
Logic for Communicating Automata with
Parameterized Topology

Benedikt Bollig

LSV, ENS Cachan, CNRS & Inria, France
bollig@lsv.ens-cachan.fr

Abstract. Communicating automata (CA) are a fundamental model
of systems where a fixed finite number of processes communicate via
message exchange through FIFO channels. In this paper, we introduce
a parameterized version of CA (PCA). The parameter is the underlying
communication topology, in which processes are linked via interfaces and
arranged as graphs of bounded degree such as ranked trees, grids, rings,
or pipelines. A given PCA can be run on any such topology. We pro-
vide Büchi-Elgot-Trakhtenbrot theorems for PCA, continuing the logical
study that has established characterizations of classical CA in terms of
(fragments of) monadic second-order (MSO) logic. In particular, we give
translations of existential MSO logic to PCA that are correct for large
and natural classes of topologies. Our main result relies on a locality
theorem for first-order logic due to Schwentick and Barthelmann, and
it uses, as a black-box, a construction by Genest, Kuske, and Muscholl
from the non-parameterized case.

1 Introduction

The Büchi-Elgot-Trakhtenbrot theorem states that finite automata and monadic
second-order (MSO) logic over words are expressively equivalent [5, 7, 18]. This
connection between automata and logic constitutes one of the cornerstones in
theoretical computer science, as it bridges the gap between high-level specifica-
tions and operational system models. Various extensions of that result followed,
providing logical characterizations of tree automata [16], asynchronous automata
[19], and graph acceptors [17], to mention just a few.

In this paper, we study an analogous question for communicating automata
(CA), where finite-state machines can exchange messages through FIFO channels
by performing send and receive actions. A single execution of a CA is captured
by a message sequence chart (MSC), a directed acyclic graph visualizing the
message flow. Its edges connect send events with corresponding receives, as well
as successive events performed by a process. Actually, CA have been well studied
in the case where the communication topology, which provides a set of processes
and channels between them, is fixed. Logical characterizations in terms of (frag-
ments of) MSO logic over MSCs have been given for unrestricted CA [2] and
channel-bounded CA [13, 14, 10].

Here, we aim for a solution in a parameterized setting where the parameter is
the communication topology. As a first step, we define parameterized CA (PCA),
which can be run on an arbitrary communication topology of bounded degree
(there is a fixed finite set of interface names). Our goal is a translation of a logic
formula ϕ, interpreted over MSCs, into a PCA A that is correct for a large class
T of topologies: when A is run on topology T ∈ T, then it accepts precisely the
MSCs over T that are a model of ϕ.

As a first result, we show that the existential fragment of MSO logic (EMSO)
involving message and process edges can be translated into PCA that are correct
for all prime topologies. A topology is prime if, roughly speaking, topologies do
not admit cycles with interface-name labels wn for some n ≥ 2. This captures
pipelines, grids, and trees. The result relies on the construction from [2].

Our main result applies to channel-bounded systems and uses a different
technique. It allows for the use of a richer logic, which can access the transitive
closure of the process relation. We show that every EMSO formula can be trans-
lated into a PCA that is correct for any unambiguous class of topologies. A set
of topologies is unambiguous if a cycle in one topology gives rise to a cycle in
any other topology of that class. This is satisfied by the classes of pipeline, tree,
and grid topologies, as well as “almost all” ring topologies. Our construction is
based on the Schwentick-Barthelmann normal form of first-order formulas [15],
which allows us to evaluate a formula over bounded portions of an MSC. We can
then apply a result by Genest, Kuske, and Muscholl in the non-parameterized
case [10]. Roughly speaking, we construct a bounded number of classical CA
and glue them together towards a parameterized one. The main difficulty is the
local evaluation of the underlying topology. Similar techniques are known from
distributed algorithms [12], but they do not seem to be directly applicable here.

Finally, we show that we cannot hope for anything better as far as the logic
is concerned. Indeed, the above translations are not possible any longer as soon
as we add the transitive closure of the full edge relation to the logic.

Related Work. It seems that neither PCA nor expressiveness of parameter-
ized systems in general in terms of logic have been considered in the literature.
However, there is a lot of ongoing research on parameterized verification, which
aims at showing that a given system is correct independently of the number of
processes or the communication topology [4, 11, 1, 3, 6]. Our approach is different,
since we generate from a high-level specification a system model that is correct
for a class of topologies. Moreover, there have been a variety of automata con-
structions that exploit normal forms of first-order logic [17, 15, 8]. We actually
borrow a technique from [8], but the overall construction is quite different.

Outline. In Section 2, we define network topologies and MSCs. Sections 3 and
4 introduce PCA and MSO logic. In Section 5, we show that any local EMSO
formula can be translated into a PCA that is correct for all prime topologies. Sec-
tion 6 presents our main result: a translation of EMSO logic with process order
to channel-bounded PCA that are correct for unambiguous classes of topologies.
In Section 7, we argue that this result is optimal. We conclude in Section 8.

2

p

r r

q qq

a

b

c

d

a

b

c

d

a

b

Fig. 1. Tree topology

p p p p
a

b

a

b

a

b

p p p p
a

b

a

b

a

b

p p p p
a

b

a

b

a

b

c d c d c d c d

c d c d c d c d

Fig. 2. Grid T 3,4
grid

p

p

p

p

p

b

a
b

a

ba

b

a

b

a

Fig. 3. Ring T 5
ring

2 Preliminaries

Communication Topologies. A (communication) topology consists of a finite
set of nodes, each having a certain process type. A parameterized communicating
automaton can run a process, of appropriate type, on each node. Every process
has a finite number of interfaces, which allows it to talk to other processes. If
there is an edge u

a→ v in the topology, then u can talk to v via the interface
name a. More precisely, it may execute !a and send a message to v, or execute
?a and receive a message from v. So let P = {p, q, r, . . .} and N = {a, b, c, . . .}
be nonempty finite sets of process types and (interface) names, respectively. We
require that every name a ∈ N has a dual a ∈ N such that a 6= a and a = a.

Definition 1. A topology over P and N is a triple T = (V,→, π) where V is
a nonempty finite set of vertices (also called processes), → ⊆ V ×N ×V (where

we write u
a→ v for (u, a, v) ∈ →), and π : V → P associates with each vertex a

process type. We require that, for all u, v, v′ ∈ V and a, b ∈ N ,

– u
a→ v implies u 6= v,

– u
a→ v iff v

a→ u, and

– if u
a→ v and u

b→ v′, then a = b iff v = v′.

Note that nodes with the same process type do not need to have the same sets
of outgoing interface names. We usually consider topologies up to isomorphism.
The set of all topologies (over P and N) is denoted by T.

Example 1. Figures 1–4 show some example topologies over P = {p, q, r} and
N = {a, b, c, d}, where the dual of a is b and the dual of c is d, and vice versa.
Figure 1 depicts a binary-tree topology. It has distinguished process types for
the root (p), leaves that are not the root (q), and inner nodes (r). Interface a
points to the left successor (if it exists) and c to the right successor. Figure 2
illustrates the grid topology T 3,4

grid. In general, topology T m,ngrid is uniquely given
by its number m ≥ 1 of rows and its number n ≥ 1 of columns. Figure 3 shows
the ring topology T 5

ring. In topology T nring, n ≥ 3 nodes of type p are arranged in

a ring. Topology T 8
lin from Figure 4 has eight nodes and a linear (or, pipeline)

structure. Note that there are a distinguished first and last node with process
types p and q, respectively, while other nodes are of type r. In the following, let
Tlin = {T nlin | n ≥ 2}, Tgrid = {T m,ngrid | m,n ≥ 1}, and Tring = {T nring | n ≥ 3}.
Moreover, let Ttree be the set of binary-tree topologies. Note that Tlin ⊆ Ttree.

3

T
8
lin:

p r r r r r r q
a

b

a

b

a

b

a

b

a

b

a

b

a

b

M8
lin: !a ?b

?a !b

Fig. 4. Topology T 8
lin and MSC M8

lin over T 8
lin

Message Sequence Charts. The semantics of both an automaton and a logic
formula will be defined as a set of messages sequence charts (MSCs). Each MSC
depicts a single execution of a communicating system. It is formalized as a la-
beled directed acyclic graph whose nodes, the events, are associated with nodes
from a given communication topology. Events are connected by message edges
and process edges. The process edges define a total order for each node in the
topology, and message edges obey a FIFO policy.

Definition 2. An MSC over topology T = (V,→, π) ∈ T is a tuple M =
(E,C, `, λ) where E is the nonempty finite set of events, C ⊆ E×E is the acyclic
edge relation, which is partitioned into Cproc and Cmsg, the mapping ` : E → V
determines the location of an event in the topology, and λ : E → { !a , ?a | a ∈ N}
determines its labeling.1 Let E!

def
= {e ∈ E | e Cmsg f for some f ∈ E} and, ac-

cordingly, E?
def
= {e ∈ E | f Cmsg e for some f ∈ E}. Moreover, given u ∈ V , let

Eu
def
= {e ∈ E | `(e) = u}. We require that the following hold:

1. E = E!] E?,
2. for all u ∈ V , Cproc ∩ (Eu×Eu) is the direct-successor relation of some total

order on Eu,
3. for all (e, f) ∈ Cmsg, there is a ∈ N such that `(e)

a→ `(f) and (λ(e), λ(f)) =
(!a, ?a),

4. for all u, v ∈ V , e, e′ ∈ Eu, and f, f ′ ∈ Ev such that eCmsg f and e′ Cmsg f
′,

we have eC∗proc e
′ iff f C∗proc f

′ (FIFO).

