
OOPSLA 
Addendum to the Proceedings 

Washington, DC-26 September-l October, 7993 Workshop 

Object-Oriented Reflection and Metalevel Architectures 
{F&rth Annual) 
Report by: 

Brian Foote 
University of Illinois 

Introduction 

This year’s workshop on object-oriented reflection and 
metalevel architectures generated an unprecedented 
level of interest, with thirty-one submissions, and in 
excess of fifty people in attendance. This summary 
presents but a flavor of the issues that were addressed 
at the workshop. Instructions for obtaining electronic 
copies of the attendance list, and the position papers 
themselves, appear at the end of this summary. 

Session I-A: Theory 
Moderator: Dan Friedman 
Presenter: Anurag Mendhekar 
Respondents: John Simmons, Constantin Laufer 

Anurag Mendhekar spoke on representing reflection in 
the lambda calculus. His system implements an 
operator reifying the current continuation of an 
expression, represented by its lexical context. This 
operator corresponds to Scheme’s call/cc. Another 
operator is provided to reinstall the abstracted context. 
Only the context is reified, and there is no explicit 
tower. A calculus for the system is developed and 
proved correct relative to its operational semantics. 

John Simmons spoke on extending computational 
reflective systems by making the interpreter first-class 
and extensible. The interpreter is represented as two 
procedures, a prelint and a dispatch. The dispatch does 
the main work of interpretation by dispatching on the 
type of the expression and performing the proper 
computation for it. The prelim allows additional actions 
to be performed before or after the dispatch. This 
representation extends the power of traditional 
reflective systems. It permits the addition of new 
special forms, the modification (by shadowing) of basic 
interpreter actions on constants, variables, and 
applications, and the inclusion of actions preceding or 
following the main computation. 

Constantin Laufer spoke on implementing reflection in a 
statically typed system. Using Haskell, he implements a 
system providing reflection on expressions. 
Expressions are represented as pairs, containing both 
uncompiled and (lazily) compiled versions of the 

expression. The compiled version can be used for 
computation, the uncompiled version for reification. The 
reify and reflect operators provide reification and 
reflection, with the reify operator recursively handling 
motion up the implicit tower. 

Session I-B: Architecture 

Moderator: Dan Friedman 
Presenter: Jeff McAffer 
Respondents: Care1 Bekker, Patrick Steyaert 

Jeff McAffer presented the CodA MOP, a framework for 
creating, controlling, and understanding concurrent 
computing environments. CodA is built atop Smalltalk- 
80. Its essential component is a simple, clear, and 
consistent interface protocol specification for basic 
system objects, such as schedulers, objects, and meta- 
objects. CodA uses the operational decomposition 
method of defining the metalevel. CodA embodies a 
complete system model which is independent of any 
implementation environment or language. 
Metadefinition, rather than meta-interpretation is 
emphasized. 

Care1 Bekker presented ALBEDO, a meta-object 
infrastructure for Smalltalk. ALBEDO adds support for a 
family of Maes-style me&objects to Smalltalk-80. 
These meta-objects may be associated with any 
existing Smalltalk object. A library of me&objects has 
been implemented using ALBEDO. Because meta- 
objects are distinct from the objects they are attached 
to, reusability, extensibility, and the understandability of 
the system are enhanced. 

Patrick Steyeart took the view that rather than viewing 
extensibility as a consequence of a reflective 
architecture, we should instead consider extensibility as 
an a priori condition for the definition of reflection. He 
presented a two stage approach for introducing 
reflection into a hypothetical programming language, 
ASEL. The first stage is to define an open 
implementation for this language. The second stage is to 
make this open implementation explicit, or first-class. 

Addendum to the Proceedings OOPSLA’93 123 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F260304.260359&domain=pdf&date_stamp=1993-04-01


Session II-A: Concurrency Session Ill-A: C++ 

Moderator: Pierre Cointe 
Presenter: Hideaki Okamura 
Respondent: Ken Wakita 

Moderator: Jacques Malenfant 
Presenter: Shigeru Chiba 

Hideaki Okamura presented a paper discussing how 
shared resources can be modified in AL-l/D. The 
mechanism used employs the concept of grouping. 
Objects in a group share the resources that belong to 
the group. Examples of shared resources might be 
schedulers or garbage collectors. The paper also 
addressed how user-defined and default system 
resources cooperate. 

Ken Wakita discussed how first-class messages, or 
message continuations provide object-oriented 
concurrent programming languages with extensibility in 
modeling and programming communication schemes 
such as asynchronous communication, multicasting, 
sophisticated synchronization constraints, inter-object 
synchronization, concurrency control, resource 
management, and the like. Despite this extensibility, 
the framework guarantees that no program can 
undermine the built-in communication primitives, 

Respondents: Roger Burkhart, Roger Voss 

There is growing evidence that users are chafing under 
the limitations that relatively closed languages such as 
C and C++ impose upon them. For instance, the current 
interest in runtime type information in the C++ 
community, and the widespread practice of building 
dynamic object systems atop C and C++, support the 
observation that real-world problems demand first- 
class, dynamic access to metalevel information and 
mechanisms. 

