (AOM)1, in our approach, first we identify and select
the points in the base model where the custom FQA mod-
els have to be injected, and then automatically generate the
application architecture woven with the customized FQAs.

Finally, our third contribution is the technical details of
our approach. In order to define a family of FQAs, a lan-
guage to model the variability of FQAs is needed. Although
most of the variability approaches use Feature Models (FMs),
their main shortcoming is that an additional process is re-

1http://www.aspect-modeling.org/



quired to generate an architectural configuration that meets
an FM configuration. CVL is more suitable for use at the
architectural level, since it defines links between the variabil-
ity specification and the product line architecture (PLA).
The advantages of using CVL are: (i) it is an MOF-based
variability language and this means that any MOF-based
architectural language can be used with the variability in-
formation of CVL; (ii) the links between the variability and
base architectural models make it possible to automatically
generate software architecture configurations, ensuring that
they fulfill the variability specification, (iii) the semantic of
the CVL variation points can be extended, and (iv) CVL in-
cludes the most important characteristics of similar variabil-
ity models (e.g. FM) such as cardinality of variation points,
cross-tree constraints, etc. Due to all these advantages there
is a great interest in the SPL community in adopting CVL
in their proposals [5, 6]. But, since both the CVL language
and its tool support are novel, the effort of using CVL is
currently considerable.

Summarizing, in this paper we present an SPL approach
based on the use of CVL to automatically generate, from
a family of reusable FQAs, software architecture configura-
tions that include custom made FQAs. As discussed further
on, in Section 3, this approach is an extension of our pre-
vious work [11] and defines a more generic, integrated and
extensible approach. One important contribution is that the
custom made FQAs are automatically woven with the base
application by extending the semantic of the CVL variation
points. We quantitatively evaluate our approach by using
appropriate metrics to assess the benefits of our approach,
and illustrate it with an Intelligent Transportation System
case study. Also, we discuss the benefits of using CVL in
achieving the goals posed in this paper.

Besides this introduction, Section 2 presents the CVL,
and describes the case study used throughout the paper.
Section 3 overviews our approach and highlights its main
novelties in comparison with our previous work [11]. In Sec-
tion 4 we explain in detail how we model FQAs by using
CVL. The customization and injection of the FQAs into the
base application of our case study is explained in Sections 5
and 6, respectively. In Section 7 we evaluate our proposal.
Section 8 discusses the related work. Finally, Section 9 con-
cludes the paper and presents further work.

2. BACKGROUND INFORMATION
In this section we briefly summarize CVL.2 Then, the case

study followed throughout the paper is described.

2.1 CVL
The CVL is a domain-independent language for specifying

and resolving variability over MOF-compliant models.
CVL provides an executable engine to automatically pro-

duce a resolved model from three main models: (1) the base

model over which the variability is specified and resolved.
(2) The variability model that specificies the variability in
an abstract level with variability specifications (VSpecs) and
in a concrete level through variation points. VSpecs are tree
structures representing choices (“features” in most SPL ter-
minologies) and can include logical constraints defined in a
subset of the Object Constraint Language (OCL). Variation
points define specific modifications to be applied to the base

2Complete description in http://www.omgwiki.org/variability/

model during materialization — i.e. the process of trans-
forming a base model into a configured product model. (3)
A resolution model that provides resolutions for the VSpecs
in order to materialize a base model with a variability model.
The main characteristics of CVL that we will use are:
Configurable unit (CU). Set of variation points that hides

the internal of a base model, exposing a VInterface.
Variability interface (VInterface). Group of VSpecs that

have to be resolved to materialize a CU.
Composite VSpec (CVSpec). VSpec that is resolved by

resolving other VSpecs that are variability interfaces.
Opaque Variation Point (OVP). It allows customizing

the semantic of the existing CVL variation points through
a model transformation language.

2.2 Case Study
We motivate our proposal presenting a case study based

on Intelligent Transportation Systems (ITSs) [1]. In this
context, there is a set of services (e.g. road safety, weather
conditions,. . . ) that all require communication between ve-
hicles (V2V) and via roadside access points (V2I).

An ITS application requires specific security services:
privacy, to protect the personal information of drivers such
as the route followed; integrity, to ensure the data authen-
ticity exchanged over the network; and confidentiality and
authentication, to allow the drivers to use certain services of
V2I (e.g. payment at electronic toll). Context awareness
and usability FQAs are also required in order to obtain con-

text information of the user (e.g. license detector, weariness)
or of the car (e.g. GPS, proximity sensors) and to provide
contextual help according to the users needs, respectively.

3. OUR PROPOSAL
This section presents a general overview of our approach

(Figure 1). We distinguish three main stages with two differ-
ent actors: (1) FQAs modeling, performed by a domain ex-
pert in quality attributes; (2) FQAs customization to the re-
quirements of a particular application, and (3) FQAs weav-
ing. Steps (2) and (3) are performed by the SA.

Stage 1: FQAs modeling.
In this stage, an expert in the domain of the QAs mod-

els the variability of FQAs following the CVL approach. To
do this, he/she first builds the software architecture of the
FQAs by using any MOF-compliant language (FQAs Base

Model in Figure 1), and then defines a variability model
of the FQAs in CVL (FQAs Variability Model). This sup-
poses a novelty in comparison with our previous work [11] in
which the FQAs had to be obligatorily modeled with aspect-
oriented software architectures, making use of a propietary
ADL and of propietary tools.

