
OOPSLA
Washington, DC-26 September-7 October, 1993 Panel Session

Developing Software for Large-Scale Reuse
Moderator:

Ed Seidewitz
NASA Goddard Space Flight Center

Panelists:

Brad Balfour, SolTech, Inc.
Sam S. Adam, Knowledge Systems Corporation
David M. Wade, Computer Sciences Corporation
Brad Cox, George Mason University

Introduction

This panel succeeded in both its goals. The first of these
was, of course, to have a useful discussion about
developing software for large-scale reuse. The second
goal was to try to encourage greater communication
between the Ada community and the object-oriented
programming community. Two of the panelists (Brad
Balfour and David Wade) were drawn from the Ada
community, while the other two (Sam Adams and Brad
Cox) were drawn from the object-oriented programming
community. Further, the panel had been previously held
in June at the Washington Ada Symposium. All the
panelists agreed that this approach had been very
useful, both for them personally and for the communities
in general, and they hoped for further interaction in the
future.

The position of each panelist is well-described by their
position papers in the OOPSLA’93 proceedings.
However, for completeness the presentation made by
each panelist is very briefly summarized here. The
remainder of this summary documents the active
question and answer session that followed the
presentations. Of necessity, all questions and answers
have been paraphrased.

Brad Balfour

Brad was asked to focus on the influence of
programming languages on achieving large scale reuse.
He stated that the choice of programming language was
a fundamental, influential decision. This decision
impacts supporting technologies, such as development
guidelines, asset certification and the process of using
an asset. It also has an economic impact for maximizing
the return the investment in reuse, because we currently
don’t really reuse software across languages, in
practice. Finally, it influences the upstream products
(i.e., in the analysis and design phases), because
various advanced design and even requirements

Addendum to the Proceedings

methods are easier to apply with some languages than
others. Brad concluded that the choice of programming
language will remain important for reuse until we
achieve a technology that truly allows us to mix
languages.

Sam Adams

Sam was asked to consider the methodological issues of
large scale reuse. Sam first argued that reuse must
occur in all phases of the life cycle, including
maintenance. Most methodologies only cover the
original development of software-just 20% of the life
cycle. Large scale reuse involves both reusing software
from one project to the next and also retrofitting off-the-
shelf components into existing projects to replace
custom software and reduce maintenance costs. Sam
then discussed his idea of an enterprise as an internal
reuse marketplace, in which a group working on a
project would promote those components they
developed that they think are reusable. An internal
economy is needed for reuse, because the infrastructure
is not yet their for commercial large-scale reuse. Sam
next considered what kind of software gets reused: you
have to be able to find it, it must be easily
understandable, it must be easily integratable, it must
be trustworthy and there must be a need to reuse it.
Sam concluded by describing the Well Defined Object
concept being developed at Knowledge Systems
Corporation in which a reusable object encapsulates all
such information that needs to be kept in sync to reuse
that object.

David Wade

Dave was asked to talk about the practical experiences
with reuse that he has had on the FAA Advanced
Automation System project. Dave began by describing
the complexity of AAS: it is really a group of cooperating
systems for air traffic control spread over a large number
of control centers. The project is so large, that they were

OOPSLA’93 55

http://crossmark.crossref.org/dialog/?doi=10.1145%2F260303.260319&domain=pdf&date_stamp=1993-04-01

able to view these systems as comprising a domain and
then do a domain analysis to glean commonality across
the systems. He referred to this as internal reuse within
a very large project, as opposed to reuse from one
project to the next. In 1989 the AAS project formed a
reuse working group, because they felt that some reuse
opportunities were falling through the cracks. This group
was initially viewed as simply providing coordination on
reuse within the project, but eventually developed into a
three-way effort: a strong emphasis on education, the
collection of metrics and staff to develop those reusable
components that were agreed to be necessary, but that
no other group on the project was willing to develop
(currently about 30,000 lines of code). Finally, Dave
noted that they did this with very little automation,
though they are now moving their taxonomy information
from flat files to a PC data base system.