We do not distinguish isomorphic MSCs over T .

Example 2. Figure 4 illustrates the MSC M8
lin over topology T 8

lin ∈ Tlin. It is
represented by several top-down process lines, one for each vertex in the topology.
Arrows between process lines determine the relation Cmsg, which connects a
send event with a receive event. Note that we included only some of the event
labelings. We may consider Mn

lin as the execution of a P2P protocol: a request
from p is forwarded by n− 2 processes of type r, until it reaches q. Afterwards,
an acknowledgement is relayed back to p along the same way backwards.

1 The labeling can be inferred from the other components, but will be explicitly needed
when we define partial MSCs where events may be unmatched.

4

Our main result will deal with systems that have (existentially) B-bounded
channels, for some B ≥ 1 [10]. Intuitively, an MSC is B-bounded if it can be
scheduled in such a way that, along the execution, there are never more than
B messages in each channel. Formally, we define boundedness via linearizations.
A linearization of an MSC M = (E,C, `, λ) over topology T = (V,→, π) is any
structure M ′ = (E,�, `, λ) such that � is a total order on E satisfying C∗ ⊆ �.
Then, M ′ is called B-bounded if, for all f ∈ E, u, v ∈ V , and a ∈ N such that
u

a→ v, we have |{e ∈ E | e � f , `(e) = u, and λ(e) = !a}| − |{e ∈ E | e �
f , `(e) = v, and λ(e) = ?a}| ≤ B. In other words, in any prefix of M ′, there are
no more than B pending messages, in every “channel” (u, v). Now, we say that
MSC M is B-bounded if there is a linearization of M that is B-bounded. For
example, for all n ≥ 2, the MSC Mn

lin (cf. Figure 4) is 1-bounded, because its
(only) linearization is 1-bounded.

3 Parameterized Communicating Automata

Next, we introduce parameterized communicating automata, whose definition
does not depend on a topology, but only on P and N . The language of an
automaton, a set of MSCs, is then parameterized by a topology.

Definition 3. A parameterized communicating automaton (PCA) over P and
N is a tuple (S,Msg , ∆, I, F) where

– S is the finite set of states,
– Msg is the finite set of messages,
– I : P → 2S associates with each process type a set of initial states,
– F is the acceptance condition: a finite boolean combination of statements
〈#(s) ≥ k〉 with s ∈ S and k ∈ N (to be read as “s occurs at least k times
as the terminal state of a process”), and

– ∆ ⊆ S ×ΣA × S is the set of transitions.

Here, ΣA = { !ma , ?ma | a ∈ N and m ∈ Msg} contains send actions !ma and

receive actions ?ma. A transition (s, η, s′) ∈ ∆ is also written s
η
=⇒ s′.

A PCA can be run on any topology T = (V,→, π) over P and N . When a
process u ∈ V executes (s, !ma, s

′) ∈ ∆, it changes its local state from s to s′

and writes m into the FIFO channel (u, v), provided u
a→ v. The message m

can then be read out by process v executing a transition with action ?ma. Note
that the messages are abstracted away in the observable MSC behavior (they
are in the spirit of stack symbols in pushdown automata). Formally, we define
the semantics of PCA directly on MSCs. This is equivalent to an operational
semantics in terms of an infinite transition system, but closer to the logical
approach where formulas are evaluated over MSCs (see Section 4).

Let T = (V,→, π) ∈ T be a topology and M = (E,C, `, λ) be an MSC over
T . Set VM

def
= {u ∈ V | Eu 6= ∅}. A (global) initial state of A for M is a tuple

ι = (ιu)u∈VM where ιu ∈ I(π(u)) for all u ∈ VM . Given ι and ρ : E → S (which

5

A: p
!reqa ?acka

r
?reqb !reqa ?acka !ackb

q
?reqb !ackb

Fig. 5. PCA A over P = {p, q, r} and N = {a, b}

is a candidate for being a run), we define another mapping ρ−ι : E → S, which
returns the source state of a transition: For (f, e) ∈ Cproc, we let ρ−ι (e) = ρ(f);
for a Cproc-minimal event e ∈ E, we let ρ−ι (e) = ι`(e).

A mapping ρ : E → S is called a run of A on M if there is an initial state
ι = (ιu)u∈VM for M such that, for all (e, f) ∈ Cmsg, there are a ∈ N and m ∈ Msg

satisfying `(e)
a→ `(f), ρ−ι (e)

!ma==⇒ ρ(e), and ρ−ι (f)
?ma===⇒ ρ(f). To determine if

ρ is accepting, we define a multiset hρ : S → N over S by hρ(s) = |{e ∈ E | e
is Cproc-maximal and ρ(e) = s}|. Now, ρ is accepting if hρ satisfies F in the
expected manner; in particular, hρ satisfies 〈#(s) ≥ k〉 if hρ(s) ≥ k. The MSC
M is accepted by A if it admits an accepting run of A. Note that hρ does not
include any states of idle processes. So, a PCA cannot express “the topology has
at least 5 processes”, but only “at least 5 processes are active”.

For a topology T , the set of MSCs over T that are accepted by A is denoted
by LT (A). The restriction of LT (A) to B-bounded MSCs is denoted by LBT (ϕ).

Example 3. Consider the PCA A from Figure 5. There, the acceptance condition
F is simply the conjunction of formulas ¬〈#(s) ≥ 1〉 with s ranging over the
states without double circle. Note that the messages req and ack do not occur in
the accepted MSCs. In this example, we could actually do with just one message
(|Msg | = 1). In general, however, message contents increase the expressive power
of PCA. The MSC from Figure 4 is the only MSC accepted by A wrt. the
topology T 8

lin. We actually have LT nlin(A) = L1
T nlin

(A) = {Mn
lin} for all n ≥ 2.

4 MSO Logic and Locality of FO logic

While PCA serve as a model of an implementation of a communicating system,
we use monadic second-order (MSO) logic to specify properties of MSCs.

Logic. The MSO formulas over P and N are given by the following grammar:

ϕ ::= p(x) | !a(x) | ?a(x) | x Cproc y | x C∗proc y | x Cmsg y | x C∗ y |
x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃Xϕ

where p ∈ P, a ∈ N , x and y are first-order variables (interpreted as events of
an MSC), and X is a second-order variable (interpreted as a set of events), all
taken from infinite supplies of variables. We use standard abbreviations such as
ϕ ∧ ψ for ¬(¬ϕ ∨ ¬ψ), and ϕ→ ψ for ¬ϕ ∨ ψ.

6

Formulas are evaluated over MSCs M = (E,C, `, λ), over some topology
T = (V,→, π) ∈ T. Free variables x and X are interpreted by a mapping I as an
event I(x) ∈ E and a set of events I(X) ⊆ E, respectively. The atomic formula
p(x) is true if π(`(I(x))) = p, i.e., the event associated with variable x is located
on a process of type p ∈ P. For η of the form !a or ?a, formula η(x) is true if
λ(I(x)) = η. Moreover, x C∗proc y is satisfied if I(x) C∗proc I(y). This allows us
to say that two events are executed by the same process. Other formulas are
interpreted as expected. Though C∗proc and also C∗ can be defined in MSO in
terms of Cproc and Cmsg, we include them explicitly in the logic, as they will be
used in fragments in which they would no longer be expressible.

The set FO of first-order formulas is the fragment of MSO without second-
order quantification. Moreover, EMSO (existential MSO) is the set of formu-
las of the form ∃X1 . . . ∃Xnϕ such that ϕ ∈ FO. For a nonempty set σ ⊆
{Cproc,C∗proc,Cmsg,C∗} of relation symbols, the logics FO[σ] and EMSO[σ] re-
strict FO and EMSO, respectively: instead of {Cproc,C∗proc,Cmsg,C∗}, we can
only access the relation symbols from σ. In this paper, we focus on the logics
EMSO[Cproc,Cmsg], EMSO[C∗proc,Cmsg], and FO[C∗proc,C

∗]. Note that the predi-
cate Cproc can be expressed in FO[C∗proc] in terms of C∗proc.

Let T ∈ T be a topology, and let ϕ ∈ MSO be a sentence, i.e., a formula
without free variables. The set of MSCs over T that satisfy ϕ is denoted by
LT (ϕ). When ϕ is not a sentence, then LT (ϕ) contains the pairs, of an MSC
and an interpretation of the free variables, that satisfy ϕ. The restriction of
LT (ϕ) to B-bounded MSCs is denoted by LBT (ϕ).

Example 4. Suppose N contains the names a and b with a = b. Consider the sen-
tence ϕ = ∀x∀y (!a(x) ∧ xCmsg y → ∃y′(y C∗proc y′ ∧ !b(y′))) ∈ FO[C∗proc,Cmsg].
It says that, whenever a process sends a message (say, a request) through inter-
face a, then the receiving process sends (after reception) an acknowledgment to
the requesting process. We have Mn

lin ∈ LT nlin(ϕ) for all n ≥ 2.

Locality of First-Order Logic. Next, we state a locality theorem due to
Schwentick and Barthelmann [15].2 It formalizes the intuition that FO can only
reason about local spheres, which include elements whose distance from a given
center is bounded by a parameter that depends on the formula.

