
Addendum to the Proceedings 

Washington, DC-26 September-l October, 1993 Experience Report 

Training Realtime Simulation Developers in 
Object-Oriented Methods with Ada 
Report by: 

Gary J. Cemosek 
Fastrak Training, Inc. 

Introduction 
In December 1991, Fast.& Training Inc. was awarded 
the Object-Oriented Development and Ada Training 
(OODAT) Contract let by CAE-Link Flight Simulation 
Co. in Houston, Texas. Fastrak began administering 
this comprehensive training program in January 1992. I 
was assigned at that time as the lead instructor for the 
program, assuming responsibilities for developing and 
delivering courses in object-oriented methods and Ada 
programming. This report describes my experiences 
with the OODAT program, including its technical 
foundation, overall results, lessons learned, and future 
direction. My goal is to have readers appreciate what it 
takes for an organization of several hundred engineers 
to transition into an object-oriented environment. 

Project Description 
CAE-Link is a prime contractor to NASA’s Johnson 
Space Center and is responsible for developing mission 
trainers for the Space Shuttle and Space Station 
programs. The Space Station systems are being 
developed using Object-Oriented (00) Analysis and 
Design methods with an Ada implementation platform 
for both realtime and non-realtime applications. The 
Station trainer will be a ground-based distributed 
computer system that allows NASA to prepare crew 
personnel for their missions and activities. The effort 
will ultimately produce an estimated 2 million source 
lines of Ada code. 

Training Curriculum 

The original OODAT contract required Fastrak to 
provide a curriculum of four specific courses: 

l Object-Oriented Requirements Analysis (OORA) 
(4 days) 

l Object-Oriented Design (OOD) (4 days) 
l Ada Syntax and Semantics (7 days) 
l Advanced Ada (5 days) 

New requirements emerged for several forms of 
secondary training: 

l Special training was required for NASA customers 
and the various user organizations. A 2-day course 
was given that covered 00 concepts and how to 
read 00 documentation. 

l For those that had to review actual software 
designs, a half-day Ada packaging and design 
course was administered. 

l To support groups facing a very tight schedule, a 
special l-day Preliminary OOD course helped the 
groups reach their Preliminary Design Review. 

l A fifth day of OOD training was added to provide 
engineers involved in realtime applications to learn 
how objects fit into their project-specific realtime 
software architecture. 

l After assessing the background of the various 
students, significant modifications were made to the 
Advanced Ada course to address basic data 
structures and reusable components engineering. 

Integrated with the formal training program was a more 
loosely structured mentoring function. Fastrak 
instructors worked very closely with students in a post- 
classroom capacity in an effort to help guide their way 
through critical areas of development. Mentors provided 
key experience in computer science and basic data 
structures, realtime applications, software reuse, and 
general software engineering. A great deal of 00 
mentoring resources were dedicated to acquiring 
feedback from students who were applying the methods 
in an effort to continuously improve the training 
materials. 

Foundations in Object Technology 
For a training effort as comprehensive as this, we 
needed to first establish a sound foundation in object- 
oriented resources. Starting with the human resources, 
CAE-Link assigned David Weller, William Wessale, 
and later, George Heyworth % my technical contacts for 
the training program. These individuals were very well 
versed in object technology and/or Ada, and thus 
provided a clear vision into what kind of training 
program CAE-Link needed. 

Addendum to the Proceedings OOPSLA’93 23 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F260304.260309&domain=pdf&date_stamp=1993-04-01


My personal background coming into the training 
program included over eight years at McDonnell 
Douglas in Houston, most of which were dedicated to 
seeing the company help NASA transition to object 
technology and Ada. During this time, I was heavily 
involved with the University of Houston at Clear Lake 
where I ultimately wrote a Master’s thesis on the need 
for an object-oriented approach to requirements analysis 
(May 1988). My first exposure to formal 00 methods 
followed shortly with the early works of Sally Shlaer and 
Stephen Mellor on 00 Analysis. 