Brad Cox

Brad was asked to discuss the economic issues of
large-scale reuse. Brad began by asking, “Why do we
call it reuse, rather than buying, selling and owning like
other engineers?” He answered himself by saying that
reuse is a word applied to a liability, a waste product
that you can’t sell, so you reuse it! Brad identified the
problem as that, for the first time in history, we have
goods made of bits and not atoms. The normal market
system does not work for software, because the
markets ability to hang prices on the exchange of
material assumes the conservation of mass, which does
not apply to bits. Brad then described a concept call
super-distribution that is based on the ability to copy
and transport bits at the speed of light, rather than
trying to deal with software like other products. In this
approach, software is freely copied, but as copies are
invoked, their use is monitored, usage rates are
uploaded to a central system and the producer of the
software is compensated based on this usage. Some of
the usage fees for, say, a word processor would then
automatically flow to the producers of reusable
components and subcomponents used in the word
processor, based on the relative usage of those
components. Brad concluded by wondering if perhaps
there was indeed a silver bullet: the mobilization of
human energy to solve a problem. Unfortunately, Brad
believes that for software this will require a paradigm
shift, which is always chaotic and disruptive.

Questions and Answers

Qnestionfor Dave Wade: You mentioned that you have
training for all your developers. Do you also have
training for you managers, and what kind?

Dave answered that their education effort was broad
based. They had a tailored class specifically for the
management ranks. In fact, they eventually had three
different kinds of courses, but its the course for the rank-
and-file that has endured.

Question: What kind of solutions can we provide to the
sociological aspects of large scale reuse, and the
resistance to such reuse?

Brad BaIfour mentioned that his company has been
primarily supporting information systems groups within
the DOD-people with 10 to 20 years of COBOL
experience who really have no incentive to do reuse. He
has found that in these situations the social changes are

harder than the technical changes. The hardest change
is the shift to a multi-system perspective. Brad said that
this has been less of a problem in recent work his
company has done for the Church of Latter Day Saints in
Utah, because this is a centralized organization that can
readily look across all its IS applications. Brad
concluded by saying that he felt that 80% to 90% of the
problem was non-technical.

Sam Adams noted that Smalltalk programmers tend to
pick-up on reusing things quicker because they have so
many great things to reuse. Sam felt that you can’t
make people reuse with a stick approach-you need a
carrot. The problem is not getting programmers to reuse,
its getting management commitment. This requires a
change in the sociology of an organization. Current IS
organizations tend to manage project-by-project, and in
some organizations development teams stay together
into maintenance, so they never have a chance to reuse
software on the next project. Sam summarized by
stating that barriers between projects cause a lot of the
problem.

Dave Wade stated that his group avoided these
problems with reuse. He felt that ultimately some
paradigm shift to reuse will happen because of the
pressure of economics. But he didn’t see this happening
in the short tern1 on a large scale. His group has had
success in coordinating reuse efforts within a large
project, but they did find many problems to be
insurmountable.

Brad Cox added that, to some extent, the social
problems of reuse will remain almost insurmountable
until we have addressed the underlying issue of market
economics. Sam Adams agreed that this is one of the
reasons reuse won’t happen outside of an internal reuse
infrastructure for a long time. But Sam felt that with the
right management commitment and the right motivating
crisis, organizations can make changes within
themselves that would take generations to make in
society at large.

Question for Dave Wade: Could you give some
examples of cost savings, increased quality and
schedules being met through your reuse effort?

Dave noted first that quality is absolutely essential on
the AAS effort, so there is very strong quality
assurance for the entire program. Dave then added that
the reusable code on the project has additional quality
because many people are using it in different ways and
applications. He stated that the average number of
times a component is reused on AAS is 4 to 5 times,
with some components being reused 50 or 60 times.
Dave also said that they kept track of cost avoidance
and some statistics on staff months, but that it was
difficult to quantify meeting schedules because of reuse
of components. Dave admitted that the entire project
was behind schedule anyway!

Question: What is the process and product of domain
analysis? Comment on whether there is some
consensus on what domain analysis is and why it is
supposed to be so useful even though no one knows
how to define it.

Brad Balfour answered that the Defense Information
Systems Agency Center for Information Management
reuse effort has focused a lot on domain engineering,
consisting of domain analysis and design. Soffech has

Washington, D.C. September 26-October 1,1993

put together a process for domain engineering and
conducted a workshop to try to form a consensus. He
gave a quick definition of domain analysis as a
generalized form of requirements analysis in which,
instead of developing object requirements for a specific
application, the goal is to model a generalized set of
requirements across a family of applications (the
domain). Domain design is then the development of
domain-specific architectures to implement applications
in the domain.

