
ar
X

iv
:1

20
9.

10
07

v2
 [

cs
.L

O
]

 2
9

A
pr

 2
01

4

Finite-Memory Strategy Synthesis for Robust Multidimensional

Mean-Payoff Objectives

Yaron Velner

The Blavatnik School of Computer Science, Tel Aviv University, Israel

Abstract. Two-player games on graphs provide the mathematical foundation for the study of
reactive systems. In the quantitative framework, an objective assigns a value to every play, and the
goal of player 1 is to minimize the value of the objective. In this framework, there are two relevant
synthesis problems to consider: the quantitative analysis problem is to compute the minimal (or
infimum) value that player 1 can assure, and the boolean analysis problem asks whether player
1 can assure that the value of the objective is at most ν (for a given threshold ν). Mean-payoff
expression games are played on a multidimensional weighted graph. An atomic mean-payoff ex-
pression objective is the mean-payoff value (the long-run average weight) of a certain dimension,
and the class of mean-payoff expressions is the closure of atomic mean-payoff expressions under the
algebraic operations of max,min, numerical complement and sum. In this work, we study for the
first time the strategy synthesis problems for games with robust quantitative objectives, namely,
games with mean-payoff expression objectives. While in general, optimal strategies for these games
require infinite-memory, in synthesis we are typically interested in the construction of a finite-state
system. Hence, we consider games in which player 1 is restricted to finite-memory strategies, and
our main contribution is as follows. We prove that for mean-payoff expressions, the quantitative
analysis problem is computable, and the boolean analysis problem is inter-reducible with Hilbert’s
tenth problem over rationals — a fundamental long-standing open problem in computer science
and mathematics.

1 Introduction

In the classical framework of boolean formal verification, a program may only violate or satisfy a given
specification, and in the framework of synthesis, the task is to automatically construct a program that
satisfies the specification. The boolean framework does not discriminate between programs that satisfy
a given specification, and consequently, it may produce (or verify) unreasonable implementations.

In the recent years, there is an emerging line of research that aims to measure the quality of a
program with quantitative metrics, e.g., [1, 3, 5, 7, 8, 11]. The quantitative verification problem asks how
well a program satisfies a given specification, and the synthesis task is to construct the optimal program
with respect to a specification.

Quantitative verification and synthesis problems are modelled by infinite-duration games over
weighted graphs. In these games, the set of vertices is partitioned into player-1 and player-2 vertices;
initially, a pebble is placed on an initial vertex, and in every round, the player who owns the vertex that
the pebble resides in, advances the pebble to an adjacent vertex. This process is repeated forever and
gives rise to a play that induces an infinite sequence of weights (or weight vectors), and a quantitative
objective assigns a value to every play (or equivalently to every infinite sequence of weights).

The classical work on these games only considered games with single objectives, such as minimizing
the long run average weight, or minimize the sum of weights. In order to have robust quantitative
specifications, it is necessary to investigate games on graphs with multiple (and possibly conflicting)
objectives. Typically, multiple objectives are modeled by multidimensional weight functions (e.g., [1, 4,
5, 10]), and the outcome of a play is a vector of values. In the boolean setting, the goal of player 1 is
to satisfy a boolean condition on the values (with respect to a threshold vector). For example, player
1 needs to assure that the average response time (rt) of an arbiter is at most 2.4 and that the average
energy consumption (ec) is below 7. In the quantitative setting, the outcome of a play is a unique (real)
value, and the goal of player 1 is to minimize the value of the play. A multiple objective specification is
modelled by algebraic operations on single objectives. In the example above, we define the quantitative
objective max(rt − 2.4, ec − 7), and a non-positive value to the quantitative objective implies that the
boolean objective is satisfied. In the general case, an objective is determined either by the projection of

http://arxiv.org/abs/1209.1007v2

the weight function to one dimension, or it is formed by algebraic operation on two (or more) objectives.
In the literature, the common and natural algebraic operations are min,max, numerical complement
(multiplication by −1) and sum. We note that when the goal is to minimize the value of the objective,
then the first three operations generalize the boolean disjunction, conjunction and negation. A class of
quantitative objectives is robust if it is closed under the four algebraic operations. So far, the only known
class of robust quantitative objectives that has an effective algorithm for the model checking problem
(that is, for solving one-player games) is the class of mean-payoff expressions [6], which is the closure of
one-dimensional mean-payoff (long-run average of the weights) objectives to the four algebraic operation.
For example, for an infinite sequence of vectors a = a1, a2, · · · ∈ (R3)ω the objective

E(a) = LimAvg1(a) + min(LimAvg2(a),−LimAvg3(a))

is a mean-payoff expression (where LimAvg i is the long-run average of dimension i) and E((1, 2, 6)ω) =
1 +min(2,−6) = −5.

In the quantitative setting, there are two relevant synthesis problems: (i) the quantitative analysis
problem is to compute the optimal (infimum) value that a player-1 strategy can assure; and (ii) the boolean
analysis problem is to determine whether player 1 can assure a value of at most ν to the objective (for
a given ν). From the perspective of synthesis, these problems are most important when player 1 is
restricted to finite-memory strategies (in Example 4 we show that infinite-memory strategies may yield
a better value for player 1, hence the restriction to finite-memory strategies may affect the analysis of
the synthesis problem).