Fix a nonempty set σ ⊆ {Cproc,C∗proc,Cmsg,C∗} of relation symbols. Let
M = (E,C, `, λ) be an MSC over some topology T = (V,→, π). The distance
distσM (e, f) between events e, f ∈ E is the minimal length of a path between e
and f in the graph of M with edges given by σ, in either direction (or ∞ if such
a path does not exist). For example, if σ = {C∗proc,Cmsg}, then distσM (e, f) refers
to the distance in the (undirected) graph (E,C∗proc ∪ (C∗proc)

−1 ∪ Cmsg ∪ C−1msg).
Moreover, distσM (e, e) = 0 and distσM (e, f) = distσM (f, e) = 1 for all (e, f) ∈ Cmsg.

Let R ≥ 1. A formula χ ∈ FO[σ] is called (R, σ)-local around a first-order
variable y if (i) y is not quantified in χ and (ii) χ is obtained from some FO[σ]-
formula by replacing each subformula of the form ∃zψ with ∃z(distσ(y, z) < R ∧
2 Gaifman’s normal form appears to be more difficult to deal with in our context.

7

ψ), and each subformula of the form ∀zψ with ∀z(distσ(y, z) < R → ψ). Here,
distσ(y, z) < R denotes the obvious FO[σ]-formula. We use strict inequality for
technical reasons (cf. [8]). Adapted to our setting, [15] yields the following:

Fact 1 (Schwentick & Barthelmann, [15]). Let ϕ ∈ FO[σ]. There are R ≥ 1
and ϕ′ = ∃x1 . . . ∃xn∀yχ ∈ FO[σ] such that χ is (R, σ)-local around y and, for
all topologies T ∈ T, we have LT (ϕ) = LT (ϕ′).

5 EMSO vs. PCA over Prime Topologies

Our aim is to synthesize, from a logical formula, a PCA that is correct, wrt.
the formula, for all topologies from a given class. In this section, we consider
the logic EMSO[Cproc,Cmsg]. We show that, for every given sentence from that
logic, there is a PCA that is equivalent over all prime topologies.

For a topology (V,→, π) ∈ T, nodes u, v ∈ V , and w = a1 . . . an ∈ N ∗, we

write u
w→ v if there is a w-labeled path from u to v, i.e., there are u0, . . . , un ∈ V

such that u = u0
a1→ u1

a2→ . . .
an→ un = v.

Definition 4. A topology (V,→, π) ∈ T is called prime if, for all u ∈ V , w ∈
N ∗, and n ≥ 1, u

wn→ u implies u
w→ u.

In other words, a prime topology satisfies the following monotonicity prop-
erty: If u

w→ v with u 6= v, then starting from u and “applying” w several times
will never lead back to u. For example, all topologies in Tlin, Ttree, and Tgrid are
prime, while none of the topologies in Tring is prime.

Theorem 1. Let ϕ ∈ EMSO[Cproc,Cmsg] be a sentence. There is a PCA A such
that, for all prime topologies T ∈ T, we have LT (A) = LT (ϕ).

Proof (sketch). Set σ0 = {Cproc,Cmsg}. Given a sentence ϕ ∈ EMSO[σ0], there
are, according to Fact 1, a radius R ≥ 1 and ϕ′ = ∃X1 . . . ∃Xm∃x1 . . . ∃xn∀yχ ∈
EMSO[σ0] such that χ ∈ FO[σ0] is (R,σ0)-local around y and, for all T ∈ T,
we have LT (ϕ) = LT (ϕ′). The free variables of χ can be considered as unary
predicates and are dealt with by projection from an extended alphabet. By means
of the acceptance condition of a PCA, one can make sure that variables xi are
indeed interpreted as exactly one event. So, it essentially remains to translate
the formula ∀yχ into a PCA. For this, we use the sphere automaton, a PCA
that “detects” neighborhoods of radius R in an input MSC (including possible
interpretations of free variables). More precisely, it accepts any MSC, over any
given prime topology. Moreover, in any accepting run, the state assigned to event
e tells us whether χ holds, or not, when y is interpreted as e. A sphere automaton
is presented in [2] for a fixed, known topology, but it is actually independent of
that topology. In the proof, it is only needed that MSCs are prime, essentially
in the same sense as for topologies. But MSCs over prime topologies are indeed
prime (cf. Appendix A) so that we obtain the desired sphere automaton. As a last
step, the latter is restricted to states that signal that χ holds. There is, however,

8

another subtlety. Satisfaction of χ in an MSC depends on the neighborhood of
y of radius R but also on the truth values of propositions involving only the
free variables of ∀yχ. Following [8], the PCA will guess and verify these truth
values. By means of the acceptance condition, we can make sure that the guess is
consistent throughout a run. Note that we could have used Hanf’s normal form
for the proof, but did not do so to avoid additional notation. ut

On the other hand, the translation of PCA to EMSO[Cproc,Cmsg] is not
restricted to topologies of a particular form. The proof of the following theorem
is by a standard construction and omitted.

Theorem 2. Let A be a PCA. There is a sentence ϕ ∈ EMSO[Cproc,Cmsg] such
that, for all topologies T ∈ T, we have LT (ϕ) = LT (A).

6 EMSO vs. PCA over Unambiguous Topology Classes

In EMSO[Cproc,Cmsg], one cannot express that two events are executed by the
same process, while this is possible in EMSO[C∗proc,Cmsg] using C∗proc. To capture
EMSO[C∗proc,Cmsg] by PCA, we impose a channel bound and restrict to certain
unambiguous classes of topologies. In turn, this will allow us to apply our results
to ring topologies. For w = a1 . . . an ∈ N ∗, let |w| denote the length n of w.

Definition 5. Let k ∈ N. A set T ⊆ T of topologies is k-unambiguous if, for
all w ∈ N ∗ with |w| ≤ k, all topologies (V,→, π), (V ′,→′, π′) ∈ T, and all nodes

u, v ∈ V and u′, v′ ∈ V ′ such that u
w→ v and u′

w→′ v′, we have u = v iff u′ = v′.

In other words, if a topology from T admits a directed cycle of length ≤k with
label w, then following w (if possible) will always form a cycle, in any topology
from T. For example, the sets Tlin, Ttree, Tgrid, and {T nring | n ≥ max{3, k + 1}}
are all k-unambiguous, for every k ∈ N.

For ϕ ∈ EMSO[C∗proc,Cmsg], let Rϕ ≥ 1 denote the radius associated with
the first-order kernel of ϕ according to Fact 1. Our main result is the following:

Theorem 3. Let ϕ ∈ EMSO[C∗proc,Cmsg] be a sentence, B ≥ 1, and T ⊆ T be
a (2Rϕ + 1)-unambiguous set of topologies. There is a PCA A such that, for all
T ∈ T, we have LBT (A) = LBT (ϕ).

In particular, the constructed automaton is correct, wrt. ϕ, for the classes of
pipeline, tree, and grid topologies, as well as for almost all ring topologies. The
rest of this section is devoted to the proof of Theorem 3.

Proof. Set σ∗0 = {C∗proc,Cmsg}. Thanks to Fact 1, the problem reduces to con-
structing a PCA from a formula ∀yχ ∈ FO[σ∗0] where χ is local around y (cf. also
proof of Theorem 1). We restrict to the case where y is the only free variable of
χ. Further free variables are dealt with like in the proof of Theorem 1, see also
[8, page 806] and Remark 1 in the forthcoming construction. So, for the rest of
the proof, we fix R,B ≥ 1, a (2R+ 1)-unambiguous set T ⊆ T of topologies, and
a sentence ∀yχ(y) ∈ FO[σ∗0] such that χ(y) is (R,σ∗0)-local around y. We build
a PCA A such that, for all T ∈ T, we have LBT (A) = LBT (∀yχ(y)).

9

The Idea. We exploit locality of χ(y). To know whether M, e |= χ(y) (i.e., M
satisfies χ(y) when y is interpreted as e), it is sufficient to look at a bounded
neighborhood of e. This is illustrated in Figure 6. Consider any event on the
vertex u that is marked by a rectangle. All events with distance at most R = 1
from e (wrt. σ∗0) are necessarily contained in the area highlighted in gray. This
area contains all the information that we need to infer satisfaction of ∀yχ(y)
provided that the outermost universal quantifier is restricted to events on u.
Thus, we deal with an area of fixed “width”, i.e., over a communication topology
of bounded size, with u as a distinguished center. For such fixed sphere topologies,
there exists a translation from MSO logic, involving C∗proc and Cmsg, to non-
parameterized communicating automata (CA) [10]. For [10] to apply, we have to
restrict to B-bounded MSCs. Given a sphere topology θ, we can then construct
a CA Bθ that recognizes MSCs over θ (i.e., of bounded width) satisfying χ(y) for
all events e located on the center u. Up to isomorphism, there are only finitely
many sphere topologies θ of radius R and, thus, finitely many CA Bθ. To obtain
a PCA running on MSCs of unbounded width, we will glue these CA together.

Every process u will run an automaton Bθ and make sure that the bounded
MSC in its neighborhood is accepted by Bθ. More precisely, it guesses a sphere
θ, supposing that its topology neighborhood looks like θ, and runs a copy of Bθ.
Whenever u communicates with neighboring processes, this guess is forwarded in
terms of messages. Processes receiving the guess also have to simulate Bθ. Since
neighboring processes also have to verify their own guess, a process will have
to run several CA simultaneously. The main difficulty, however, is to detect the
sphere topology around one given process in an MSC, i.e., to verify that a guess
is correct. It will actually be sufficient to detect only the subsphere whose edges
are really involved in the execution of the MSC, since CA Bθ and Bθ′ cannot
distinguish between (bounded-width) MSCs M whenever θ is a substructure of θ′

and M uses only channels present in θ. Note that this procedure of guessing and
forwarding sphere topologies is not able to detect cycles in the sphere topology by
itself. It is only correct thanks to the fact that the underlying set T of topologies
is (2R+1)-unambiguous. Here, 2R+1 is the maximal length of a cycle through a
sphere center that is needed to cover a given edge in the sphere. In the following,
we will formalize these ideas.