Follow up: When you take any real system, how do you
generalize it into a family of systems? A system can be
generalized along many different dimensions.

Brad replied that the processes that are successful do it
bottom-up from an existing family of systems. For
example, in France, CSF Thompson generalized from a
set of air traffic control products. They generalized along
the lines of variations they saw between their products.

Ed Seidewitz added that they had been doing domain
analysis at Goddard for four years and are just figuring
out what it is. He stated that one thing that is
particularly important is to bound the domain: you have
to decide what you are generalizing over, the strategic
direction you see your organization going. He noted that
this is not necessarily a fixed decision, that it may
change over time. Ed stressed that an organization has
to be careful not to become overwhelmed by analyzing
an expanding domain. To avoid this the organization
must decide what is useful to generalize over and
document it.

Sam Adams took the view that through domain analysis
you are describing the problem space in a way that can
be used to describe it to others. This is an abstraction
process. Sam felt that you want something that is in the
common conceptual vocabulary of all the people you are
trying to service. For example, the concept of an account
will occur a lot in bank applications, and the concept of a
document re-occurs in PC applications. Sam noted that
these are not really real world things but are rather
abstractions, concepts we choose to invent.

Brad Cox made an admittedly sarcastic comment:
What’s the difference between doing domain analysis
and not doing it? It’s the difference between thinking
and not thinking!

Question for Dave Wade: You mentioned that you kept
track of the number of times a component was reused.
What other metrics did you keep track of?

Dave answered that when they started their metrics
program, they wanted to be as unobtrusive as possible,
so they keep very few metrics. They keep the standard
metrics such as source lines of code, time to develop
and effort to develop, of course. They also keep a data
base of initial requests for components and their current
users. The emphasis has been to keep it simple. Dave
concluded with the comment that if they didn’t know
they needed some information, they didn’t ask for it.

Question: Suppose you have 10,000 or 100,000 very
nicely packaged, well-documented, reusable objects,
how do you find the ones you want? There seem to be
only two choices: text retrieval or a formal specifications
language.

Sam Adams stated that the problem with specifications
languages is that they get too detailed and complicated.

Reuse is not about precise matches, but fuzzy matches.
At Knowledge Systems they capture the class-
responsibility-collaboration information on objects using
the Well-Defined Object concept. When you do this, you
see a common responsibility language emerge with
repeatable patterns for describing abstractions. Sam
hoped that such patterns could be used to provide a
quick match against a large number of objects to identify
just a few objects for a more detailed search.

Brad Balfour mentioned that SolTech’s tools use the
faceted classification scheme developed by Rubin
Prieto-Diaz. This classification approach is used to
create a domain terminology. The faceted scheme is
superior to a hierarchical approach because it is much
more bottom-up expandable and combinable for
searches.

Brad Cox, claiming to be non-sarcastic, said that the
question was a lot like asking “Where do I find a good
Mexican restaurant?” Brad noted that we manage to
answer this question without too much problem. The
point is that human beings are good at organizing
infomiation, given an incentive to do so. Right now we
don’t have such an incentive for software, so we try to
compensate with high-powered data base technology,
and that will never work.

Follow up to Brad Cox: What about the software IC
concept you espoused not long ago?

Brad said that he had done a lot of work on specification
techniques and inspection gauges a few years ago. He
is more convinced than ever of the importance of these
techniques. However, he couldn’t make it make sense
to do such things unless we addressed the income
issues.

Ed Seidewitz remarked that the original question
assumes that first we figure out what system we want
to build, and then we find reusable components that fit
the concept. In Ed’s organization, they have a large
number of systems that have a great deal of similarity,
but vary from one satellite mission to the next. As a
product of their domain analysis they are coming up with
a general specification map of the functionality that the
organization needs to support as an institution. This
map will be used to define how to support a mission
using only the institutional functionality that already
exists. and then tailor this as necessary for mission-
specific needs. This approach shifts the emphasis from
trying to find reusable components and justifying their
use, to identifying what is not reusable and justifying
not reusing institutional capabilities. Ed concluded by
noting that in a situation of 80% to 90% reuse (which his
organization has already achieved in certain limited
areas), it is actually easier to only have to identify what
is not reusable, given a standard map of reusable
capabilities.

Sam Adams agreed that any development process must
consider reuse heavily in all phases of the life cycle in
order to make reuse happen. He felt that most of the
processes out their are about clean-slate design, not
assuming the availability of large reuse libraries.