Most of the FQAs are composed by many concerns. The
security FQA, for example, is composed by access control,
authentication, privacy, integrity, and encryption, among
other concerns. However, not all of the concerns of an FQA
are required by all the systems. For example, an application
may require only authentication and access control. Also,
the domain expert needs to consider that some of the con-
cerns of an FQA have dependencies between them, such as
the confidentiality concern that depends on the encryption
concern to ensure that all the information is encrypted and
cannot be obtained by third persons. We call these depen-
dency relationships between the concerns of the same FQA,



intraFQA-dependencies. Furthermore, FQAs affect each
other, so dependency relationships between different FQAs
must also be considered. For instance, the contextual help
concern of the usability FQA depends on the authentication
concern of the security FQA in order to provide customized
help based on the previous experience of the user. We call
these dependency relationships between concerns of different
FQAs, interFQA-dependencies.

This supposes a difference between our approach and other
proposals that address FQAs’ variability (e.g. QADA [13],
RiPLE-DE [4]), basically because they model these FQAs as
part of the domain analysis of an SPL, and not separately
as we propose.

An important thing that is worth highlighting is that this
stage is performed only once. This means that the FQAs
base model and the FQAs variability model will be com-
pletely reused by any application that wants to incorporate
these FQAs into its software architecture, just by following
stages 2 and 3 of our approach.

Stage 2: FQAs customization.
In the second stage of our approach, the SA creates a

configuration of the FQAs (FQAs Resolution Model) accord-
ing to the requirements of a particular application. This
means that those variable concerns that are not required by
the base application will not be incorporated into the final
application. This stage is automated by using the execution
engine of CVL (CVL Execution) that resolves the variability
of the FQAs variation points. This is another novelty of this
approach. Previously, in [11], an additional language had to
be used to link the FQAs variability model with the FQAs
base model. Moreover, the customization of the FQAs de-
pended on the definition and instantiation of aspect-oriented
architectural templates, which were defined using our propri-
etary ADL. The CVL engine takes as inputs the FQAs Reso-

lution Model, the FQAs Variability Model and the FQAs Base

Model, and automatically derives (materializes) the resolved
model of the FQAs (FQAs Resolved Model). This model only
contains the software elements of the FQAs that are needed
according to the requirements of the application.

Stage 3: FQAs weaving.
Once the FQA resolved model has been generated in the

previous stage, the next step consists of “weaving”, or com-
posing, it with the software architecture of the base appli-
cation (Application Base Model in Figure 1). The output of
this weaving process is an application architecture that also
incorporates the FQAs (Application Resolved Model (appli-

cation architecture + FQAs)). This weaving is not a straight-
forward task since each FQA will have to be woven at dif-
ferent points of the base applications (join points) and, fur-
thermore, each FQA’s concerns will be woven according to
a different weaving pattern, depending on the semantic of
the concern. Moreover, this should be done automatically,
without manually modifying the application architecture.

Thus, the challenge here is to define a process that sys-
tematically integrates high-level quality solutions into the
base architecture of a given application, but without hav-
ing to understand the inner workings of the quality solu-
tions. In order to do that, we need to adapt the CVL ap-
proach (see Section 6). Firstly, our based model is formed
by two models, the FQAs Resolved Model and the Applica-

tion Architectural Model. Secondly, during the CVL Execu-

Figure 1: Our approach for modeling FQAs.

tion the control must be delegated to a Model-2-Model en-
gine (M2M Engine) such as QVT, in charge of performing the
weaving of these two models. The weaving is performed ac-
cording to the weaving information provided by the Appli-

cation Weaving Model. This model uses the OVPs of CVL,
which are the mechanism provided by CVL to extend the
semantic of the CVL variation points. Using the OVPs the
weaving rules that indicate where the FQAs must be in-
corporated into the core software architecture are specified
as user-defined M2M transformations (Weaving Rules (M2M

transformations)). The weaving process introduced here,
and detailed in Section 6, is a new contribution of this pa-
per and was not part of the proposal presented in [11].

The rest of the paper describes each stage in more detail,
using the case study described in the previous section.

4. MODELING FQAS WITH CVL
This section describes the first stage of our approach, in

which the FQAs (security, context awareness, and usability),
their commonalities and variabilities, and the dependencies
between them are modeled.

4.1 FQAs base model
In our approach the FQAs Base Model specifies the software

architecture of the FQAs. For instance, the UML software
architecture modeling the functionality of the different con-
cerns of the security FQA is shown at the bottom of Fig-
ure 2. This architectural model should include the complete
functionality of the security FQA. In order to simplify the
model, we only include here the Integrity, Confidentiality,
Encryption, Authentication, and Hash components. These are
composite components that include other necessary compo-
nents to implement the functionality of each concern. For
instance, Encryption includes components to encrypt and de-
crypt information using different encryption algorithms.

In order to achieve a better modularization we model each
FQA independently of each other and then we model the de-
pendencies and interactions between them. Thus, the bot-
tom of Figure 3 shows the high-level architectural model
of all the FQAs together. Although not included due to



Security_Int

Security_CU

Confidentiality Authentication

UserPassAuth

CardAuth

AuthLogging

BioAuth SymmetricAsymmetric

1..1
1..1

1..*

Encryption

PrivacyAuthentication

Integrity

SHA-2
MD5

HashEncryption

Security

1..1
Hash

:ObjectExistence

DSA
RSA

ECDSA
AES DES

1..* 1..*

SHA-1

...