Shigeru Chiba described the language Open C++, which 
extends C++ to allow programmers to define their own 
method call and variable access mechanisms. He then 
showed how they used these Open C++ mechanisms to 
support distributed programming. 

Session II-B: Massive Parallelism 
Moderator: Pierre Cointe 
Presenter: Hidehiko Masuhara 
Respondent: Takashi Tomokiyo 

Hidehiko Masuhara discussed the design of an object- 
oriented reflective language for massively parallel 
processors. One of the major problems in massively 
parallel programming is dynamic resource management, 
such as load balancing and scheduling. Simple 
management policies sometimes lead to lackluster 
performance under unexpected conditions, while 
complicated ones, which are effective under any 
situation, often impose considerable overhead. What is 
needed is an ability to provide abstractions for a variety 
of policies. Reflective languages provide this flexibility. 

Masuhara et. al’s language is based on ABCL/R2, 
which is extended so that the user can control the 
parallel programming primitives. In this architecture, the 
user can build his or her own resource management 
system-load-balancing, scheduling, etc.-at the 
me&level, controlling the policies of primitives such as 
object creation, object migration, and scheduling. 

Takashi Tomokiyo presented the metalevel architecture 
of a parallel object-based language called OCore. This 
language has simple, statically typed semantics to make 
compiled programs more safe and efficient. An object 
has a single thread, called the normal thread, for normal 
operations. Exceptions are handled by an exception 
handling thread. Communication between objects is 
based on asynchronous, one-way message passing. 

Classes in OCore are merely templates, as in C++, and 
are not themselves first-class objects. The metalevel 
architecture of OCore handles three kinds of events: 
state transition events, user-defined events, and 
exceptions. Certain elements of an object’s internal 
representation are visible at the metalevel via pseudo- 
variables. 

The second paper, by Roger Voss, illustrates the 
dilemma that faces the frustrated user who would like to 
have a hook into some part of a language’s 
implementation to be able to solve a particular problem. 
Mr. Voss is confronted with the problem of class 
evolution in C++ class libraries. His proposal for 
addressing this issue requires a modification to the 
usual C++ v-table-based dispatching scheme. In non- 
reflective languages, even a simple change can entail a 
protracted struggle with various standards committees. 

Roger Burkhart discussed request functions for C. A 
request function is a new kind of C function that creates 
a context, which is a set of data concerning the function 
call, that is made accessible to the program. The primary 
point of this “conservative” extension is to have a 
means, readily implementable in C, for building more 
comprehensive reflective facilities. 

Session III-B: Partial Evaluation 
Moderator: Jacques Malenfant 
Presenter: Erik Ruf 
Respondent: Kenichi Asai 

Erik Ruf feels that partial evaluation is far from the point 
where it could be used to efficiently implement reflective 
languages. In fact, existing partial evaluators are weak, 
bulky and inefficient. Moreover, there is a major flaw in 
the current work in partial evaluation for reflective 
languages. When reifying portions of the implementation 
information, decisions are made about the way this 
information will be represented. For instance, when 
reifying environments, it is standard practice to reify 
them as association lists. Currently, there is no way a 
partial evaluator will be able to get rid of this data 
structure and the resulting program (after partial 
evaluation) may get stuck with inefficient access to 
environments because the implementation decision 
survived the partial evaluation process. 

Kenichi Asai reported on some experiments in partial 
evaluation using a reflective extension to Scheme that 
allowed reflective towers in which the interpreter at 
each level could be modified dynamically. Asai noted 
that they succeeded in applying partial evaluation, but in 
a static way (once and for all before the execution of the 
program). 

124 Washington, D.C. September 264ctober 1,1993 



During the discussion, Dan Friedman asked Mr. Ruf if 
he considers it impossible to build a partial evaluator 
that would be able to cope with the environment access 
problem discussed above. Friedman conjectured that 
with sufficient knowledge and complexity, an interpreter 
could deal explicitly with storage management and make 
it possible for the partial evaluator to generate code 
which would compare favorably with compiled code. Mr. 
Ruf conceded that he could imagine such an interpreter, 
but it would be quite a challenge to partial evaluate it 
using the current partial evaluation technology. 

Session Ill-C: Garbage Collection 
Moderator: Jacques Malenfant 
Presenter: Barry Hayes 

The final part of the session was devoted to a paper by 
Mr. Hayes on reflection and garbage collection. He 
claimed that the state of the art in garbage collectors is 
to provide “knobs” that allow users to feed in 
application level information that can be used profitably 
by the garbage collector. Unfortunately, these “knobs” 
are introduced in an ad hoc manner. Maybe reflection 
can help here, but it is also a challenge to open garbage 
collectors to users. While he noted that reflective 
garbage collectors could probably be implemented 
efficiently, the questions lie more on the side of the 
users. Will they be able to manipulate such a crucial 
part of the system profitably and correctly? 

