

Edinburgh Research Explorer

Query Answering over Ontologies Specified via Database
Dependencies

Citation for published version:
Civili, C 2014, Query Answering over Ontologies Specified via Database Dependencies. in SIGMOD'14 PhD
Symposium Proceedings of the 2014 SIGMOD . ACM, New York, NY, USA, pp. 36-40.
https://doi.org/10.1145/2602622.2602632

Digital Object Identifier (DOI):
10.1145/2602622.2602632

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
SIGMOD'14 PhD Symposium Proceedings of the 2014 SIGMOD

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1145/2602622.2602632
https://doi.org/10.1145/2602622.2602632
https://www.research.ed.ac.uk/en/publications/135c4e92-c994-4a8b-9392-34f4b5e28833

Query Answering over Ontologies specified via Database
Dependencies

Cristina Civili
Supervised by Riccardo Rosati

DIAG – Sapienza Università di Roma
civili@dis.uniroma1.it

Expected graduation date: December 2014

ABSTRACT
In this work we present a novel graph-based approach for
studying the tractability of query answering over ontolo-
gies expressed by means of tuple-generating dependencies
(TGDs). We do this by defining a new class of TGDs that
subsumes all the other known classes that enjoy a partic-
ularly desirable property called first-order rewritability of
query answering.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Relational
databases, Rule-based databases, Query processing

General Terms
Languages, Theory

Keywords
ontologies, OBDA, TGDs, existential rules, databases,
tractability, query answering

1. INTRODUCTION
Ontology-based Data Access (OBDA) is a well-known ex-

pression in the knowledge representation community that
refers to an innovative approach to access large and possi-
bly distributed data sources through an ontology.
In the last ten years, ontologies catalyzed significant research
efforts, becoming the standard tool for the formalization of
knowledge bases, whose use in Semantic Web [4] and In-
formation Integration is well-established. An ontology is a
conceptualization of a domain of interest in terms of classes
of objects and relations occurring between them. Formally,
an ontology is a logic theory expressed in some chosen for-
malism.
In OBDA systems, ontologies are used as an additional layer
of information placed upon traditional relational databases
with the purpose of enriching them with semantic features,

http://dx.doi.org/10.1145/2602622.2602632.

such as automated reasoning. Typically, the ontology con-
tains only the intensional part of the knowledge base, while
the DBMS is used to manage the extensional part, i.e., the
actual data. Often, an additional layer of information be-
tween the ontology and the data sources is needed as a way
of relating the two layers through mapping assertions [14].
Query answering in such systems does not consist in simply
evaluating a query against a DBMS under the closed world
assumption (CWA), but it is a reasoning task that needs the
query to be answered against the whole logical theory under
the open world assumption (OWA). This requires different
approaches to query answering, based on expansion tech-
niques already used in data integration and data exchange,
such as materialization or query rewriting [7, 9], which is
the one explored in this work.
To pave their way to real world scenarios, these systems
must guarantee the same complexity of query answering of
the systems currently used. Hence, the current research
challenge is to find formalisms for representing ontologies
that, on the one hand, are powerful enough to satisfy the
most common conceptual modeling needs and, on the other
hand, keep the tractability of query answering. In this light,
two are the most remarkable results in the literature: the
DL-Lite family of languages [8], i.e., lightweight Descrip-
tion Logics designed with the purpose of reducing the data
complexity of query answering, and the Datalog± family of
languages [5, 6], i.e., formalisms whose syntax is based on
variants of the Datalog language[1]. For DL-Lite, as well as
for some formalisms of the Datalog± family, the complex-
ity of query answering is AC0, since these languages share
one important feature: the first-order (FO) rewritability of
query-answering. This property guarantees that a conjunc-
tive query over an ontology can be rewritten as an equivalent
SQL query over the original database, hence the complex-
ity of query answering in OBDA systems using these lan-
guages matches the complexity of query evaluation in clas-
sical DBMSs.
Datalog was rightly considered inadequate for modeling pur-
poses [13], mostly because of the lack of the so-called “value
invention” property, i.e., the ability of generating new un-
known individuals. The recent introduction of the Datalog±

family, however, proved that extending this formalism with
existential variables in the head of rules is sufficient to fill
this gap, and allows for investigating the expressive power of
languages that are, in general, much more expressive than
DLs, allowing both n-ary predicates and complex forms of
join. As a result, the last few years have seen a growing
interest in a multiplicity of languages, referred to by differ-