LimitedSession

Security_Cv

KeyStorage

PseudonymousCertificate

Optional

Mandatory

Choice

OCL Constraint

min..max
Multiplicity

Binding

Base model reference

Composite VSpec

Variability Interface

Configurable Unit

:LinkExistence

:ObjectExistence :ObjectExistence

:LinkExistence :ObjectExistence

:ObjectExistence

V
S

pec tree
V

ariation points
B

ase m
odel

Figure 2: Modeling security FQA in CVL.

the lack of space, the software architectures of the context
awareness and the usability FQAs are modeled in a similar
way as for the security FQA.

4.2 FQAs variability model
Once the FQAs base model has been specified, the next

step is to model the FQAs Variability Model. This CVL vari-
ability model includes the VSpecs, the variation points, the
bindings between the variation points and the VSpecs, and
the references from the variation points to the base model.

As an example, the variability model of the security FQA
is shown in Figure 2. We distinguish three parts: (1) the
VSpec tree of the security FQA (top of Figure 2), (2) the
base model of the security FQA (bottom of Figure 2), and
(3) the variation points (middle of Figure 2). The varia-
tion points are grouped into the security configurable unit
(Security_CU). Then, the Security_CU is bound to a com-
posite VSpec (Security_Cv) which refers to the variability
interface Security_Int — i.e. the VSpec tree.

In the Security_Int VSpec we identify all the concerns
that are part of the security attribute, model them by choices
whose later resolution requires a yes/no decision, indicate
which are optional and which are mandatory, and what the
intraFQA-dependencies between them are. As stated, in this
VSpec tree we only show a subset of the security concerns.
These concerns are also composed by other concerns. For
instance, there are different kinds of authentication: user
+ password (UserPassAuth), intelligent card (CardAuth), and
biometric (BioAuth).

The kind of variability that we need to express is that
“not all of the concerns of an FQA are required by an ap-
plication and thus, not all of the components of that FQA
base model need to be incorporated into the application ar-

chitecture”. In CVL this kind of variability is expressed by
using the “existence” variation point that indicates the exis-
tence of a particular object, link, or value in the base model.
Finally, in CVL, the variation points need to be bound to
elements of the VSpec tree and need to refer to elements of
the FQA base model. This is how the relationship between
the variability model and the base model is specified in CVL.
Moreover, these links are used by the CVL execution engine
to automate the generation of a product configuration. For
instance, the variation point bound to the Confidentiality

concern in the Security_Int VSpec (:ObjectExistence) in-
dicates that if confidentiality is decided positively (marked
as “True” in the resolution model) in a configuration, the
related elements (the Confidentiality component and the
associated interfaces and ports with their attachments) in
the base model will exist in the final application and if con-
fidentiality is decided negatively (marked as “False” in the
resolution model) those related elements will be removed
from the FQA resolved model.

In order to maintain the consistency and to achieve a
good modularization of the design, we specify the variabil-
ity model at the same abstraction level as we did for the
FQA base model. This means that the variability of each
FQA is specified independently from the variability of the
other FQAs. This can be done in CVL by using composite
VSpecs and configurable units. Then, we relate the different
variability models defining a “complete” variability model
including all the FQAs with their relationships (Figure 3).
We apply the conceptual integrity principle3 to compose the
different FQAs configurable units. As Figure 3 shows, the
FQAs VSpec includes the three FQAs by including the three

3The overall design pattern of a system is reflected in any part of the
system.



composite VSpecs previously created (Security_Cv, Usabil-
ity_Cv, and ContextAwareness_Cv). These VSpecs refer to the
interfaces of the configurable unit of each FQA (Security_CU,
Usability_CU, and ContextAwareness_CU). Each configurable
unit refers to its own composite component in the FQAs
base model (bottom of Figure 3). Each of these components
have inner variability that we have previously modeled for
each FQA.

4.2.1 Dependency modeling
Our approach models the dependencies by using the CVL

constraints. CVL constraints express relationships between
elements of the VSpec that cannot be directly defined by
hierarchical relations. We define the intraFQA- and the
interFQA-dependencies at a different level of abstraction:
intraFQA-dependencies are defined in the context of each
FQA configurable unit while interFQA-dependencies are de-
fined in the context of the complete FQAs variability model.

IntraFQA-dependencies. In Figure 2, each intraFQA-
dependency is represented by a prepositional constraint (ex-
pressed in OCL) in a parallelogram that captures a condition
in a choice. For instance, the dependency 'confidentiality

requires encryption' is modeled by attaching the constraint
Encryption to the choice Confidentiality. Thus, the choice
Encryption has to be positively decided whenever Confiden-

tiality is positively decided.
Dependencies are also presented in the security base model.

For instance, although confidentiality affects data in gen-
eral and only requires encryption, privacy also affects peo-
ple’s information and requires the authentication of the user.
So, there is a dependency between the privacy concern and
the authentication concern. In Figure 2, the variation point
(:LinkExistence) bound to the Privacy choice refers to a re-
quired interface of the Confidentiality component in the
UML security base model. This link represents the depen-
dency relationship between the privacy and the authentica-

tion concerns. The variation point indicates the existence of
that particular link. If Privacy is decided positively in a res-
olution model the link will exist in the resolved model, and
if Privacy is decided negatively, the link will be removed.