Communicating Automata over Sphere Topologies. Let T = (V,→, π) ∈
T. For u, v ∈ V , let distT (u, v) denote the distance (i.e., the minimal length of
a path, or ∞ if such a path does not exist) between u and v in the edge-labeled
graph (V,→). By R-Sph(T , u), we denote the R-sphere of T around u, i.e.,
the substructure of T induced by the vertices v ∈ V such that distT (u, v) ≤
R, with u as an additional constant called center. Note that R-Sph(T , u) is
always a topology (when we ignore the constant). The top of Figure 7 depicts
1-Sph(T 8

lin, u) where u is given as in Figure 6.

We let R-Spheres(T)
def
= {R-Sph(T , u) | T = (V,→, π) ∈ T and u ∈ V }.

Any element from R-Spheres(T) is called an (R-)sphere. We (mostly) do not
distinguish isomorphic spheres so that the number of R-spheres is finite.

10

T
8
lin:

p r r r r

u

r r q
a

b

a

b

a

b

a

b

a

b

a

b

a

b

M8
lin:

Fig. 6. Local view of a process in an MSC

r r r
a

b

a

b

?b

!b

!a

?a

Fig. 7. An MSC
over a 1-sphere

We will now define MSCs over an R-sphere θ = (U , γ) with U = (U, , ξ).
These MSCs are connected, are empty or have at least one event on γ, and may
have unmatched events (those whose communication partners are beyond U).
Formally, an MSC over θ is a tuple M = (E,C, `, λ) where the components are
like in an MSC over an ordinary topology (Definition 2), with the only difference
that E may be empty. In particular, ` : E → U maps an event to a process. We
adopt the definition of E!, E?, and Eu. Additionally, we may have unmatched
events. So, we let Eunm

def
= E \ (E! ∪ E?). We require that E = E!] E?] Eunm

and that 2.–4. from Definition 2 hold.3 Moreover, if E 6= ∅, then

– the graph (E,C) is connected,
– there is e ∈ E such that `(e) = γ, and
– for all e ∈ Eunm and a ∈ N such that λ(e) ∈ {!a, ?a}, we have both

distU (γ, `(e)) = R and there is no u ∈ U such that `(e)
a
 u.

Note that this definition actually depends on R, which we had fixed.
The definition of B-bounded MSCs over θ is literally the same as for MSCs

over topologies. This means that unmatched events are discarded and considered
as internal actions, i.e., they do not count when computing the difference between
sends and receives. An example of a 1-bounded MSC over a 1-sphere is depicted
in Figure 7. It corresponds to the gray-shaded area in Figure 6.

Definition 6. Let θ = (U , γ) be an R-sphere with U = (U, , ξ). A communi-
cating automaton (CA) over θ is a tuple B = (S,∆, ι, F) where

– S is the finite set of states,
– ι : U → S associates with each process an initial state,
– F : U → 2S associates with each process a set of local final states, and
– ∆ ⊆ S ×ΣB × S is the set of transitions.

Here, the set of actions is ΣB = { !ma , ?ma | a ∈ N and m ∈ S}. We require
that, for all (s, !ma, s

′) ∈ ∆, we have m = s′. This is sufficient and will simplify
our constructions.
3 In Definition 2, replace V with U , and → with .

11

Runs of CA are defined similarly to PCA, but we have to consider unmatched
events. Let M = (E,C, `, λ) be an MSC over θ, and let ρ : E → S be a mapping.
We define ρ− : E → S as follows: For (f, e) ∈ Cproc, let ρ−(e) = ρ(f); for a
Cproc-minimal event e ∈ E, we let ρ−(e) = ι(`(e)). Then, ρ is a run of B on M if

– for all (e, f) ∈ Cmsg and names a ∈ N with `(e)
a
 `(f), we have both

(ρ−(e), !ρ(e)a, ρ(e)) ∈ ∆ and (ρ−(f), ?ρ(e)a, ρ(f)) ∈ ∆,

– for all e ∈ Eunm and a ∈ N with λ(e) = !a, we have (ρ−(e), !ρ(e)a, ρ(e)) ∈ ∆,

– for all e ∈ Eunm and a ∈ N with λ(e) = ?a, we have (ρ−(e), ?ma, ρ(e)) ∈ ∆
for some m ∈ S (the message is irrelevant).

The run is accepting if ρ(e) ∈ F (`(e)) for all Cproc-maximal events e ∈ E. By
L(B), we denote the set of MSCs over θ for which there is an accepting run of
B. Note that L(B) always contains the empty MSC over θ.

Let T = (V,→, π) ∈ T be a topology, u ∈ V , and M = (E,C, `, λ) be
an MSC over T . Set H = {(u, a, v) ∈ → | u = `(e) and v = `(f) for some
(e, f) ∈ Cmsg ∪ C−1msg}. Let U be the set of nodes v ∈ V such that u and v are
connected in the graph (V,H) by a path using at most R edges. By R-Sph(M,u)
(somewhat abusing notation), we denote the restriction of M to events in `−1(U).
We also define R-Sph(T , u) �M

def
= ((U,H|U , π|U), u) where H|U = {(u, a, v) ∈

H | u, v ∈ U} and π|U is the restriction of π to U . Then, R-Sph(T , u) �M is an R-
sphere and R-Sph(M,u) is an MSC over R-Sph(T , u) �M . For example, consider
the MSC M8

lin and topology T 8
lin from Figure 6. Figure 7 shows 1-Sph(M8

lin, u)
and 1-Sph(T 8

lin, u) �M8
lin = 1-Sph(T 8

lin, u).

The following theorem follows from a result by Genest, Kuske, and Muscholl:

Theorem 4 (cf. [10], Theorem 4.1). There is a collection (Bθ)θ∈R-Spheres(T)
of CA Bθ over θ such that the following holds, for all topologies T = (V,→, π) ∈
T, all u ∈ V , and all B-bounded MSCs M = (E,C, `, λ) over T :

M, e |= χ(y) for all e ∈ Eu
⇐⇒ R-Sph(M,u) ∈ L(BR-Sph(T ,u) �M) .

The result from [10] applies, since R-Sph(M,u) is B-bounded and, given
e ∈ Eu, all events f ∈ E with dist

σ∗0
M (e, f) ≤ R are covered by R-Sph(M,u).

Moreover, as MSCs over spheres are connected, local final states are enough.

Remark 1. When χ has more free variables than just y, Bθ also depends on an
assignment of truth values to propositions in χ over these variables.

The Construction. According to Theorem 4, it will be sufficient that each
process of the PCA that we are going to construct identifies a subsphere of
its actual topology neighborhood. So, we set R-Sub(T)

def
= {R-Sph(T , u) �M |

T = (V,→, π) ∈ T, u ∈ V , and M an MSC over T }. Note that, for T ∈ T
and a process u of T , R-Sub(T) includes R-Sph(T , u) as well as some spheres
that consist only of one single node. We fix the finitely many CA (Bθ)θ∈R-Sub(T)

according to Theorem 4, where Bθ = (Sθ, ∆θ, ιθ, Fθ) such that the sets Sθ are

12

pairwise disjoint. We say that w ∈ N ∗ is circular if there are T = (V,→, π) ∈ T

and u ∈ V such that u
w→ u. The PCA A = (S,Msg , ∆, I, F) with S = Msg is

defined as follows (U will always refer to (U, , ξ) and U ′ to (U ′, ′, ξ′)):

States. A state t ∈ S is a nonempty set of tuples κ = (U , γ, α, s,H) where
(U , γ) ∈ R-Sub(T) is a guessed sphere, α ∈ U is the active process, s ∈ S(U,γ) is
the current state of the CA B(U,γ) that is simulated, and H ⊆ N is the “history”
containing the names that have been used by the active process. Intuitively, a
process whose current state contains κ simulates process α in B(U,γ), supposing
that its topology neighborhood resembles (U , γ, α). So, we require that, for all
κ = (U , γ, α, s,H) ∈ t and κ′ = (U ′, γ′, α′, s′, H ′) ∈ t, the following hold:

(a) ξ(α) = ξ′(α′),
(b) if γ = α and γ′ = α′, then κ = κ′, and
(c) if (U , γ, α) = (U ′, γ′, α′), then κ = κ′.

Let t ∈ S and a ∈ N . Let t a→ denote the set of tuples (U , γ, α, s,H) ∈ t such that

α
a
 u for some u ∈ U . We say that a is enabled in t if, for all (U , γ, α, s,H) ∈ t,

u ∈ U , and w ∈ N≤2R such that wa is circular and u
w
 α, we have α

a
 u.

Initial and Final States. For p ∈ P, a state t ∈ S is contained in I(p) if, for all
(U , γ, α, s,H) ∈ t, we have ξ(α) = p, s = ι(U,γ)(α), and H = ∅. Towards the final
states, let G be the set of states t ∈ S such that, for all tuples (U , γ, α, s,H) ∈ t,
we have s ∈ F(U,γ)(α) and {a ∈ N | α a

 u for some u ∈ U} ⊆ H. The
latter means that H contains all verification obligations imposed by the guessed
topology U . Then, F is defined as

∧
t∈S\G ¬〈#(t) ≥ 1〉.