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SIGMOD’14 PhD Symposium, June 22, 2014, Snowbird, Utah, USA.
Copyright © 2014 ACM 978-1-4503-2924-8/14/06…$15.00.

36

ent names such as existential rules, ∀∃-rules, tuple generat-
ing dependencies (TGDs), Datalog± rules or Datalog∃ rules,
that identify fragments of FO logic.

2. THE PROBLEM
Despite the rising interest in this topic, and the huge im-

pact that could have on the actual spread of semantic tools,
the current picture that tractable classes of TGDs offer is a
plethora of different fragments of FO logic whose expressive
power is, in most of the cases, incomparable.
Provided that deciding the FO-rewritability of a set of TGDs
is, in general, an undecidable problem [3] and that all
these known classes identifies sufficient conditions for FO-
rewritability, we believe that much can be done towards the
goal of defining a more expressive class that subsumes all
the other and still keeps the FO-rewritability of query an-
swering.
Our goal is thus to answer the two following questions:

Question 1 - Is there a way to unify the known FO-
rewritable classes of TGDs by defining a more general and
feasibly checkable sufficient condition?

Question 2 - In doing so, is it possible to push the bound-
aries even further by allowing to express patterns that are
outside of the scope of the other classes, yet do not increase
the complexity of query answering?

The answer turned out to be positive for both these ques-
tions, thanks to the introduction of a novel graph-based ap-
proach for studying the FO-rewritability of query answering
over ontologies expressed by means of TGDs.

3. PRELIMINARIES
A TGD R is an expression β1, ..., βn → α1, ..., αm, where

α1, ..., αm, β1, . . . , βn are atoms (n,m ≥ 1), i.e., expressions
of the form r(t1, . . . , tk), where r = Rel(β) is a relation
symbol, k = Arity(r) is a non-negative integer associated
to r and every ti is either a constant symbol or a variable
symbol. We call the expressions α1, ..., αm and β1, . . . , βn,
respectively, the head of R (head(R)) and the body of R
(body(R)).
We call distinguished variables of R the variables occurring
both in the head and in the body of R, existential body vari-
ables of R the variables that occur only in the body of R,
and existential head variables of R the variables that occur
only in the head of R.
A conjunctive query (CQ) is an existentially quantified con-
junction of positive atoms (possibly with free variables) of
the form q(x) :- α1, . . . , αn, where α1, . . . , αn is a sequence
of atoms, called the body of q, the variables x are the distin-
guished variables of q and every variable of x occurs at least
once in the body of q; the non-distinguished variables occur-
ring in the body of q are called existential variables of q (and,
analogously to TGDs, the existential variables occurring in
more than one atom of body(q) are called NLE-variables of
q). A union of conjunctive queries (UCQ) is a set of CQs of
the same arity.
We define the semantics of TGDs through FO logic under
the Unique Name Assumption, i.e., different constant sym-
bols are interpreted as different domain elements in every
interpretation.
Given a TGD R : β1, ..., βn → α1, ..., αm and a database
B, we say that B satisfies R if the FO interpretation IB
(i.e., the FO interpretation isomorphic to B) satisfies the