InterFQA-dependencies. The FQAs_Int VSpec of Fig-
ure 3 includes the CVL constraints that specify the interFQA-
dependencies. For instance, the constraint AuthLogging im-

plies HistoryLog represents the dependency between the au-
thentication logging concern of the security FQA and the
history log concern of the usability FQA, and means that
if the AuthLogging choice is decided positively, the Histo-

ryLog choice has to be positively decided too. InterFQA-
dependencies are also presented in the FQAs base model. It
shows how the Security component relates with the Context-
Awareness and Usability components due to the existing de-
pendencies between them. For instance, Authentication is
required by Usability in order to provide contextual help.
Also, Security requires Feedback from Usability and TimeAware

from Context-Awareness in order to allow the authentication
logs and the control of the session time respectively. Finally,
Context-Awareness requires Feedback to provide alerts when
the information context demands it.

5. CUSTOMIZATION OF THE FQAS
In the second stage of our approach a valid configuration

(customization) of the FQAs variability model is generated,

FQAs_Int

FQAs_CU

Security_CU ContextAwareness_CU Usability_CU

FQAs

1..*

Security_Cv ContextAwareness_Cv Usability_Cv
FQAs_Cv

AuthLogging implies 
HistoryLog

LimitedSession implies 
TimeAware

Weariness implies Alerts

ContextualHelp implies 
Authentication

Figure 3: FQAs variability model.

taken as input the requirements of the application under
development, which in our case is the ITS case study.

As shown in Figure 1, the customization of the FQAs im-
plies the definition of a FQAs Resolution Model. A resolution
model is created by deciding which choices of the VSpec
tree are positively decided and which ones are negatively
decided. The VSpec at the top of Figure 44 shows a valid
configuration of the FQAs (a resolution model) that satisfies
the requirements of our ITS application. Some of the choices
shown in Figure 4 have been selected because the applica-
tion requirements explicitly identified them as needed, such
as privacy, integrity, confidentiality, authentication, location
aware, user aware and contextual help. Other concerns, such
as encryption, hash, feedback, and time aware, had to be se-
lected in order to obtain a valid configuration due to the ex-
isting dependencies between those concerns and those that
were originally required.

For instance, there are concerns that had to be selected
due to the parent-child relationship in the VSpec (e.g. the
Confidentiality and the Privacy choices). Other concerns
had to be selected because of the intraFQA-dependencies
between concerns of the same FQA (e.g. Confidentiality

and Encryption). Finally, other concerns had to be selected
due to the interFQA-dependencies between concerns of dif-
ferent FQAs (e.g. AuthLogging of the Authentication concern
in the security FQA and Log of the usability FQA).

Thus, in our case study, there are concerns, as is the case
of the encryption or the hash concerns, that are required
by other concerns but had not explicitly specified as part of
the application requirements. This occurs basically because
these dependencies are not always obvious to the application
requirements engineer or the SA. By having a domain expert
specifying the intraFQA- and interFQA-dependences as part
of the definition of the FQAs variability in the first stage of
our approach, in this second stage our approach helps the
SAs to specify software architectures that are more accurate
regarding the specification and customization of the FQAs
to the necessities of the applications.

Once the resolution model has been created, the CVL Exe-

cution engine is executed to automatically generate the FQAs

Resolved Model, which is shown in Figure 5. Only the nec-
essary functional components are included in the resulting
FQAs software architecture.
4Middle and bottom of Figure 4 are described in the next section. We
show only one figure for reasons of space.



Weaving rules

FQAs resolved model (FQAsModel)

Confidentiality

CardAuth

AuthLogging

1..*
Encryption

PrivacyAuthentication

Integrity HashEncryption

Security

Hash

ECDSA

SHA-2
LimitedSession KeyStorage

Authentication

Asymmetric

TimeAware
1..*

LocationAware

ContextAwareness

UserAware

Weariness

TimeAware

GPS ProximitySensor
LicenseDetector

1..*

FQAs

1..*

AuthLogging implies 
HistoryLogs

LimitedSession implies 
TimeAware

Weariness implies Alerts

ContextualHelp implies 
Authentication

PseudonymousCertificate

OpaqueVariationPoint1

Application architectural model (appModel)

OpaqueVariationPoint2

OpaqueVariationPoint3

SpecialSubstitutionAuth

spec

type

SpecialSubstitutionEncryp

spec

type

... ...

FQAs resolution model
used as VSpec tree of 

the Application 
Weaving model

sourceObject

targetObject

Feedback

HistoryLog

Alerts

1..*

ContextualHelp

Usability

Logs1..*

SemanticSpec1

SemanticSpec2

V
S

pec tree
(resolution m

odel)
V

ariation points
B

ase m
odels

Figure 4: CVL model for the injection of the FQAs inside the application architecture.

6. WEAVING THE CUSTOMIZED FQAS
At this point, an architectural model customized with the

required FQAs and concerns has been generated (high level
view in the FQAsModel in Figure 4 and low level view in Fig-
ure 5). Now, in the third stage of our approach this FQAs
resolved model has to be incorporated into the software ar-
chitecture of the core application (appModel in Figure 4).

As previously stated, each concern of the FQAs needs a
particular transformation because it is woven with the ap-
plication in a different way. The Application Weaving Model

(Figure 4) uses the OVPs of CVL to define a new semantic
of a variation point using model transformation rules. The
steps are: (1) binding an OVP to each of the concerns of
the FQAs in the resolution model (e.g. encryption, contex-
tual help); (2) specifying a reference to the specific architec-
tural elements that model that concern in the FQAs resolved
model, and (3) indicating how the concern will be woven
with the application base model. OVPs are also bound to
an OVPType, where this type explicitly defines the seman-
tic of a special substitution. A special substitution implies
the combination of a standard substitution and user defined
transformations. In our case the special substitution is done
from the “source object” to the “target object” referenced
by the OVP as we show in Figure 4. Based on this special
substitution the SA needs to refer to one or more join points
(target objects) in the application model where the behavior
of the selected concern (source object) will be incorporated.