By the time the CAE-Link training program commenced, 
several new texts had appeared and were in large 
circulation. Our 00 courses were ultimately based 
primarily on the following works: 

l Grady Booth, Object-Oriented Design with 
Applications (1991) 

l James Rumbaugh, et al, Object-Oriented Modeling 
and Design (199 1) 

l Colin Atkinson, Object-Oriented Reuse, 
Concurrency, and Distribution-An Ada-Based 
Approach (199 1) 

l Ed Seidewitz and Mike Stark, Principles of Object- 
Oriented Sofiware Development with Ada (1992) 

Booth brought forth a legacy with Ada and the 
recognition as a leading 00 methodologist. His text 
proved to be the most sound basis for 00 concepts and 
was distributed to all students. 

While Booth is strong in 00 design (proper), many feel 
that his method does not adequately address the 
analysis phase. Rumbaugh, et al, provided a very 
appropriate front-end complement to Booth’s work. 

The Atkinson text had its greatest influence in the 
details of representing 00 designs specifically in Ada. 
Atkinson was a key player in the development of the 
DRAGOON language, which is an Ada-based OOPL. 
Since DRAGOON source code translates to an Ada 
intermediate representation, his representation 
techniques proved to be very helpful in dealing with 
Ada’s limited support for OOP. 

The work of Seidewitz and Stark formed the initial basis 
for our material. Their effort represented a leading 
technique in applying 00 development specifically 
within an Ada environment. 

Resulting Methodology 
The courseware used at CAE-Link evolved significantly 
from that used for the initial classes. A strategic 
decision was made to tailor the previously identified 
methods, resulting in the following: 

l The OORA technique is very graphically oriented, 
language-independent, and logical in its nature of 
modeling the problem domain. 

l The OOD technique is very textually oriented, 
language specific, and is subjected to project- 
specific architectural constraints. 

OORA is segmented into Static Analysis, Dynamic 
Analysis, Object Classification, and Class Specification. 
Static Analysis and Object Classification are very 
consistent with the Object Modeling Technique (OMT) 
defined by Rumbaugh, et al. Static analysis takes full 

advantage of OMT’s treatment of associations and 
aggregation as they apply to requirements analysis, 

The key mechanisms of Dynamic Analysis are Event 
and Effects Tables, Object-Message Diagrams and 
Hare1 Statecharts. Event tables help to analyze the 
abstract behavior of a system (or some component 
thereof) from a stimulus-response point-of-view. Each 
event-effect pair may be analyzed using an Object- 
Message Diagram, which provides a means for 
illustrating the object-message “chaining” that results 
when a given event occurs. Lastly, Hare1 Statecharts 
provide an excellent improvement over standard state 
transition diagrams for modeling state-dependent 
behavior. 

The notation adopted by CAE-Link is unique and was 
made so to meet the constraints of the specific CASE 
tool imposed by NASA. However, the notation is 
analogous with that of the authors previously stated. (In 
fact, Fast&. later defined a formal mapping of the CAE- 
Link notation into the equivalent OMT constructs so 
that the basic OORA course could be taught in a public 
forum.) 

The OOD course focuses on mapping the language- 
independent OORA models into canonical forms of Ada 
packages. Variations exist between realtime and non- 
realtime forms, but these variances are managed in the 
private part or the body of each class’s package. OOD 
addresses alternative mappings that might be needed, 
as well as the limitations of implementing 00 designs 
into an “object-based” language such as Ada. Since 
software reuse is a major initiative for many NASA 
projects, the course has specific exercises that force 
students to adapt their existing work into meeting new 
requirements. 