FO sentence ∀~x.β1 ∧ . . . ∧ βn → ∃~y.α1 ∧ . . . ∧ αn, where ~x
denotes all the variables occurring in the body of R and ~y
denotes the existential head variables of R. Given a set P
of TGDs and a database D over the signature of P , we say
that a database B over the signature of P satisfies (P,D)
if B ⊇ D and B satisfies every TGD in P . Moreover, we
denote by sem(P,D) the set of all databases B over the sig-
nature of P such that B satisfies (P,D).
Let q be a FO query and let B be a database. We denote
by ans(q,B) the set of tuples of constants c such that IB
satisfies q(c), where q(c) is the FO sentence obtained from
q by replacing its free variables with the constants c.
Let P be a set of TGDs, let q be a UCQ and let D be a
database. We define the certain answers to q over P and D,
denoted by cert(q, P,D), as the set of tuples of constants c
such that c ∈

⋂
B∈sem(P,D) ans(q,B).

Finally, we introduce the notion of FO-rewritable set of
TGDs.

Definition 1. Let P be a set of TGDs. We say that
P is FO-rewritable if, for every UCQ q, there exists a FO
query q′ such that, for every database D, cert(q, P,D) =
ans(q′, D).

4. METHODOLOGY
The basic idea behind our approach is to use a graph to

encode the structure of a set of TGDs as well as some prop-
erties of the set that are relevant for defining a sufficient
condition for its FO-rewritability.
Both in its simplest version, called the position graph, and
in its extended version, called the P-node graph, the struc-
ture is such that its edges reflect the structure of the TGDs:
roughly, they connect the node representing the atom occur-
ring in the head of a TGD R (or atoms unifiable with such
atoms) with the nodes representing atoms occurring in the
body of R.
In the position graph, the structure is such that nodes repre-
sent atoms in a very approximated way, i.e., by referring to
generic positions inside such atoms, or to specific positions
occupied by existential variables.
The P-node graph takes this approach further, by repre-
senting the atoms more precisely: each node of the graph
represents (still in an approximated way) an atom and its
“context”, i.e., the set of all atoms resulting from the “appli-
cation” of a TGD, including the atom itself.
In both these structures, every edge from an atom σ to an
atom σ′ represents the possible transformation of σ into σ′

through a query rewriting step. Therefore, both graphs pro-
vide an approximate representation of all the possible trans-
formations of single atoms, through resolution steps involv-
ing the TGDs of P , starting from the atoms occurring in the
heads of the TGDs of P .
Then, we also define a labeling of the graph edges, in order
to encode relevant aspects of the behavior of the correspond-
ing query rewriting steps. In particular, we are interested in
identifying four conditions related to a rewriting step that
uses a TGD R: “splitting” an existential variable in two dif-
ferent atoms of the body of the TGD R (s-edge); “missing” a
distinguished variable in an atom of the body of the TGD R
(m-edge); “decreasing” the number of bounded arguments in
an atom of the body of the TGD R (d-edge); and the gener-
ation of an atom that is “isolated” in the body of the TGD R
(i-edge). Only the first two conditions are considered in the
position graph, while all of them are needed in the P-node

37

graph to correctly characterize the general case.
As shown in the following sections, both graphs allow for the
definition of a sophisticated acyclicity condition that distin-
guishes between dangerous and harmless cycles, and that
is a sufficient condition for the FO-rewritability of a set of
TGDs.

5. EARLIER WORK
In [10], we started tackling this problem under some pre-

liminary restrictions on the form of the TGDs that make the
problem significantly easier, while still keeping the goal of
providing a more expressive class of TGDs. More precisely,
we focused our attention on simple TGDs, i.e., TGDs where:
(i) the presence of repeated variables in the atoms is not al-
lowed, (ii) the presence of constants is not allowed, (iii) the
head contains a single atom.
In this restricted setting, we provided a formal definition of
the class of Simply Weakly Recursive (SWR) TGDs and we
proved that this class is FO-rewritable, by defining an algo-
rithm that is able to compute the FO rewriting of CQs over
SWR TGDs and proving its termination over the class.
In the following, we present the main content of the paper,
i.e. the definition of the position graph and the class of SWR
TGDs.