We have identified a set of weaving patterns (Table 1)
that fulfil our needs to incorporate the FQAs concerns based
on how the functionality of the concerns (advices) needs to
be applied into the different points of the application (join
points). The special substitution needed by each concern is

mapped to one weaving pattern presented in Table 1.5 For
instance, the privacy and the authentication concerns have
the same special substitution that indicates that only one
advice (e.g. authenticate()) of the selected concern (e.g.
authentication) is woven into the selected join point (e.g.
an interface of the base application).

Continuing with our example, to simplify Figure 4, we
only show three OVPs bound to three concerns: confiden-
tiality, which is achieved using encryption, privacy, and au-
thentication. For instance, the OpaqueVariationPoint1 is
bound to the Privacy concern in the VSpec tree and it
is also bound to the OVPType SpecialSubstitutionAuth

6

(OVPType 1 in Table 1). This in turn specifies the seman-
tics of the special substitution with the necessary transfor-
mations (weaving rules) to incorporate the related element
(Confidentiality that contains the Privacy functionality)
of the FQAs resolved model (FQAsModel in Figure 4) into
the application base model (AppModel in Figure 4).

Algorithm 1 shows the weaving process during the vari-
ability resolution performed by the CVL engine. It takes the
set of OVPs defined (SOVP ) and for each OVP the seman-
tic of the special substitution associated (OVPType) is exe-
cuted by the M2M transformation engine (line 4). Sjoinpoints

is the set of join points referenced by the OVP. When CVL is
executed taking as inputs the application weaving model, the
application base model (appModel) and the FQAs resolved
model, the output is an automatically generated model rep-
resenting the complete application software architecture (Fig-
ure 6), which includes the custom FQAs.

Note that the configuration of the architecture (the com-
ponents and their relationships) is clearly visible in the static
part of the design. Additionally, stereotyped dependencies

5Implementation in ATL of the M2M transformations are available in
http://caosd.lcc.uma.es/spl/cvl/CVL-models-transformations.zip
6In our approach privacy is achieved using authentication.



«component»

Context-Awareness

«component»

UserAware

«component»

WearinessDetector

«component»

LicenseDetector

«component»

User Aware 
Manager

TimeAware

«component»

LocationAware

«component»

Location 
Manager

«component»

Proximity 
Sensor

«component»

GPS

«component»

TimeAware

«component»

Security

«component»

Authentication

«component»

Pseudonymous
 Certificate

«component»

Session 
Manager

«component»

Digital 
Identity

TimeAware

Logs

«component»

Encryption

«component»

Key 
Repository

«component»

Encryption 
Manager

«component»

ECDSA

«component»

Hash

«component»

HashManager

«component»

SHA-2

«component»

Confidentiality

«component»

Integrity
Hash

«component»

Usability

«component»

Feedback

«component»

Alerts

«component»

Logs

«component»

Contextual 
HelpAuthentication

Contextual Help

LocationAware

Authentication

Confidentiality

TimeAware

UserAware

Encryption

Feedback

Integrity Hash

Figure 5: FQAs resolved model.

Table 1: Special substitutions.
OVPType Description Example

1 Only one advice of a concern is woven into
a join point.

Authentication: the authenticate() advice is performed around the join point.

2 The same advice is woven multiple times
into a join point.

Time aware: currentTime() is applied twice (before and after) to measure the time
session of the user.

3 The same advice is woven into different join
points.

Location aware: the acquirePosition() advice needs to be applied on the client
and on the server side to establish locations.

4 Multiple advices of the same concern are
woven into a join point.

Feedback: log() advices are invoked before and after the join point.

5 Multiple advices of the same concern are
woven into different join points.

Encryption: encrypt the information (encrypt(Object)) before sending it and de-
crypt it (decrypt(Object)) after receiving it.

6 Advices of different concerns are woven into
a join point.

Contextual help: first check whether the user is authenticated (isAuthenticated())
and then show information (showHelp()) based on the preferences of the user.

7 Advices of different concerns are woven into
different join points.

Integrity: hash(Object) is applied before sending information to the server and
checkIntegrity(Object) is applied before use the information in the server.

Algorithm 1 Weaving process using CVL.
Require: SOV P

Ensure: ResolvedModel
1: for all vp in SOV P do
2: c ← vp.sourceObject
3: Sjoinpoints ← vp.targetObjects
4: ResolvedModel ← specialSubstitution(c, Sjoinpoints, vp.type)
5: end for
6: return ResolvedModel

between components of the FQAs and components of the
base application make explicit that the sources of the rela-
tionships crosscuts the architectural level, and the targets
are the point of the application where they take place (i.e.
the join points in the AOM terminology). However, this
is insufficient because the interactions between the compo-
nents are not represented. In order to solve this limita-
tion, in our approach the interactions between the compo-
nents are represented in a set of sequence diagrams that
are also automatically generated [14] by the transformation
rules of the special substitutions. For instance, the behavior
of the crosscutting relationship of the authentication con-
cern is represented in the sequence diagram in Figure 6
(b). This diagram shows how the V2V component invokes
the paymentToll() method of the InfraService interface, and
that before the call is effective the authenticate() method
of the Authentication component is invoked. Similarly, the
sequence diagram of Figure 6 (c) shows the behavior of the
encryption concern when the V2V component transmits in-
formation; that is, before sending the message to the Commu-

nication component the encrypt() method of the Encryption

component is invoked.