Magnitude of the Training 
The following table summarizes the amount of total 
training delivered for this contract: 

Course No. Deliveries Tot. No. 
Students 

OORA 14 255 
OOD 11 142 
Ada Syntax 15 211 
Advanced Ada 14 158 

TOTAL 766 
00 Concepts 5 92 
Ada Design 5 108 
Preliminary OOD 3 22 

TOTAL 222 
GRAND TOTAL 988 

Course Format 

All training courses employed a balance of lecture and 
student application. The lectures focused on presenting 
the concepts, terminology, and notations, using 
examples and exercises to illustrate small-scale 
solutions. Daily workshops were also used, placing 
students into teams as to better simulate real project 
dynamics. Team leads were often assigned to make 
presentations representing their group’s incremental 
solutions to larger-sized problems. 

24 Washington, D.C. September 26-October 1,1993 



Measuring the Effectiveness 
of the Training 
Upon completion of a course, each student was required 
to formally evaluate the course. The quantitative results 
were averaged and summarized in a standardized 
course evaluation summary. This report was distributed 
to key CAE-Link and Fast.& personnel so that delivery 
results and quality improvement could be continuously 
monitored. A database was maintained that kept track 
of all courses delivered, student attendance, and 
evaluation grades. Trends were easily identified by 
graphically depicting the grades as a function of course 
and time. As would be expected, the quality and 
effectiveness rose steadily for each of the four courses 
offered in the curriculum. 

Something rather unique to CAE-Link’s training 
program is that proficiency measurement was explicitly 
called out for in the training contract. Fastrak was 
required to administer both objective and a subjective 
examinations at the end of each course delivered. Those 
students taking the course for “credit” had to 
demonstrate basic proficiency in the course’s subject 
matter. Such measures greatly assisted in verifying that 
students met the prerequisites for advanced courses. 
The students’ grades and the tests themselves were 
kept confidential with the instructors and were used 
only for the purpose of ensuring student proficiency. 

Lessons Learned 
After 20 months of administering the OODAT program 
for CA&Link, we come to the following conclusions: 

l OORA can be used to generate native requirements 
specifications (“to-be” models), or to model 
existing systems (“as-is” models), making it 
applicable to both forward and reverse engineering. 

l Inheritance should be deferred to an “advanced” 
phase of the OORA training. There is enough to 
learn in basic object and dynamic modeling to 
consume the fist three days of training. Inheritance, 
polymorphism, and other more OOD/OOP concepts 
are best presented on Day 4. 

l We found it advantageous to explicitly separate the 
OORA and OOD courses on the basis of where and 
when to introduce language dependency and 
software architecture; OORA should produce logical 
models that are independent of these concerns. 

l A uniform process and notation should be used for 
both analysis and design, and should be 
independent of implementation language and 
realtime vs. non-realtime requirements. 

l We found that a simple compositional approach 
worked best for simulating inheritance in Ada. This 
required a lot of manual respecification in the 
subclasses, and thus constrained designers to 
temper their inheritance hierarchies to 3-4 levels. 
But the approach proved to be more efficient and 
maintainable than using variant records, and more 
modular than using nested or “flattened” packages. 
The compositional approach was also deemed to be 
more migratable to how inheritance is implemented 

in the upcoming revision to the Ada language, 
currently known as Ada 9X. 1 

Although standard Ada does not support dynamic 
polymorphism very directly, its rich forms of 
overloading and generics provided some reasonable 
alternatives2 

Portions of a training system need global visibility 
to all data in a system. This required special tools 
that circumvent the data protection inherently 
provided by encapsulation techniques. These tools 
were necessary so as to prevent generalized 
source-level access to hidden data. 

A standardized software architectural definition is 
required, and must be defined and put into place 
prior to developing the software design. This is 
especially true for realtime systems. 

Realtime performance requirements can be met 
while preserving most object-oriented principles. 
The resulting software quality is significantly better 
than could be achieved using more traditional 
approaches to simulation design. 

The 00 development process proved to be the 
least mature, and thus, the most difficult aspect of 
the training program to teach. 

Students familiar with user-defined types in 
strongly-typed languages learn the object paradigm 
easier than those without such exposure. We feel 
that this was due to the analogy between the 
object/class relationship found in OOA&D and the 
variable/type relationship found in modem 
languages. 