Definition 2. (Position) A position σ is either an ex-
pression of the form r[i] or an expression of the form r[],
where r is a relation symbol (and is denoted by Rel(σ)), and
i is an integer such that 1 ≤ i ≤ k, where k is the arity of r.

Definition 3. (R-compatibility) Let R be a simple
TGD of the form β1, . . . , βn → α. Then: (i) given an
position r[], we say that α is R-compatible with r[] if
Rel(α) = r; (ii) given a position r[i], we say that α is R-
compatible with r[i] if Rel(α) = r and α[i] is a distinguished
variable of R.

Given an atom β and a variable x occurring in β in position
i, we denote by Pos(x, β) the position r[i].
Based on the above notions, we are now ready to define the
position graph.

Definition 4. (Position Graph) Given a set P of sim-
ple TGDs, the position graph of P , denoted by AG(P), is
a triple 〈V,E, L〉 where V (the set of nodes of AG(P)) is
a set of positions, E is a set of edges (pairs of nodes), and

L is an edge labeling function L : E → 2{m,s}. AG(P) is
inductively defined as follows:

• for every simple TGD R ∈ P of the form β1, . . . , βn →
α, r[] ∈ V where r = Rel(α);

• if σ ∈ V , then for every simple TGD R ∈ P , if α =
head(R) is R-compatible with σ:

1. for every atom β ∈ body(R):

(a) 〈σ, s[]〉 ∈ E, where s = Rel(β);

(b) for each existential body variable z of R occur-
ring in β, 〈σ, σ′〉 ∈ E, where σ′ = Pos(z, β);

(c) if σ is of the form r[i], then 〈σ, σ′′〉 ∈ E,
where σ′′ = Pos(y, β) and y is the variable
occurring in α at position i;

(d) if there exists a distinguished variable of R
which does not occur in β, then, for every
edge e added to E at points (a), (b), (c), m ∈
L(e);

2. if there exists an existential body variable x of R
occurring in at least two atoms of body(R), then
for every edge e added to E at point 1, s ∈ L(e);

3. if σ is of the form r[i], y is the variable occurring
in α at position i, and y occurs in at least two
atoms of body(R), then, for every edge e added to
E at point 1, s ∈ L(e).

We call m-edge an edge e such that m ∈ L(e), and call s-
edge an edge e such that s ∈ L(e).
We are now ready to define simply weakly recursive sets of
TGDs.

Definition 5. (Simply Weakly Recursive TGDs) A
set P of TGDs is Simply Weakly Recursive (SWR) if: (i)
P is a set of simple TGDs; (ii) in AG(P) there exists no
cycle that contains both an m-edge and an s-edge.

Theorem 1. Every set of SWR TGDs is FO-rewritable.

Example 1. Let P be the following set of TGDs:

R1 : s(y1, y2, y3), t(y4)→ r(y1, y3)
R2 : v(y1, y2), q(y2)→ s(y1, y3, y2)
R3 : r(y1, y2)→ v(y1, y2)

Since there are no s-edges in the position graph AG(P),
shown in Figure 1, it immediately follows that P is a set of
SWR TGDs, thus it is FO-rewritable.

r[]

s[]

v[]

t[]
m

s[2]

q[]

m

Figure 1: The position graph of P

It can be easily verified that the problem of establishing
whether a set of TGDs is SWR is in PTIME. Moreover,
we have shown in [10] that, under the restriction to simple
TGDs, i.e., conditions (i), (ii), and (iii), SWR TGDs sub-
sumes Linear TGDs, Multilinear TGDs, Sticky TGDs and
Sticky-Join TGDs.

6. ONGOING RESEARCH
Our next goal is to weaken some of our preliminary re-

strictions in order to provide more general results. We are
tackling this goal in two steps: the first one is to drop con-
ditions (i) and (ii) and to keep (iii), and the second one is
to deal with arbitrary TGDs, possibly containing multiple
atoms in the head.
It turned out that, just by allowing for the presence of con-
stants and repeated variables in the TGDs, the complexity
of rewriting queries increases in such a way that the position
graph is not sufficient to encode its behavior, as shown in
the following motivating example.