7. EVALUATION
We evaluate our work both quantitatively, by using met-

rics to quantify the benefits provided by our approach, and
qualitatively, when the use of a metric does not make sense.

Table 2 describes the metrics suite that have been used to
evaluate our approach. Using these metrics we have identi-
fied that there is: (1) a degree of dependency between FQAs
(metrics 1–3). This means that there is a significant number
of concerns whose inclusion in a particular solution depends
on the correct identification of these dependencies, which
are not always straightforwardly derived from the require-
ments of the system. Consequently, these dependencies may
go unnoticed by the SA even if they should be taken into
account to satisfy the requirements of a system; (2) a high
degree of variability (metrics 4–6), since modeling the FQAs
as a “family” of products, and the automatic materialization
of the FQAs base model considerably increases the num-
ber of “valid” resolutions of a FQA that can be generated;
(3) a high degree of automation, due to the high number of
architectural elements that are automatically generated in
comparison with the manual effort that needs to be made in
order to include the FQAs inside the software architectures
of the applications. This degree of automation implies a
lower development effort and gains in productivity; and (4)
a high degree of separation of concerns (metrics 7–8), which
is improved due to splitting our approach into three stages.

We present the results of modeling the three FQAs de-
scribed in this paper: security, context awareness and us-
ability.



Figure 6: Complete application architecture (a); authentication (b) and encryption (c) sequence diagrams.

Table 2: Metric Suite

Dependency Metrics

1. #intraFQA-dependencies: It measures the number of dependencies (tree-constraints and OCL constraints) between
the concerns of a FQA.
2. #interFQA-dependencies: It measures the number of dependencies (cross tree-constraints and OCL constraints)
between different FQAs.
3. #dependent-elements: It measures the minimum number of architectural elements (components, interfaces, rela-
tionships,. . . ) that need to be defined due to the existence of a dependency.

Variability Metrics

4. #choices: It measures the total number of choices in a VSpec.
5. #resolutions: It measures the total number of valid resolutions that can be generated from a VSpec.
6. Variability level: Expressed as the ratio #choices:#valid resolutions.

Separation of
Concerns Metrics

7. Lack of concern-based cohesion (LCC): It measures the number of concerns tangled in a particular component.
8. Concern diffusion over architectural components (CDAC): It measures the number of components in which a
concern is scattered.

Degree of Dependency.
The degree of dependency of the FQAs is shown in Ta-

ble 3. By applying the dependency metrics (see Table 2), we
count the number of intraFQA- and interFQA- dependen-
cies, as well as the number of architectural elements that
are needed in order to satisfy those dependencies. Note
that these numbers correspond only with the concerns of
the three FQAs presented in this paper.

At this point, we would like to highlight that each FQA
dependency can imply the incorporation of a considerable
number of architectural elements into the software architec-
ture. For instance, the security FQA has only four intraFQA-
dependencies but, in order to satisfy these four dependen-
cies, the SA needs to define at least 33 architectural ele-
ments. InterFQA-dependencies are even more difficult to
satisfy because they involve concerns of the other FQAs.
For instance, to satisfy the interFQA-dependency of the us-
ability FQA with the security FQA, the SA needs to define
at least 13 architectural elements.

The relevant issue here is that, using our approach, this
complexity is not managed directly by the SA. Basically,
because we make those dependencies explicit to make sure
he/she is made aware of them and must only select the
desired concerns that satisfy the dependencies. Then, the
required architectural elements are automatically incorpo-
rated into the architecture. Note that this is certain only by
assuming that the domain experts correctly do their job of
modeling the FQAs and the dependencies between them.

Table 3: Degree of dependency
Dependencies Security Context awareness Usability
#intraFQA 4 3 1
#elements 33 12 3
#interFQA 2 1 1
#elements 21 11 13

Table 4: Degree of variability
Security Context awareness Usability Total

#choices 23 15 10 48
#components 21 19 7 47
#resolutions 5354 575 79 313784

Degree of Variability.
Table 4 shows the number of choices that were specified

in the VSpec of the security, the context awareness, and
the usability FQAs, the number of components that were
defined in the software architecture of each FQA and the
number of different “valid” resolutions (configurations) that
can be generated using our approach.

The number of possible resolutions will depend on the
number of initial choices and on the number of dependen-
cies between choices in the VSpec. In Table 4, we see that,
for security, the domain expert will only once have to make,
the effort of defining a VSpec with 23 choices and of speci-
fying an architectural model with 21 components. Then the
CVL engine automatically generates one of the 5354 valid
security configurations based on the selections in the VSpecs
done by the SA. The correctness of the generated software
architectures will depend on the correct specification of the
variability model. The variability level is lower for context



Table 5: Degree of automation

Case study
Specified elements

Degree of automation
manually automatically

ITS 27 25 48.08%
HW 42 38 47.50%
TS 115 16 12.20%
CS 43 34 44.20%

awareness (15 choices: 575 resolutions) and usability (10 choices: 79

resolutions) than for security.
These numbers indicate that some FQAs have a high de-

gree of variability — i.e. there are many different configura-
tions of security that can be created to satisfy the security
requirements of different applications, and the manual spec-
ification of these configurations by the SA (5354 in the case
of security) is a hard and error-prone task. So, this metric
indicates that the use of an SPL approach makes sense.