Students with traditional engineering backgrounds 
will generally require more introductory training in 
basic computer science due to their lack of exposure 
to it in their fomlal education. 

It helps to have instructors be well-versed in 
several 00 methods and programming languages, 
for they then stand a better chance to demonstrate 
an objective and credible posture. It helps even 
more to have customer training liaisons that are 
knowledgeable in the technical nature of the training 
program (as was the case here). 

Status and Future Directions 
The OODAT program is basically completed. Continued 
training will be subject to CAE-Link’s future growth and 
attrition. Outside of the CAE-Link effort, Fast& has 
found that a combination OMT/Booch method serves 
very well for general training purposes. The notation 
used in Fastrak’s public OOA course is based on OMT 
and has proven to be very effective for introducing basic 
object modeling. While not as semantically expressive 
as that of Booth, the OMT notation is adequate for 
analysis purposes, and is certainly easier to work with 

1 Although derived types in standard Ada 83 provide 
“half’ of inheritence (i.e., the operations), we found no 
way to effectively use the feature. However, this 
deficiency is well remedied in Ada 9X. 

2 This deficiency is also addressed in Ada 9X. 

Addendum to the Proceedings OOPSLA’93 25 



in lieu of having CASE tool support. However, when 
getting into the “heavier” design concerns, more and 
more of Booth’s method comes into its own. This is 
especially seen with respect to detailed design and code 
generation concerns. And even with the contributions of 
OMT and Booth, portions of the overall training can still 
be augmented by selected aspects of Seidewitz, Wirfs- 
Brock, and Atkinson. 

Contact Information: 

Gary J. Cemosek 
1303 New Cedars Dr. 
Houston, TX 77062 
(713) 280-8508 
Internet: cernosek@source.asset.corn 

At the time of this writing (November 1993), Booth’s 
latest edition of his OOD book (“Booch’94”) is finding 
its way into the mainstream. Booth, along with HP’s 
Fusion method, are seen as attempts to integrate the 
“best of all worlds.” The Use Cases of Jacobson and 
Object Behavior Analysis from Rubin and Goldberg also 
stand to make some contribution to the 00 methods 
community. 

In general, however, we see little room for completely 
new 00 methods. As the concepts and terminology 
become more stable, a “yet another notation” syndrome 
will begin to settle into the minds of many (if it hasn’t 
already). Thus, a maturing of existing methods is more 
likely to result rather than a proliferation of new 
methods. 

On the CASE front, some really good 00 tools are 
(finally) appearing. The ones that offer multiple 
methodology support and end-user configurability-the 
“meta-CASE” tools-are the most promising. And the 
whole area of “visual programming” could very well 
revolutionize what is meant by “programming.” But 
even with all this, I feel that the next generation of 
CASE technology must better manage the dependency 
between object models and their corresponding source 
code, specifically in synchronizing changes made to 
either level of abstraction. 

As for a future with Ada 9X, there will certainly be 
areas of improvement for all existing Ada-based OOD 
courses. Ada 9X will include, among other things, direct 
support of single inheritance and dynamic 
polymorphism-the two additional elements of 
programming required to make Ada a “true” OOPL. 
These enhancements will simplify the representation of 
inheritance, and thus reduce the amount of code needed 
to implement 00 designs. 3 

But just as C++ is said to provide for a “better C,” Ada 
9X goes beyond simply providing direct support for 
OOP. The CAE-Link realtime software architecture 
currently employs “work-around? that will be much 
better implemented in the revised language. Thus, Ada 
9X will bring forth a whole new realm of opportunity to 
CAE-Link, to the Ada community, and to the realtime 
and 00 communities in general. 

3 For those so inclined, you may contact the author for a 
paper presented to the Tri-Ada’93 conference that 
presents a technique for representing object models in 
Ada 9X notation. 

26 Washington, D.C. September 264ktober 1,1993 