Example 2. Consider the set P of TGDs:

R1 = t(y1, y2), r(y3, y4)→ s(y1, y3, y2)
R2 = s(y1, y1, y2)→ r(y2, y3)

P is not a set of simple TGDs, since s(y1, y1, y2) in
body(R2) contains two occurrences of the same variable y1.
Let us try to use the notion of position graph nonetheless.
The position graph of P is shown in Figure 2.

38

r[]

s[]

r[2] t[]

m

m m

s[1]s[2]

t[1]r[1]

mmm

m

s[3]

t[2]

m

m

Figure 2: The position graph of P

According to our previous results, since there are no cy-
cles in the position graph, P should be FO-rewritable. Un-
fortunately, by considering a simple boolean query such as
q() ← r(“a”, x) over P , it can be proved that this is not
the case, due to the introduction of an unbounded number
of existential join variables (a so-called unbounded chain) in
the rewriting.
In Example 2, the position graph fails at correctly classifying
the set of TGDs because it is unable to deal with multiple
occurrences of a variable in the same atom. More precisely,
the position graph allows for following the evolution of an
existential variable introduced during the rewriting by trac-
ing the positions of the atoms in which the variable appears,
until it “splits”. However, since positions are encoded singu-
larly (i.e. one in each node), there is no way to represent the
fact that two positions contain the same existential variable,
and thus to detect the splitting of such a variable.
In other words, dealing with multiple occurrences of the
same variable inside an atom requires a more complex struc-
ture that is able to keep track of equalities between variables.
Consider now another motivating example.

Example 3. Let P be the set of TGDs:

R1 = r(y1, y2)→ t(y3, y1, y1)
R2 = s(y1, y2, y3)→ r(y1, y2)
R3 = u(y1), t(y1, y1, y2)→ s(y1, y1, y2)

The set P of TGDs of Example 3 is not SWR, since, as be-
fore, we have multiple occurrences of the same variable inside
one atom. Moreover, it is easy to verify that the set in nei-
ther Linear, since body(R3) contains two atoms, nor multi-
linear, since u(y1) in R3 does not contain the variable y2,
nor Sticky, since y1 appears twice in the atom t(y1, y1, y2) of
R3, nor Sticky-Join, since y1 appears in two different atoms
of body(R3).
The set P , however, is FO-rewritable. The intuition behind
this fact is that the cyclic application of R1, R2, R3 cannot
ever occur in practice, due to restrictions on the applicabil-
ity of such rules imposed by the occurrences of existential
head variables and by the occurrences of repeated variables.
Ideally, we aim our class to capture this kind of situations in
which the recursion is only apparent, or “weak”, which also
justifies the name weakly recursive.

Thus, in order to answer both Question 1 and Question
2 for the general case, we need to change the structure of
the position graph. In particular, following the intuition of
Examples 2 and 3, we need a more involved structure that
is able to represent more accurately the cases in which the
TGDs contain multiple occurrences of variables in the same

atom. The first idea is to substitute positions with atoms
as nodes of the graph; in such a way we can keep trace of
the equalities between variables just by reusing the same
variable symbol inside the atom. The second idea is to use
a special variable symbol to mark the introduction of an
existential variable in a step of the rewriting, and to use it
in the same way in which positions of the form r[i] were used
in the position graph.
Moreover, we need to carefully address the two following
problems: since we do not want to represent every atom of
the rewriting (otherwise we would come up with a possibly
infinite structure), we need a way to obtain an approximate
representation. For this purpose, we rename the variables
appearing in the atoms of the TGDs in such a way that we
always use a finite number of symbols. This is formalized
by the notion of P -atom.