Degree of Automation.
Defining the architectural model of the FQAs and the vari-

ability model with the VSpecs and the variation points is a
difficult and specialized task. However, in our approach,
this effort only needs to be made once and then the FQA
models can be reused in the development of many systems.
Therefore, the main effort consists of modeling the core ar-
chitecture of the application. Thus, in order to specify the
degree of automation of our approach, we compare the num-
ber of architectural elements (i.e. components, provided and
required interfaces, and relationships) that are manually cre-
ated in the specification of the core software architecture
with the number of architectural elements that are auto-
matically generated, as defined in Equation 1. This is an
adaptation of the degree of automation defined in [8], to be
able to use this metric at the architectural level. Basically,
at the architectural level, the complexity of defining a soft-
ware architecture is measured by the complexity of designing
their components, interfaces, and the relationships between
those components; and it does not depend on the complexity
of the particular implementation of the components.

Degree of Automation =
#elements FQAs

#elements core+ #elements FQAs
(1)

We have applied the degree of automation in our ap-
proach when: (1) security, context awareness and usability
are added to the ITS case study, and (2) security and us-
ability are added to a health watcher (HW) industrial case
study, a toll (TS) case study and a crisis management (CS)
case study (see Table 5). We note that, in the case study
of this paper, the core application is composed by 27 archi-
tectural elements, and when the FQAs are incorporated, 25
new elements are added to the architecture, obtaining a de-
gree of automation of 48.08%. This value is higher than in
other case studies because the ITS requires more QAs con-
cerns, and those concerns have many dependencies between
them. Thus, the results obtained by applying this metric
indicates that our approach can be useful. However, an em-
pirical study that imply SAs developing projects of different
complexities using our approach needs to be performed to
confirm the benefits suggested by this metric.

Degree of Separation of Concerns.
In our approach, the separated modeling of the FQAs from

the core application architecture and the subsequent combi-

nation with the use of CVL and the crosscuts relationships
all contribute to improve the separation of concerns. On the
one hand, we have modeled each FQA separately from each
other in order to (1) identify the concerns and their depen-
dencies, and (2) avoid the duplication of concerns in different
FQAs. The result is that the concerns of the FQAs are well-
encapsulated only in those components that were part of the
security, the context awareness, and the usability composite
components (the CDAC metric for all of them is 1). The
LCC metric has also been applied to the same components,
and the results show that they only contain security, context
awareness, or usability concerns, respectively, and the infor-
mation of the required concerns of the other FQAs to satisfy
their dependencies. On the other hand, this good degree of
separation is kept after the incorporation of the FQAs into
the application architecture due to the use of the crosscuts
relationships at the architectural level.

7.1 Discussion
The evaluation results obtained indicate that the effort of

separately defining FQAs forming an SPL family presents
the following advantages: (i) helps the SA to identify the
dependencies, take them into account and resolve them; (ii)
helps the SA to create different configurations of the FQAs;
(iii) helps the SA to incorporate the customized FQAs into
the architecture; (iv) there is a better degree of separation of
concerns due to the encapsulation of the crosscutting behav-
ior of the FQAs in separate software components. This facil-
itates the subsequent modification of the application and/or
the FQAs. The initial results obtained by some of the met-
rics (degree of dependency and degree of variability) support
our decision to use techniques and tools of SPLs for model-
ing the FQAs. Others (separation of concerns) support our
decision to model them separately from the base applica-
tion. Finally, the degree of automation suggests that it is
worth using our approach with regard to the effort required
to generate and introduce the customized FQAs models into
a software architecture. However, we need to complete the
evaluation with empirical studies in order to evidence the
benefits and usefulness of our approach.

Despite the benefits of using the techniques and tools of
SPLs and CVL in particular, we have also identified some
shortcomings to our approach. A possible disadvantage is
that the SA has to deal with many models. However, we
need to take into account that some of these models are
just configurations of the others (e.g. the resolution mod-
els), others are automatically generated by CVL (e.g. the
resolved models), and others are defined only once and are
reusable in other applications (e.g. the FQAs base model
and the FQAs variability model).

Another disadvantage of our approach is that the weaving
rules implemented as model-to-model transformations in the
last stage of our approach depend on the meta-model used
to specify the core software architecture. This means that
these rules will need to be adapted or redefined if the SA
decides to use a software architectural model that, in spite
of being MOF-dependent, does not incorporate the same
meta-model constructors that we used to define the weaving
rules. This is however a minor limitation in the sense that
our approach enables the integration of different model-to-
model transformations as part of the weaving step, by using
the extension mechanism provided by CVL (i.e. the OVPs).
Also note that even if the weaving rules need to be adapted,



this is the last step of our approach and all the previous
steps remain without changes — i.e. the definition and the
variability modeling of the FQAs as well as the configuration
of them do not change.

Finally, another limitation of our approach is that we have
modeled only the dependencies between the concerns of the
FQAs, but there can also be dependencies between the con-
cerns of the FQAs and the base application (e.g. the feed-
back concern of the usability FQA may require introducing
a new panel into the graphical interface of the base appli-
cation in order to show the feedback information). So, as
part of our on-going work, we plan to extend the variability
model to include these kinds of dependencies.