Session IV-A: Object Integration 
Moderator: Yasuhiko Yokote 
Presenter: Mireille Fomarino 
Respondents: H. Justin Coven, Ming Peng 

Existing object-oriented languages provide relatively 
weak facilities for representing dynamic relationships 
among objects. Users, however, may build their own 
using reflection. 

Mireille Fomarino described a CLOS/MOP-based meta- 
architectural solution to the problem of keeping track of 
dependencies between objects. They introduce links to 
define dependencies, metalinks to define the structure of 
links, controllers to invoke control procedures and 
manage interactions between instance-of-links, and 
generic functions to invoke the current controller. Links 
are created incrementally. Thanks to metalinks, users 
can extend and customize the behavior of links, 

H. Justin Coven discussed how interconnections, the 
links among pieces of information, and control issues 
might may be addressed using reflection. 

Ming Peng described an object-oriented system that 
illustrated how mechanisms to dynamically represent 
interacting forces to address the “frame problem” might 
be constructed. 

Session IV-B: Systems and Applications 

Moderator: Y asuhiko Yokote 
Presenter: Gary Lindstrom 
Respondents: John Gilbert, Francois Rousseau 

Ubiquitous object support in truly open systems will 
require that we refactor our computing systems so that 
support now provided on a per-process basis is elevated 

to the level of permanent system service. Gary Linstrom 
proposed that module management be elevated to this 
level, and that these objects be cast themselves as 
first-class objects. His factoring draws on insights from 
the programming language as well as system 
architecture communities. Although many systems are 
(assumed to be) implemented in the context of a single 
programming language, their work investigates how to 
support multiple programming languages. 

John Gilbert discussed the importance of reflective 
facilities in open-ended scientific, realtime, and 
multimedia applications. Here, he claimed, reflection is 
essential to facilitate computational resource 
management, software configuration, fault tolerance, and 
reuse. 

Francois Rousseau illustrated how meta-information is 
vital to the construction of modem tools for browsing 
programming languages such as ClassTalk. 

Concluding Remarks: Dave Thomas 
Reflection and me&object programming provide an 
elegant and principled perspective on computation. The 
breadth of presentations at this workshop serve to 
illustrate the wide applicability to both applied and 
theoretical problems. These concepts, however, need to 
be clearly illustrated and explained to students, 
researchers and software engineers if this promising 
perspective of computation is going to have a major 
impact on mainstream computation. Everyone I know 
who has experienced computation through the 
exploration of even a simple me&circular interpreter has 
a different, deeper view of language semantics and 
computation. 

We need to use common reference implementations 
such as TinyClos and Classtalk to illustrate applications 
and new ideas. Only if we communicate our ideas will 
others be able to understand the true benefits of Open 
Architectures. Failure to do so will leave reflection as a 
computational cult “going meta.” One need only look at 
how few schools teach Scheme, ML or Smalltalk to 
realize the challenge which we have if meta- 
programming is to be part of every software engineer’s 
toolkit/thinking process. The well-attended and highly 
successful MOP tutorial earlier this week is an 
excellent beginning. 

Epilog: Brian Foote 

Just as objects are good for building programs and for 
aiding in their evolution, so too are they good for 
building programming languages and computing 
systems. Unfortunately, the reflection community has 
developed a not entirely undeserved reputation for 
abstruseness, even as meta-architectural ideas are 
increasingly being incorporated into real object-oriented 
languages, databases, and systems, such as IBM’s 
SOM. 

One of the more interesting discussions of the day 
raised the question of whether terms such as 
“reflection” and “metalevel” have unnecessarily 
confused the broader perception of our open object- 
oriented architectural agenda. Gregor Kiczales remarked 
that these are good terms, but we shouldn’t lead with 
them. In any case, as the computing industry prepares 
to build its next-generation systems out of objects, it is 

Addendum to the Proceedings OOPSLA’93 125 



imperative that we reach out and strive to more widely 
and clearly communicate our architectural vision. 

Workshop Organizers: 
Pierre Cointe E. des Mines de Nantes 
Brian Foote (chair) U. of Illinois at UC 
Dan Friedman Indiana University 
Jacques Malenfant U. of Montreal 
Dave Thomas OTI 
Yasuhiko Yokote Sony CSL 

126 

Electronic Proceedings: 

Anonymous ftp to: 
p3OO.cpl.uiuc.edu 

(128.174.72.1) pub/Washington 
camille.is.s.u-tokyo.ac.jp 

(133.11.12.1) pub/oopsla93/reflection 
or EMail to: 

reflection-workshop@p3OO.cpl.uiuc.edu 
foote@cs.uiuc.edu 

Reflection Mailing List 
Join: reflection-request@ p300.cpl.uiuc.edu 
Post: reflection@p300.cpl.uiuc.edu 

Washington, D.C. September 26-October 1,1993 