Definition 6. (P -atom) Given a set P of TGDs, a P -
atom σ is an atom of the form r(t1, . . . , tn), where: r is a
relation symbol of arity n occurring in P (and is denoted by
Rel(σ)); every ti is either a constant occurring in P or a
variable symbol in the set XP = {z, x1, . . . , xk}, where k is
the maximum arity of a relation occurring in P .

Finally, since we want to define a graph that is a more pre-
cise approximation of the rewriting, we need to come up
with a sharper definition of applicability of a rule. For this
purpose, we pair P -atoms with their “context”, i.e., the set
of atoms that appear together with such atoms as a result
of the application of a TGD, and that determine whether its
existential variables are bounded or not.

Definition 7. (P-node) A P-node is a pair 〈σ,Σ〉,
where Σ is a set of P -atoms and σ ∈ Σ.

The graph, called P -atom graph, is then defined as a refine-
ment of the position graph, in which: (i) nodes are P-nodes;
(ii) the compatibility condition is much more involved and
requires to check the context of a P -atom in order to es-
tablish whether such P -atom can unify with the head of a
rule; edges can be of four types, namely: s-edges, m-edges,
d-edges and i-edges. The two additional types of edges, i-
edges and d-edges are related, respectively, to isolated com-
ponents inside of a query, and to the notion of distinguished
(i.e., bounded) arguments.
For space reasons, we do not give the detail of the definition
of P -atom graph here. But we claim that, using a method-
ology analogous to the definition of the class of SWR TGDs,
we can use such a structure to define a new class of TGDs,
that we call Weakly Recursive (WR) [12].

Definition 8. (Weakly-recursive set of TGDs) A set
P of TGDs is weakly recursive (WR) if in the P -atom graph
of P there exists no cycle that contains a d-edge, an m-edge,
an s-edge, and does not contain any i-edge.

Although such a class is still part of the ongoing research, we
conjecture the following: (i) every set of WR TGDs is FO-
rewritable; (ii) the decision problem of checking the mem-
bership of a set of TGDs to the class WR is in PSPACE; (iii)
the class of WR TGDs strictly subsumes every other known
class of FO-rewritable TGDs, including domain-restricted
TGDs and acyclic graph of rule dependencies [2], which are
incomparable with SWR TGDs.
Let us now consider again Example 2. If we use the P-node
graph instead of the position graph, the dangerous cycle is
detected and the set of TGDs is correctly classified as not

39

r(x1, x2)

s(x1, x2, x3)q(x1, x2)

d,m

d,m

s(x1, x1, x2)

s(z, z, x1)

d,m

d,m

d,m, s

d,m, s

Figure 3: The P-node graph of P

being WR, as shown in Figure 3.
Finally, we started addressing one fundamental issue of our
approach, concerning the expressive abilities of WR TGDs
and, in particular, the ability of expressing modeling pat-
terns that other known FO-rewritable ontology languages
are unable to capture. Our preliminary results show that
the class of WR TGDs allows for the identification of new
FO-rewritable Description Logic languages.

7. FUTURE WORK
Up to now, we focused on identifying a class of FO-

rewritable TGDs that is able to capture all the other classes
that show the same computational complexity of query an-
swering. We defined two classes that enjoy this property,
namely SWR TGDs and WR TGDs, and we discovered that
the complexity of deciding if a set of TGDs is WR rises from
PTIME to PSPACE if we allow TGDs to have constants and
multiple occurrences of the same variable inside an atom.
These complexity results immediately suggest that this ap-
proach does not scale very well: depending on the size of the
set of TGDs, we might be unable to determine in a reason-
able amount of time if the set belongs to the class.
Now, if we assume to have an arbitrary set of TGDs P, we
might end up in one of the following situations: (i) P is
WR; (ii) we are unable to effectively establish if P is WR;
(iii) P is not WR. The first case constitutes the positive sce-
nario in which we know that we can use P as an additional
layer on top of a relational database and still be able to do
query answering in AC0. The challenge is to find an answer
about what to do if we end up in the second or the third
situation. One future research direction is thus to explore
this setting and to define approximation techniques that are
able to tackle both the second and the third situations. Ac-
tually, a technique for addressing the third case, based on
the concept of query patterns, was already presented in [11].