Question: How does this panel get the word out to the
maintenance programmers who do not attend OOPSLA,
but who are involved in 80% of the software life cycle.

Addendum to the Proceedings OOPSLA’93 57

Sam Adams agreed that 60% to 80% of the budgets of IS
organizations are for maintenance. Thus the real bang
for the buck is in this area, not just creating new
software. Sam argued that we have to start viewing
software as an asset, not a liability. Software must
become a long term financial medium that pays back
dividends and that accountants can put on the bottom
line. Until then we can’t do reuse properly. Sam pleaded
for a change in the accounting rules to allow this to
happen. Given this, software organizations will
eventually change into ones that deal with the constant
evolution of software.

Brad Balfour noted that there is a group of people in the
Ada community that are in fact currently working to get
the accounting rules for software changed. Brad also felt
that there is a natural grass roots movement of reuse
into the maintenance area. If code is reused in several
projects, then the maintainers tend to see it over and
over gain. There is then a realization that they can get a
maintenance benefit from being able to deal with this
common code. Brad admitted that this takes time,
though.

Question for Sam Adams: You described your idea of an
organization with a whole lot of projects, trying to
bubble up reusable code from those projects and then
market this internally in the organization. How do you
do that without having programmers dealing with blue
sky issues, instead of the problems that the client is
paying to have solved?

Sam agreed that this was an important management
issue. Sam related that he had heard at the Washington
Ada Symposium that some organizations in the Ada
world have required projects to produce their
deliverables with 30% of the code reusable on other
projects. He hadn’t realized that anyone was that bold!
However, what does tend to work in general is to put a
member on a project team to focus on reuse.
Nevertheless, Sam admitted that it can be seductive
with an object-oriented approach to try to come up with
a generic solution and never get your own project done.

Question for Brad Cox: We already have the technology
to sell software as you described in which you would get
a product with a little boot device that lets you use it a
limited number of times, then it prevents you from using
the product any more until you buy more uses from the
producer. This would let you try things out cheaply and
only pay more for the products you liked. Is there
anything like this today, and if not, why not?

Brad Cox stated that the pieces of even the most
ambitious implementation of what he proposed do exist
today. Brad felt that the approach suggested by the
questioner, however, was too much like copy protection

schemes that have already been rejected as persecuting
the honest. He is more interested in solving the problem
right using pieces that exist today, like computers,
communications, the ability to write metering software,
credit card companies as models and encryption
software and hardware. Brad admitted that this will be a
major cultural change, but perhaps the world is just
becoming ready to think these thoughts.

Brad Balfour then voiced some reservations with the
concept of usage fees. He felt that the approach
advocated by Brad Cox could actually be a disincentive
to reuse. If it is necessary to pay every time you use a
reusable component, then the perception of
programmers will be that they can write their own
version cheaper, rather than paying over and over again.
Having done the calculations, he realized that this is not
really true, but he emphasized that it will be perceived
that way. Brad concluded with the comment that having
to pay for using reusable code would not help promote
the necessary culture shift from the fun of writing new
code.

Sam Adams related an experience that Knowledge
Systems Corporation had when it tried to sell some
simple reusable components at OOPSLA’87. They
originally priced the package at $250 for a standard
source license. However, no one would buy the product
because they thought they could just write it
themselves. Sam estimated that it would take him about
2 weeks to completely reproduce the package they were
selling-at a cost of a lot more than $250! Nevertheless,
KSC dropped the price to $99, about as low as they
could go. The reaction then was that the software must
not be worth much because it was so cheap! Sam’s
point was that there won’t be large scale reuse until you
can establish a marketplace to determine the price of
reusable components. Right now, we don’t know how to
value such components, so we don’t know what we
should pay for it.

Question for Dave Wade: In your project, how did you
gauge the quality of the components you collected?

Dave replied that it is very difficult to measure quality.
The only tangible measure of quality they have on his
project is the program trouble reports they receive on
the software. Dave didn’t think this was a particularly
good measure of quality, but it is all they have.
Nevertheless, initial statistics show a surprisingly low
trouble report rate for the reusable software developed
by his reuse group, relative to other software on the
project. One reason for this may be that at one time they
had as many as four different development platforms.
The reusable component developers had to test their
software on all four platforms, so their software got
more testing.

58 Washington, D.C. September 26-October 1,1993