8. RELATED WORK
Most of the approaches that model QAs variability prin-

cipally focus on the analysis of the QAs as non-functional
requirements (e.g. cost, maintenance) in the final product
of an SPL, and/or how the variations in the functional com-
ponents of the application affect those QAs. For example,
in [15, 16], Tawhid and Petriu propose a technique to model
the commonality and variability in structural and behavioral
SPL views using MDD. They add generic annotations re-
lated to a QA (e.g. performance) in a UML model that rep-
resents the set of core reusable SPL assets. Then, through
model transformations, the UML model of a specific product
with concrete annotations (e.g. UML profiles with stereo-
types [7]) of the QA is derived, and a model for the given
product is generated. Annotating the base model makes
this highly related to variability specifications and prevents
the reuse of both the base model of the application and the
variability model of the QAs.

QADA [13] is a specific method to design PLAs by trans-
forming systematic functionality and QAs into architectures,
but this proposal do not take into account the quality re-
quirements explicitly. RiPLE-DE [4] is a domain design
process for SPL that models the FQAs variability by us-
ing FMs complemented with numerical values from the base
application to evaluate and achieve the desired quality lev-
els. However, the variability of the FQAs directly depends
on the base application, avoiding the reuse of the FQAs.

In [5], the authors adopt the CVL approach to specify and
resolve the variability of workflows. Then, they compose
the detailed structural and behavioral design models of the
chosen variants by using a Reusable Aspect Models (RAM)
weaver. However, this external weaver is responsible for
composing the reusable aspects instead of implementing the
weaving process by using CVL as we do. Additionally, they
apply the CVL approach at the design level while we focus
at the architectural level (e.g. component diagrams).

Architectural patterns are also used to integrate QAs into
software architectures [9]. This approach uses patterns for
architectural partitioning in order to help the SA satisfies
non-functional characteristics of the system. The main lim-
itation of this approach is that a specific implementation of
a pattern for a QA cannot be directly re-used in other dif-
ferent application architecture, and the pattern needs to be
applied from the scratch.

9. CONCLUSIONS AND FUTURE WORK
We have proposed a generic, integrated and extensible

approach for modeling FQAs separately from the base ap-
plication architecture. By separating the modeling of the

FQAs from the application architecture we have improved
the modularization and the reusability of models. CVL
makes our approach suitable for any MOF-compliant lan-
guage and allows us to automatically generate architectural
configurations of the FQAs and inject them into the appli-
cation architecture by extending the semantic of the CVL
variation points.

In our follow-up work, we plan to evaluate our approach
with empirical studies in order to evidence its benefits and
usefulness. For example, we need to quantify the problem of
using many models in order to save effort for the SAs. We
also plan to extend the variability model in order to include
those FQAs’ concerns that have dependencies with the base
application.

10. ACKNOWLEDGMENTS
Work supported by the European INTER-TRUST FP7-317731 and

the Spanish TIN2012-34840, FamiWare P09-TIC-5231, and MAGIC
P12-TIC1814 projects.

11. REFERENCES
[1] INTER-TRUST: Interoperable Trust Assurance

Infrastructure. http://www.inter-trust.eu.
[2] M. Barbacci, M. Klein, T. Longstaff, and C. Weinstock.

Quality Attributes. Technical report, 1995.
http://resources.sei.cmu.edu/asset_files/
TechnicalReport/1995_005_001_16427.pdf.

[3] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. Addison-Wesley Professional, 3rd
edition, 2012.

[4] R. d. O. Cavalcanti, E. S. de Almeida, and S. R. Meira.
Extending the RiPLE-DE process with quality attribute
variability realization. In QoSA-ISARCS, 2011.

[5] B. Combemale, O. Barais, O. Alam, and J. Kienzle. Using
CVL to operationalize product line development with
reusable aspect models. In VARY, 2012.

[6] J. B. F. Filho, O. Barais, J. Le Noir, and J.-M. Jézéquel.
Customizing the common variability language semantics for
your domain models. In VARY, 2012.

[7] M. Fontoura, W. Pree, and B. Rumpe. The UML profile for
framework architectures. Addison-Wesley Longman
Publishing Co., Inc., 2000.

[8] A. Harrington and V. Cahill. Model-driven engineering of
planning and optimisation algorithms for pervasive
computing environments. In PerCom, pages 172–180, 2011.

[9] N. Harrison and P. Avgeriou. Leveraging architecture
patterns to satisfy quality attributes. In Software
Architecture, volume 4758 of LNCS, pages 263–270. 2007.

[10] O. Haugen, A. W
↪
asowski, and K. Czarnecki. CVL:

Common Variability Language. In SPLC, 2012.
[11] J. M. Horcas, M. Pinto, and L. Fuentes. Variability and

dependency modeling of quality attributes. In SEAA, 2013.
[12] N. Juristo, A. Moreno, and M.-I. Sanchez-Segura.

Guidelines for eliciting usability functionalities. IEEE TSE,
33(11):744–758, 2007.

[13] M. Matinlassi, E. Niemelä, and L. Dobrica. Quality-driven
Architecture Design and Quality Analysis Method: A
Revolutionary Initiation Approach to a Product Line
Architecture. VTT publications. Technical Research Centre
of Finland, 2002.

[14] M. Pinto, L. Fuentes, L. Fernández, and J. Valenzuela.
Using AOSD and MDD to enhance the architectural design
phase. In On the Move to Meaningful Internet Systems:
OTM Workshops. 2009.

[15] R. Tawhid and D. Petriu. Integrating performance analysis
in the Model Driven Development of Software Product
Lines. In MoDELS. 2008.

[16] R. Tawhid and D. Petriu. Automatic derivation of a
product performance model from a software product line
model. In SPLC, 2011.