Send Transitions (ST). The triple (t−, !ma, t) ∈ S × ΣA × S is contained in
∆ if m = t, a is enabled in t, and there is a bijection Φ : t− → t such that
Φ(U−, γ−, α−, s−, H−) = (U , γ, α, s,H) implies

1. (U−, γ−, α−) = (U , γ, α), i.e., the executing process maintains its guesses,
2. (s−, !sa, s) ∈ ∆(U,γ), which simulates a step of process α in the CA B(U,γ),
3. α has an a-successor in U or distU (γ, α) = R, and
4. H = H− ∪ {a}, which marks interface a as “checked”.

Receive Transitions (RT). The triple (t−, ?ma, t) ∈ S ×ΣA × S is contained in
∆ if a is enabled in t and there are bijections Φ : t− → t and Φ̂ : m a→ → t a→ as
well as a mapping µ : t a→ →

⋃
θ∈R-Sub(T) Sθ (associating with a tuple a message

of a CA) such that the following hold:

(a) Φ(U−, γ−, α−, s−, H−) = (U , γ, α, s,H) implies (let κ = (U , γ, α, s,H))

1. (U−, γ−, α−) = (U , γ, α),
2. (s−, ?ka, s) ∈ ∆(U,γ) for some k such that, if κ ∈ t a→, then k = µ(κ),
3. α has an a-successor in U or distU (γ, α) = R, and
4. H = H− ∪ {a}.

13

(b) Φ̂(U−, γ−, α−, s−, H−) = (U , γ, α, s,H) implies

1. µ(U , γ, α, s,H) = s−,
2. (U−, γ−) = (U , γ), i.e., the guessed sphere is forwarded, and
3. α

a
 α− (assuming U = (U, , ξ)).

(c) For all (U , γ, α, s,H) ∈ (m \m a→) ∪ (t \ t a→), we have distU (γ, α) = R.

Note that the mappings required in (ST) and (RT) are unique, if they exist.

This concludes the construction of the PCA A. We claim that, for all T ∈ T,
LBT (A) = LBT (∀yχ(y)). The correctness proof can be found in Appendix B. It
crucially relies on Theorem 4 and the fact that T is (2R+ 1)-unambiguous. ut

7 Beyond Implementability

In terms of logic, Theorem 3 cannot be improved. One can show that there is no
translation of formulas into PCA when we add C∗ to the logic (even when we
restrict to 1-bounded MSCs and tree topologies). This has to be contrasted with
the expressive equivalence of MSO and CA over fixed topologies when imposing
any existential bound on the channels [10].

In the following theorem, we consider the tree topologies from Ttree, over
P = {p, q, r} and N = {a, b, c, d} (cf. Example 1).

Theorem 5. There exists a sentence ϕ ∈ FO[C∗proc,C
∗] such that, for all PCA

A over P and N , there is T ∈ Ttree with L1
T (A) 6= L1

T (ϕ).

The proof can be found in Appendix C. It uses a technique from [17], which
was employed to show that FO (with reflexive transitive closure relations) and
a local variant of EMSO are incomparable over pictures.

8 Conclusion

In this paper, we developed a framework for communicating systems with param-
eterized network topology. Our main contributions are (i) a notion of communi-
cating automaton that is independent of a particular topology and (ii) character-
izations of PCA in terms of existential fragments of MSO logic. For (ii), we have
to restrict to prime topologies and, respectively, unambiguous topology classes.
While this is optimal wrt. the logics considered, it will be worthwhile to examine
if larger topology classes exist that generalize our results. Our framework may
carry over to Zielonka’s asynchronous automata [19] with binary actions. These
automata have been considered in [9] over tree architectures to get decidability
of the controller-synthesis problem. This also raises the question about a param-
eterized formulation of the control problem. Another interesting goal would be
a framework including topologies of unbounded degree such as unranked trees.
One may also consider “classical” parameterized verification: Given a PCA A, is
there a topology T such that LT (A) 6= ∅ ? Since those questions are undecidable
in general, one has to impose restrictions, on PCA and/or on the topologies.

14

References

1. P. A. Abdulla, A. Bouajjani, B. Jonsson, and M. Nilsson. Handling global con-
ditions in parameterized system verification. In Proc. of CAV’99, volume 1633 of
LNCS, pages 134–145. Springer, 1999.

2. B. Bollig and M. Leucker. Message-passing automata are expressively equivalent
to EMSO logic. Theoretical Computer Science, 358(2-3):150–172, 2006.

3. A. Bouajjani, P. Habermehl, and T. Vojnar. Verification of parametric concurrent
systems with prioritised fifo resource management. Formal Methods in System
Design, 32(2):129–172, 2008.

4. M. C. Browne, E. M. Clarke, and O. Grumberg. Reasoning about networks with
many identical finite state processes. Inf. Comput., 81(1):13–31, 1989.

5. J. Büchi. Weak second order logic and finite automata. Z. Math. Logik, Grundlag.
Math., 5:66–62, 1960.

6. G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized verification of ad hoc
networks. In Proc. of CONCUR’10, volume 6269 of LNCS. Springer, 2010.

7. C. C. Elgot. Decision problems of finite automata design and related arithmetics.
Trans. Amer. Math. Soc., 98:21–52, 1961.

8. P. Gastin and D. Kuske. Uniform satisfiability problem for local temporal logics
over Mazurkiewicz traces. Inf. Comput., 208(7):797–816, 2010.

9. B. Genest, H. Gimbert, A. Muscholl, and I. Walukiewicz. Asynchronous games over
tree architectures. In Proc. of ICALP’13, volume 7966 of LNCS, pages 275–286.
Springer, 2013.

10. B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem and model check-
ing algorithms for existentially bounded communicating automata. Inf. Comput.,
204(6):920–956, 2006.

11. S. M. German and A. P. Sistla. Reasoning about systems with many processes. J.
ACM, 39(3):675–735, 1992.

12. S. Grumbach and Z. Wu. Logical locality entails frugal distributed computation
over graphs (extended abstract). In Proc. of WG’09, volume 5911 of LNCS, pages
154–165, 2010.

13. J. G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni, and P. S. Thiagara-
jan. A theory of regular MSC languages. Inf. Comput., 202(1):1–38, 2005.

14. D. Kuske. Regular sets of infinite message sequence charts. Inf. Comput., 187:80–
109, 2003.

15. T. Schwentick and K. Barthelmann. Local normal forms for first-order logic with
applications to games and automata. Discrete Mathematics & Theoretical Com-
puter Science, 3(3):109–124, 1999.

16. J. W. Thatcher and J. B. Wright. Generalized finite automata theory with applica-
tion to a decision problem of second-order logic. Math. Systems Theory, 2(1):57–81,
1968.

17. W. Thomas. Elements of an automata theory over partial orders. In Proc. of
POMIV 1996, volume 29 of DIMACS. AMS, 1996.

18. B. A. Trakhtenbrot. Finite automata and monadic second order logic. Siberian
Math. J, 3:103–131, 1962. In Russian; English translation in Amer. Math. Soc.
Transl. 59, 1966, 23–55.

19. W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. — Informatique
Théorique et Applications, 21:99–135, 1987.

15

A Missing Details for Proof of Theorem 1

MSCs over Prime Topologies. Recall that the construction of a PCA from
a formula is based on the sphere automaton. For the construction from [2],
which we recall below, to be applicable, we have to show that MSCs are prime
just like topologies. Let us define when an MSC is prime.4 Consider the set
D = {proc, proc−1} ∪ {msga,msg−1a | a ∈ N} of directions. Let M = (E,C, `, λ)
be an MSC, over some topology. Every direction δ ∈ D defines a binary relation
[[δ]]M ⊆ E × E as follows: [[proc]]M = Cproc, [[proc−1]]M = C−1proc, [[msga]]M =

{(e, f) ∈ Cmsg | λ(e) = !a}, and [[msg−1a]]M = [[msga]]−1M . This is extended to
strings w = δ1 . . . δn ∈ D∗: we let (e, f) ∈ [[w]]M if (e, f) ∈ idE ◦[[δ1]]M ◦. . .◦[[δn]]M
(where ◦ is the relation product). The MSC M is called prime if, for all w ∈ D∗,
n ≥ 1, and e ∈ E, we have that (e, e) ∈ [[wn]]M implies (e, e) ∈ [[w]]M . Note that
MSCs are in general not prime, i.e., for arbitrary topologies. However, we can
show the following:

Lemma 1. Let T = (V,→, π) be a prime topology and M = (E,C, `, λ) be an
MSC over T . Then, M is prime.

Proof. Let w ∈ D∗, n ≥ 1, and e ∈ E, and suppose (e, e) ∈ [[wn]]M . We build
the “projection” 〈w〉 ∈ N ∗ of w to the alphabet N so that it can be applied
to the topology T . It is defined by 〈proc〉 = 〈proc−1〉 = ε, 〈msga〉 = a, and
〈msg−1a 〉 = a.