8. CONCLUSIONS
The main purpose of this work is to generalize the OBDA

approach to classes of ontological languages that are more
complex and more expressive than DLs. The introduction of
these new languages is not just a theoretical exercise: richer
ontology languages are actually needed, and these new for-
malisms could constitute an alternative to DLs for modeling
ontologies in OBDA systems, and could be useful in all the
cases in which the modeling capabilities of DLs have proved
to be unsatisfactory. In this sense, our ultimate goal is
to identify effective techniques for query answering through

TGDs based on FO- rewritability and approximation tech-
niques, with the more ambitious purpose of developing a
working OBDA system that showcases our results.

9. ACKNOWLEDGMENTS
This research has been partially supported by the EU un-

der FP7 project Optique - Scalable End-user Access to Big
Data (grant n. FP7-318338).

10. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison Wesley Publ. Co., 1995.

[2] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat.
On rules with existential variables: Walking the
decidability line. Artificial Intelligence,
175(9–10):1620–1654, 2011.

[3] C. Beeri and M. Y. Vardi. The implication problem
for data dependencies. In Automata, Languages and
Programming, pages 73–85. Springer, 1981.

[4] T. Berners-Lee, J. Hendler, and O. Lassila. The
Semantic Web. Scientific American, 284(5):34–43,
May 2001.

[5] A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. A general
datalog-based framework for tractable query answering
over ontologies. J. of Web Semantics, 14:57–83, 2012.

[6] A. Cal̀ı, G. Gottlob, and A. Pieris. Towards more
expressive ontology languages: The query answering
problem. Artificial Intelligence, 193:87–128, 2012.

[7] A. Cal̀ı, D. Lembo, and R. Rosati. Query rewriting
and answering under constraints in data integration
systems. In Proc. of the 18th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2003), pages 16–21,
2003.

[8] D. Calvanese, G. De Giacomo, D. Lembo,
M. Lenzerini, A. Poggi, and R. Rosati. Mastro-I:
Efficient integration of relational data through DL
ontologies. In Proc. of the 20th Int. Workshop on
Description Logic (DL 2007), volume 250 of CEUR
Electronic Workshop Proceedings,
http://ceur-ws.org/, pages 195–202, 2007.

[9] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Y. Vardi. What is query rewriting? In Proc. of the
7th Int. Workshop on Knowledge Representation meets
Databases (KRDB 2000), volume 29 of CEUR
Electronic Workshop Proceedings,
http://ceur-ws.org/, pages 17–27, 2000.

[10] C. Civili and R. Rosati. A broad class of first-order
rewritable tuple-generating dependencies. In Proc. of
the 2nd Datalog 2.0 Workshop, 2012.

[11] C. Civili and R. Rosati. Query patterns for existential
rules. In Proc. of the 6th Int. Conf. on Web Reasoning
and Rule Systems (RR 2012), 2012.

[12] C. Civili and R. Rosati. Weakly recursive tgds. 2014.
(Unpublished manuscript).

[13] P. F. Patel-Schneider and I. Horrocks. Position paper:
a comparison of two modelling paradigms in the
semantic web. In Proc. of the 15th Int. World Wide
Web Conf. (WWW 2006), pages 3–12, ‘2006.

[14] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo,
M. Lenzerini, and R. Rosati. Linking data to
ontologies. J. on Data Semantics, X:133–173, 2008.

40

http://ceur-ws.org/
http://ceur-ws.org/

	Introduction
	The problem
	Preliminaries
	Methodology
	Earlier Work
	Ongoing Research
	Future Work
	Conclusions
	Acknowledgments
	References