From (e, e) ∈ [[wn]]M , we deduce `(e)
〈w〉n−−−→ `(e), which implies `(e)

〈w〉−−→ `(e),
since T is prime. Towards a contradiction, assume that (e, e) 6∈ [[w]]M (which
implies w 6= ε and n > 1). Consider the unique event e1 ∈ E such that (e, e1) ∈
[[w]]M . Due to `(e)

〈w〉−−→ `(e), we have either e C+
proc e1 or e1 C+

proc e. Suppose
eC+

proc e1. The other case is analogous. As (e, e) ∈ [[wn]]M , there are e2, . . . , en ∈
E such that (e, e1), (e1, e2), . . . , (en−1, en) ∈ [[w]]M . Thus, (e, en) ∈ [[wn]]M . As
MSCs obey a FIFO policy, we moreover have eC+

proc e1 C
+
proc e2 C

+
proc . . .C

+
proc en

and, therefore, e 6= en. But this contradicts (e, e) ∈ [[wn]]M . We conclude that
M is prime. ut

Sphere Automaton. Next, we adapt the construction of the sphere automa-
ton from [2] to our setting. We build a PCA that is able to tell us whether, at
a given event, a local formula holds. Again, we restrict to local formulas with
only one free variable. To decide if a local formula holds, it is actually sufficient
for the PCA to detect spheres, i.e., local neighborhoods of radius R ∈ N. Let
us define spheres formally. Let T = (V,→, π) be a topology, M = (E,C, `, λ)
be an MSC over T , and e ∈ E. The R-sphere of M around e, denoted by
R-Sph(M, e), is the restriction of M to events of distance at most R from
e. More precisely, it is defined as the structure M = (E′,C′, π′, λ′, e) where

4 The property is exploited in [2, Claim 4.1] without being called prime. In [B. Bollig.
On the expressive power of 2-stack visibly pushdown automata. Logical Methods in
Computer Science, 4(4:16), 2008.], a weaker property (which is implied by prime) is
named circular. There, the sphere automaton is constructed for nested words.

16

E′ = {f ∈ E | distσ0

M (e, f) ≤ R}, C′ is given by C′proc = Cproc ∩ (E′ × E′)
and C′msg = Cmsg ∩ (E′ × E′), and π′ and λ′ are mappings with domain E′: for
all e ∈ E′, π′(e) = π(`(e)) and λ′(e) = λ(e). Note that M is independent of a
topology, as an event is mapped by π′ to a process type rather than a process.

Let SR
def
= {R-Sph(M, e) | M is an MSC over some topology and e is an

event of M} denote the set of R-spheres that arise from MSCs, ranging over all
topologies. Note that SR is finite up to isomorphism. Interestingly, the sphere
automaton that we are going to construct has similarities with the PCA built in
Section 6. However, the crucial difference is that the sphere automaton is sup-
posed to detect spheres, while the automaton from Section 6 evaluated topolo-
gies. So, the sphere automaton will guess a sphere, for each event e, and verify
that the guessed sphere is indeed isomorphic to the R-sphere around e.

Lemma 2. Let R ∈ N. There are a PCA A = (S,Msg , ∆, I, F) and a mapping
ν : S → SR such that the following hold, for all prime topologies T ∈ T and all
MSCs M = (E,C, `, λ) over T :

– M ∈ LT (A), and

– for all accepting runs ρ of A on M and all events e ∈ E, we have ν(ρ(e)) ∼=
R-Sph(M, e).

We define the PCA A = (S,Msg , ∆, I, F) with S = Msg as follows:

States. A state t ∈ S is either ∅p for some p ∈ P (the empty set with some
annotated type; we set proc(∅p) = p and let ν(t) be an arbitrary sphere), or a
nonempty set of tuples (M, γ, α, col) where (M = (E,C, π, λ), γ) ∈ SR, α ∈ E
is the active event, and col ∈ {1, . . . , 4 · maxE 2 + 1} is a color with maxE the
maximal number of events of an R-sphere from SR. The coloring is needed to
distinguish isomorphic overlapping spheres. For nonempty t, we require that the
following hold:

– there is a unique tuple (M, γ, α, col) ∈ t such that γ = α (in that case, we
set ν(t) = (M, γ)),

– for all ((E,C, π, λ), γ, α, col), ((E′,C′, π′, λ′), γ′, α′, col ′) ∈ t, we have π(α) =
π′(α′) and λ(α) = λ′(α′) (we set proc(t) = π(α) and label(t) = λ(α)), and

– if (M, γ, α, col) ∈ t and (M, γ, α′, col) ∈ t, then α = α′.

Initial and Final States. For all p ∈ P, we let I(p) = {∅p}. Let G be the set
of nonempty states t ∈ S such that there is (M, γ, α, col) ∈ t with α not Cproc-
maximal in M. We set F =

∧
t∈G ¬〈#(t) ≥ 1〉.

Send Transitions. In the following, we let M refer to (E,C, π, λ). The triple
(t−, !ma, t) ∈ S ×ΣA × S is contained in ∆ if the following hold:

(1) m = t and label(t) = !a,

(2) proc(t−) = proc(t),

(3) for all (M, γ, α, col) ∈ t and e ∈ E, we have eCproc α iff (M, γ, e, col) ∈ t−,

17

(4) for all (M, γ, α, col) ∈ t− and e ∈ E, we have αCproc e iff (M, γ, e, col) ∈ t,
(5) for all (M, γ, α, col) ∈ t, if α is Cproc-minimal in M and t− 6= ∅, then

distσ0

M(γ, α) = R, and

(6) for all (M, γ, α, col) ∈ t−, if α is Cproc-maximal inM, then distσ0

M(γ, α) = R.

Receive Transitions. The triple (t−, ?ma, t) ∈ S × ΣA × S is contained in ∆ if
(2)–(6) as above as well as the following hold:

(7) label(t) = ?a,

(8) for all (M, γ, α, col) ∈ t and e ∈ E, we have eCmsg α iff (M, γ, e, col) ∈ m,

(9) for all (M, γ, α, col) ∈ m and e ∈ E, we have αCmsg e iff (M, γ, e, col) ∈ t.

This concludes the construction of A. The correctness proof in the sense of
Lemma 2 follows the same lines as that of [2]. To show that cycles in spheres are
correctly simulated by a given input MSC M , we use the fact that M is prime.
Let T = (V,→, π) be a prime topology, M = (E,C, `, λ) be an MSC over T (i.e.,
according to Lemma 1, M is prime), and ρ be an accepting run of A on M . Let
e0 ∈ E and w ∈ D∗, and consider ν(ρ(e0)) = (M = (E′,C′, π′, λ′), γ). We show
that, then, (γ, γ) ∈ [[w]]M (with the obvious meaning) implies (e0, e0) ∈ [[w]]M .

So, suppose (γ, γ) ∈ [[w]]M. By the construction of A, we have that, for all
n ≥ 1, there is en ∈ E such that (e0, en) ∈ [[wn]]M (cf. proof of [2, Claim 4.11]).
In particular, (en, en+1) ∈ [[w]]M for all n ∈ N. Towards a contradiction, assume
e1 6= e0. Note that this implies w 6= ε. As M is prime, we have e2 6= e0. But
we also have e2 6= e1: otherwise, there would be events f1, f2, f ∈ E and d ∈ D
such that f1 6= f2, (f1, f) ∈ [[d]]M , and (f2, f) ∈ [[d]]M , which is a contradiction,
as f can have at most one d-predecessor. Continuing this scheme, we get en 6∈
{e0, . . . , en−1} for all n ≥ 1. But this is a contradiction to the fact that E is
finite. We deduce (e0, e0) ∈ [[w]]M .

B Missing Details for Proof of Theorem 3

We show the correctness of the PCA A constructed in Section 6:

Lemma 3. For all topologies T ∈ T and all B-bounded MSCs M over T , we
have M |= ∀yχ(y) iff M ∈ LT (A).

The rest of the section is devoted to the proof of Lemma 3. So, suppose T =
(V,→, π) ∈ T and let M = (E,C, `, λ) be a B-bounded MSC over T . Let v ∈ V
and Mv = (Evv,Cv, `v, λv) = R-Sph(M, v). Moreover, let τv = ((Uv, v, ξv), v)
denote R-Sph(T , v) �M . Note that, since M is B-bounded, Mv is B-bounded,
too. Finally, let Bv = (Sv, ∆v, ιv, Fv)

def
= Bτv , which is a CA over τv.

“⇒”: Suppose M |= ∀yχ(y). By Theorem 4, we have Mv ∈ L(Bv), for all
v ∈ V . Thus, for all v ∈ V , there is an accepting run ρv : Evv → Sv of Bv on
Mv. From the collection (ρv)v∈V , we define a mapping ρ : E → S by

ρ(e) = {(τv, `(e), ρv(e), He) | v ∈ V such that e ∈ Evv} (1)

18

where He = {a ∈ N | λ(f) ∈ {!a, ?a} for some f ∈ E with f C∗proc e}. Towards
an appropriate initial state of A for M , we let ζ = (ζv)v∈VM where

ζv = {(τv, `(e), ιv(`(e)), ∅) | e ∈ Evv}

We show that ρ is an accepting run of A on M , which implies M ∈ LT (A).
Clearly, ζv ∈ S, for all v ∈ VM . So, let us prove that ρ(e) ∈ S for all events

e ∈ E. Suppose tuples κ = (U = (U, , ξ), γ, α, s,H) ∈ ρ(e) and κ′ = (U ′ =
(U ′, ′, ξ′), γ′, α′, s′, H ′) ∈ ρ(e).

(a) By (1), we have ξ(α) = ξ′(α′) = `(e).

(b) Assume γ = α and γ′ = α′. By (1), κ = (τ`(e), `(e), ρ`(e)(e), He) and κ′ =
(τ`(e), `(e), ρ`(e)(e), He) so that κ = κ′.

(c) Assume (U , γ, α) ∼= (U ′, γ′, α′). By (1), this implies γ = γ′ (due to isomor-

phism, `(e)
w
 γ iff `(e)

w
 ′ γ′ for all w, which is impossible if γ 6= γ′). We

deduce κ = κ′.

Next, we show that ρ is a run of A on M . Let e ∈ E und a ∈ N such that
λ(e) ∈ {!a, ?a}. We show that a is enabled in ρ(e). Let v ∈ V such that e ∈ Evv.

Moreover, let u ∈ Uv and w ∈ N≤2R such that wa is circular and u
w
 v `(e).

Since, τv = R-Sph(T , v) �M and T ∈ T with T being (2R+ 1)-unambiguous, we

have `(e)
a
 v u. Thus, a is enabled in ρ(e).

Let (e, f) ∈ Cmsg and a ∈ N be the unique name satisfying `(e)
a→ `(f).

We show that ρ−ζ (e)
!ρ(e)a
===⇒ ρ(e) and ρ−ζ (f)

?ρ(e)a
====⇒ ρ(f). We define a bijection

Φe : ρ−ζ (e)→ ρ(e) as follows:

Case 1: If e is Cproc-minimal, then we have

ρ−ζ (e) = {(τv, `(e), ιτv (`(e)), ∅) | v ∈ V such that e is an event of Mv} .

In that case, we set Φe(τv, `(e), ιv(`(e)), ∅) = (τv, `(e), ρv(e), He).

Case 2: If e is not Cproc-minimal, then there is e− such that e−Cproc e. We have

ρ−ζ (e) = {(τv, `(e−), ρv(e
−), He−) | v ∈ V such that e ∈ Evv} .

In that case, we set Φe(τv, `(e
−), ρv(e

−), He−) = (τv, `(e), ρv(e), He).

Note that |ρ−ζ (e)| = |ρ(e)| = |{v ∈ V | e ∈ Evv}|. So, Φe is well-defined and in-
deed a bijection. It remains to verify that Φe has the desired properties. We con-
sider only Case 2. So, suppose Φe(τv, `(e

−), ρv(e
−), He−) = (τv, `(e), ρv(e), He).

We show (ST).

1. We have (τv, `(e
−)) = (τv, `(e)).

2. As ρv is a run, (ρv(e
−), !ρv(e)a, ρv(e)) ∈ ∆τv .

3. We have e ∈ Evv. By the definition of Mv = R-Sph(M, v), we have that `(e)
has an a-successor in τv, or distτv (v, `(e)) = R.

4. Clearly, He = He− ∪ {a}.

19

We define the bijection Φf : ρ−ζ (f) → ρ(f) and verify (RTa) accordingly. It

remains to define the bijection Φ̂(e,f) : ρ(e) a→ → ρ(f) a→ as well as a mapping
µ : ρ(f) a→ →

⋃
v∈V Sv.

We have

ρ(e) a→ = {(τv, `(e), ρv(e), He) |
v ∈ V such that e ∈ Evv and `(e)

a
 v u for some u ∈ Uv} ,

ρ(f) a→ = {(τv, `(f), ρv(f), Hf) |
v ∈ V such that f ∈ Evv and `(f)

a
 v u for some u ∈ Uv} .

For v ∈ V with e ∈ Evv and `(e)
a
 v u for some u ∈ Uv, we have f ∈

Evv. This follows from the definition of Mv. We set Φ̂(e,f)(τv, `(e), ρv(e), He) =

(τv, `(f), ρv(f), Hf). Note that Φ̂(e,f) is bijective. Similarly, for v ∈ V with

f ∈ Evv and `(f)
a
 v u for some u ∈ Uv, we have that e ∈ Evv. In that case,

we set µ(τv, `(f), ρv(f), Hf) = ρv(e). With this definition, (RTb) is directly ver-
ified. In (RTc), we have to show that, for all (U , γ, α, s,H) ∈ (ρ(e) \ ρ(e) a→) ∪
(ρ(f) \ ρ(f) a→), we have distU (γ, α) = R. So, consider (τv, `(e), ρv(e), He) with
v ∈ V such that e ∈ Evv and `(e) does not have an a-successor in τv. Since, then,
e is an unmatched event of Mv, we have distτv (v, `(e)) = R by the definition of
MSC Mv. The reasoning for (U , γ, α, s,H) ∈ ρ(f) \ ρ(f) a→ is analogous.

It remains to show that ρ is accepting. Let G be the set of states t ∈ S
such that, for all (U = (U, , ξ), γ, α, s,H) ∈ t, we have s ∈ F(U,γ)(α) and

{a ∈ N | α a
 u for some u ∈ U} ⊆ H. We have to show that, for all e ∈ E that

are Cproc-maximal, we have ρ(e) ∈ G.
So, let e ∈ E be Cproc-maximal. Suppose v ∈ V such that e ∈ Ev. We have

to show that ρv(e) ∈ Fv(`(e)) and {a ∈ N | `(e) a
 v u for some u ∈ Uv} ⊆ He,

i.e., for all a ∈ N such that `(e) has an outgoing a-edge in τv, there is f C∗proc e
such that λ(f) ∈ {!a, ?a}. The former holds since ρv is an accepting run. The
latter holds since, by definition, the MSC Mv “covers” the a-labeled edge.

“⇐”: Now, suppose M ∈ LT (A). There is an accepting run ρ : E → S
of A on M , say, with initial state ζ = (ζ)v∈VM for M . In particular, for all

(e, f) ∈ Cmsg, we have ρ−ζ (e)
!ρ(e)a
===⇒ ρ(e) and ρ−ζ (f)

?ρ(e)a
====⇒ ρ(f).

We will show M |= ∀yχ(y). By Theorem 4, it is sufficient to prove Mv0 ∈
L(Bv0) for all v0 ∈ VM , i.e., to determine accepting runs ρv0 : Evv0 → Sv0
of Bv0 on Mv0 . Let e, f ∈ E such that (e, f) ∈ Cmsg. Suppose a ∈ N such

that `(e)
a→ `(f). According to (ST) and (RT), consider the unique mappings

Φe : ρ−ζ (e) → ρ(e), Φf : ρ−ζ (f) → ρ(f), µf : ρ(f) a→ →
⋃
θ∈R-Sub(T) Sθ, and

Φ̂(e,f) : ρ(e) a→ → ρ(f) a→.
So pick v0 ∈ VM . For all events e ∈ E of M located on v0, the state ρ(e)

contains exactly one tuple of the form (U , γ, γ, s,H) (where sphere center and
active node coincide). Set κe = (U , γ, γ, s,H) and ρv0(e) = s. Note that, by (ST)
and (RT), θv0

def
= (U , γ) is invariant along all events on v0.

20

We claim

τv0
∼= θv0 . (2)

Recall that, hereby, τv0 = R-Sph(T , v0) �Mv0 . In particular, (2) implies that
ρv0(e) ∈ Sv0 for all events e on v0. Before we prove (2), we define ρv0 for all
other events of Mv0 . In doing so, whenever ρv0 is defined on e (so that κe has
also been determined), it will be defined for the direct process predecessor e−

and process successor e+ (if they exist), using the bijections Φe and Φe+ . The
tuples κe− and κe+ are defined accordingly.

So suppose that we defined ρv0 for all events of Mv0 that are located on
nodes v with 0 ≤ distτv0 (v0, v) ≤ k < R. Consider an event f ∈ Evv0 that is
located on some v with distτv0 (v0, v) = k + 1. There is e ∈ Evv0 located on a
node with distance k to v0 (i.e., ρv0(e) is already defined) such that e and f form
a message.

– Suppose (e, f) ∈ Cmsg where λv0(e) = !a, i.e., e sends a message via interface
a. Assume κe = (U = (U, , ξ), γ, α, s,H) (by induction, this will mean
ρv0(e) = s). Due to (2), we have κe ∈ ρv0(e) a→. By, (RTb), there is α′ ∈ U
such that α

a
 α′ and Φ̂(e,f)(κe) = (U , γ, α′, s′, H ′) for some s′, H ′. We set

ρv0(f) = s′.
– Suppose (f, e) ∈ Cmsg where λv0(e) = ?a, i.e., e receives via interface a.

Assume κe = (U = (U, , ξ), γ, α, s,H), i.e., ρv0(e) = s. Due to (2), we have

κe ∈ ρv0(e) a→. Again, due to (RTb), there is α′ ∈ U such that α
a
 α′, and

we have Φ̂−1(f,e)(κe) = (U , γ, α′, s′, H ′) for some s′, H ′. We set ρv0(f) = s′.

Note that ρv0 is well defined. So let us show that ρv0 is a run of Bv0 on Mv0 .
Pick e ∈ Evv0 .

– Suppose e is of type !a. We have ρ−ζ (e)
!ρ(e)a
===⇒ ρ(e). Assume first that e

is process-minimal on some process w. Suppose κe = (U , γ, α, s,H). Recall
that ρv0(e) = s. Thanks to (ST), ρ−ζ (e) contains (U , γ, α, s−, ∅), with s− =

ιv0(w) and (s−, !sa, s) ∈ ∆v0 . Moreover, H = {!a}. If e is not process-
minimal, then e has a process-predecessor e−. By (ST), κe− is of the form
(U , γ, α, ρv0(e−), H−), for some H−, and we have (ρv0(e−), !sa, s) ∈ ∆v0 and
H = H− ∪ {!a}.

– Suppose e is of type ?a and let e−, f ∈ Evv0 be such that e−Cproce and fCmsg

e. Suppose κe = (U = (U, , ξ), γ, α, s,H), κe− = (U−, γ−, α−, s−, H−), and
κf = (U ′, γ′, α′, s′, H ′). By (RT), (U , γ) = (U ′, γ′), (U−, γ−, α−) = (U , γ, α),

α
a
 α′, and α′

a
 α. Finally, (s−, ?s′a, s) ∈ ∆v0 . The cases where e does not

have a process-predecessor or where e is unmatched are similar.

Next, we show that ρv0 is accepting. Let e ∈ Evv0 be process-maximal and
suppose κe = (U , γ, α, s,H). From the fact that ρ is accepting, we can deduce
that s ∈ Fv0(α).

To finish the proof, it remains to show (2), i.e., τv0
∼= θv0 . This is done using

the H-component of a state as well as the fact that T is (2R+ 1)-unambiguous.

21

For v ∈ V and a triple (U , γ, α), we write (U , γ, α) ∈ ρ(v) if there are s, H,
and an event e ∈ Ev such that (U , γ, α, s,H) ∈ ρ(e).

Suppose τv0 = (W = (W,_, π), v0) and θv0 = (U = (U, , ξ), u0). For
d ∈ {0, . . . , R}, let ((Wd,_d, πd), v0) be the restriction of τv0 to elements of
distance at most d from v0 inW. Similarly, let ((Ud, d, ξd), u0) be the restriction
of θv0 to elements of distance at most d from u0 in U .

The following claim implies (2):

Claim 1. For all d ∈ {0, . . . , R}, there is an isomorphism

hd : ((Wd,_d, πd), v0)→ ((Ud, d, ξd), u0)

such that, for all v ∈Wd, we have

(U , u0, hd(v)) ∈ ρ(v) .

Proof. The claim holds for d = 0, since (U , u0, u0) ∈ ρ(v0).
Now, suppose the claim holds for some d < R so that we have an isomor-

phism hd : ((Wd,_d, πd), v0) → ((Ud, d, ξd), u0). Towards hd+1, we extend
the domain of hd to elements v′ ∈ Wd+1 \ Wd. So let v, v′ ∈ W such that
distW(v0, v) = d, dist(v0, v

′) = d+ 1, and v and v′ are connected by an edge in
τv0 . Moreover, set u = hd(v).

Suppose v
a
_ v′ with a ∈ N . Since distW(v0, v) < R, we also have, by

induction hypothesis, distU (u0, u) < R. Suppose (e, e′) ∈ Cmsg ∪ C−1msg such
that e is located on v and e′ is located on v′. By induction hypothesis, we have
(U , γ, u, s,H) ∈ ρ(e) for some s,H. By (ST) and (RT), there is u′ ∈ U such

that (U , γ, u′, s,H) ∈ ρ(e′) and u
a
 u′. Note that, since hd is an isomorphism,

u′ ∈ Ud+1 \ Ud. Set hd+1(v′) = u′. This is well-defined and does not depend on
the concrete choice of v or a: if we obtained another, distinct element u′′, we
would have (U , γ, u′′, s,H) ∈ ρ(e′), which is a contradiction to the definition of
the set of states of A. We define hd+1 to agree with hd on Wd.

It remains to show that hd+1 is an isomorphism. First, we show that hd+1 is
surjective. Let u, u′ ∈ U with distance d and d + 1, respectively, from u0 such
that u

a
 u′. Let v = h−1d (u). By induction hypothesis, we have (U , u0, u) ∈ ρ(v).

As distU (u0, u) < R and ρ is an accepting run, there is v′ ∈W satisfying v
a
_ v′

and (U , u0, u′) ∈ ρ(v′). Thus, hd+1(v′) = u′ so that hd+1 is surjective.
Now, let us show that hd+1 is indeed an isomorphism. Take v1, v2 ∈Wd and

v′1, v
′
2 ∈Wd+1 \Wd as well as w1, w2 ∈ N d and a1, a2 ∈ N such that

– v0
w1_ v1

a1_ v′1, and

– v0
w2_ v2

a2_ v′2.

For i = 1, 2, let ui = hd+1(vi) and u′i = hd+1(v′i). We will show that

– v′1 = v′2 iff u′1 = u′2 (so that hd+1 is injective), and

– v′1
a
_ v′2 iff u′1

a
 u′2, for all a ∈ N .

22

First, suppose v′1 = v′2. Let w = a1w1w2a2. Then, v′1
w
_ v′1. As T is (2R+ 1)-

unambiguous, τv0 , θv0 ∈ R-Sub(T), |w| ≤ 2R, and u′1
w
 u′2, this implies u′1 = u′2.

The same argument applies when we start with u′1 = u′2.

Next, suppose v′1
a
_ v′2, for some a ∈ N . Since _ is the relation belonging to

τv0 , a message is exchanged between two events located on v′1 and v′2, respectively.
It follows that there is e ∈ Ev′1 such that a is enabled in ρ(e). Let w = a2w2w1a1.
Then, |w| ≤ 2R and wa is circular. As a is enabled in ρ(e), (U , u0, u′1) ∈ ρ(v′1),

and u′2
w
 u′1, we have u′1

a
 u′2.

Finally, suppose u′1
a
 u′2. Let w = a2w2w1a1. As ρ is an accepting run, a

message has to be exchanged between v′1 and a process v such that v′1
a→ v.

We have u′2
w
 u′1

a
 u′2 and v′2

w
_ v′1

a→ v. As T is (2R + 1)-unambiguous and

|wa| = 2R+ 1, we have v = v′2. Thus, v′1
a
_ v′2.

This concludes the proof of Claim 1. ut

C Proof of Theorem 5

Theorem 5. There exists a sentence ϕ ∈ FO[C∗proc,C
∗] such that, for all PCA

A over P and N , there is T ∈ Ttree with L1
T (A) 6= L1

T (ϕ).

Proof. A picture over the set Σ = { , , } of colors is a rectangular matrix
with m ≥ 1 rows and n ≥ 1 columns, and with entries in Σ. An example picture
of dimension (m = 3, n = 8) is

P =

 
The coordinates of a picture can be ordered by relations ≤1 (for columns) and
≤2 (for rows). We let (i, j) ≤1 (i′, j′) if i ≤ i′ and j = j′, and (i, j) ≤2 (i′, j′) if
i = i′ and j ≤ j′. Accordingly, FO logic over pictures uses the binary predicates
x ≤1 y and x ≤2 y, as well as unary predicates η(x) with η ∈ Σ. Let P= be the
set of those pictures that are the concatenation P1QP2 of pictures of the same
height, where Q is a single column with entries , and P1 and P2 are pictures over
{ , } whose sets of column labelings coincide. The example picture P above
is contained in P=. Note that P= is FO-definable by a sentence that requires
that, for all coordinates x in the first row, there has to be a coordinate y on the
opposite side of the picture (i.e., beyond column Q) such that their respective
column labelings coincide. This can indeed be expressed using ≤1 and ≤2. In
[17], Thomas exploits the picture language P= to show that FO over pictures
using ≤1 and ≤2 is incomparable with EMSO using the direct successor relations
of ≤1 and ≤2, which is equivalent to graph acceptors.

To transfer that result and its proof to our setting, we use MSCs to encode
pictures. An MSC encoding of a picture is based on a tree topology of a particular
form. Let Tpict be the set of topologies T npict ∈ Ttree, with n ≥ 1, as depicted

23

T
8
pict: p r r r r r r r q

q q q q q q q q

c d c d c d c d c d c d c d c d

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

M :

Fig. 8. The communication topology T 8
pict over P = {p, q, r} and N = {a, b, c, d}, as

well as an MSC that encodes a picture

in Figure 8 for n = 8. Note that T npict has 2n + 1 vertices. As Tpict is a subset
of Ttree, it is k-unambiguous, for all k ∈ N, and contains only prime topologies.
The MSC M that encodes picture P (see above) is shown in Figure 8. An event
performing !a corresponds to a picture coordinate. If it is immediately followed,
on the same process line, by one event performing !c, then its entry is . If it is
immediately followed by two events performing !c, then its entry is . Otherwise,
it is . Note that M is 1-bounded.

The set of all valid picture encodings is definable by a formula Ψ from
FO[C∗proc,C

∗], i.e., for all n ≥ 1, LT npict(Ψ) is the set of MSCs that correspond
to pictures with n columns. Let Ln= be the set of MSCs over T npict, that encode
a picture from P= with n columns. In FO[C∗proc,C

∗], we can define formulas
is-coordinate(x) and η(x) for all η ∈ Σ in the obvious way. Moreover, x ≤1 y
(which corresponds to walking down in a picture) is given, for MSCs, by xC∗procy.
Finally, x ≤2 y (which corresponds to walking rightwards in a picture) is given
by x C∗ y ∧ ∀x′(x Cproc x

′ → ¬(x′ C∗ y)) . It follows that there is a sentence
ϕ ∈ FO[C∗proc,C

∗] such that Ln= = LT npict(ϕ) = L1
T npict

(ϕ), for all n ≥ 1.

Now suppose that there is a PCA A = (S,Msg , ∆, I, F) such that, for all
T ∈ Tpict, we have L1

T (A) = L1
T (ϕ). In any accepting run of A on an MSC

M ∈ Ln= encoding picture P1QP2, say, of height m, all the information needed
to compare P1 and P2 has to be present in the constant number of equivalence
classes induced by F and in the assignments of states and messages to the
events located on Q, i.e., on the -labeled column. There are (|S| × |Msg |)m
such assignments. On the other hand, there are 22

m − 1 nonempty sets of words
of length m over { , }, which exceeds (|S| × |Msg |)m for sufficiently large
m. Thus, there is an accepting run, possibly wrt. a different topology, on the
encoding of P ′1QP

′
2 for some P ′1, P

′
2 that induce distinct sets of column labelings,

a contradiction. ut

24