For mean-payoff expressions, optimal finite-memory strategies may not always exist. Hence, the quan-
titative analysis problem is to compute the greatest lower bound on the minimal value that player 1 can
assure. We note that since all model checking problems (i.e., the quantitative generalization of the empti-
ness, universality and language inclusion) are decidable for mean-payoff expression, then the computabil-
ity of the quantitative analysis will give us an effective algorithm to synthesize ǫ-optimal finite-memory
strategies, and if the boolean analysis problem were decidable, then we would have an algorithm that
construct the corresponding player-1 strategy.

Our contribution. In this paper, we consider for the first time the synthesis problem for a robust
class of quantitative objectives. We prove computability for the quantitative synthesis problem, and we
show that the boolean analysis problem is inter-reducible with Hilbert’s tenth problem over rationals
(H10 (Q)), which is a fundamental long-standing open question in computer science and mathematics.
We show that the problem is inter-reducible with H10 (Q) even when both players are restricted to finite-
memory strategies, and we show that there is a fragment of mean-payoff expressions that is H10 (Q)-hard
when one or both players are restricted to finite-memory strategies, but decidable when both players
may use infinite-memory strategies.

Our main technical contribution is the introduction of a general scheme that lifts a one-player game
solution (equivalently, a model checking algorithm) to a solution for a two-player game (when player 1
is restricted to finite-memory strategies). The scheme works for a large class of quantitative objectives
that have certain properties (which we define in Subsection 2.2).

Related work. The class of mean-payoff expressions was introduced in [6], and the decidability of
the model checking problems (which correspond to one-player games) was established. A simpler and
more efficient algorithm for mean-payoff expression games was given in [15]. Mean-payoff games on
multidimensional graphs were first studied in [9]. In these games the objective of player 1 was to satisfy
a conjunctive condition (in the terms of this paper, the objective was a maximum of multiple one-
dimensional objectives). In [16], decidability for an objective that is formed by the min and max operators
was established. But the proof can not be extended to include the numerical complement operator, and
it does not scale for the case that player 1 is restricted to finite-memory strategies.

Structure of the paper. In the next section we give the basic definitions for quantitative games and we
define a class of quantitative objectives that have special properties. In Sections 3 and 4 we give a generic
solution for the synthesis problem of quantitative objectives that satisfies the special properties (and an
overview of the solution is given in Subsection 2.3). In Section 5 we show that mean-payoff expressions
satisfy the special properties and the main results of the paper follow. Some of the proofs were omitted
from the main paper, and the full proofs are given in the appendix.

2

2 Games with Quantitative Objectives

In this section we give the formal definitions for quantitative objectives and games on graphs with
quantitative objectives (Subsection 2.1). We define four special properties of quantitative objectives
(Subsection 2.2), and we give an informal overview for the two-player game solution of games with
quantitative objectives that satisfy the special properties (Subsection 2.3).

2.1 Quantitative games on graphs

Quantitative objectives. In this paper we consider directed finite graphs with a k-dimensional weight
function that assigns a vector of rationals to each edge. A quantitative objective is a function that assigns
a value to every infinite sequence of weight vectors. Formally an objective is a function obj : (Rk)ω → R.
A simple example for quantitative objective is to consider a one-dimensional weight function and an
objective that assigns to each infinite path the maximal weight that occurs infinitely often in the path.
An objective obj : (Rk)ω → R is called prefix-independent if for every a1 ∈ (Rk)∗ and a2 ∈ (Rk)ω it holds
that obj (a1a2) = obj (a2).

Algebraic operations over quantitative objectives. The quantitative counterpart of the boolean
operations of disjunction, conjunction and negation are the max,min and numerical complement opera-
tors (numerical complement is multiplication by −1). The sum operator, which does not have a boolean
counterpart, is also very natural operator in the framework of quantitative objectives. For two quan-
titative objectives obj 1 and obj 2, the quantitative objective op(obj 1, obj 2) (for op ∈ {min,max, sum})
assigns to every infinite sequence of weights ℓ ∈ (Rk)ω the value op(obj 1(ℓ), obj 2(ℓ)), and the numerical
complement of obj 1 assigns the value of −obj 1(ℓ).

Robust quantitative objectives A class of quantitative objectives O is robust if it is closed under the
algebraic operations of min,max, sum and numerical complement. Formally, a class of objectives O is ro-
bust, if for every two objectives obj 1, obj 2 ∈ O the four quantitative objectives objmin, objmax, obj sum and
obj− are in O (such that for every ℓ ∈ (Rk)ω and op ∈ {min,max, sum}: obj op(ℓ) = op(obj 1(ℓ), obj 2(ℓ))

and obj−(ℓ) = −obj 1(ℓ)). We note that in [6,8], Chatterjee et al. gave a broader definition for robustness
of quantitative objectives, but since the concrete objectives that we consider in this paper are robust
according to both definitions, we prefer to use the narrower (and simpler) notion of robustness.

Games on graph. A game graph is a directed graph G = (V = V1 ∪V2, v0, E, w : E → Qk), where V is
the set of vertices; Vi is the set of player i vertices; v0 is the initial vertex ; E ⊆ V ×V is the set of edges;
and w : E → Qk is a multidimensional weight function (e.g., see Figure 1). A play is an infinite sequence

v2v1

v3v0

12,3,12,-2,2

-3,4,7

1,-2,3

-6,1,1

-9,5,-6

Fig. 1. Game graph G. Player 1 owns the round vertices.

of rounds. In the first round a pebble is placed on the initial vertex and in every round the player who
owns the vertex of the pebble advances the pebble to an adjacent vertex. Hence, a play corresponds to
an infinite path in the graph that begins in v0 and the labeling of the play is the corresponding infinite
sequence of weight vectors. A game graph is a one-player game if only one of the players has a vertex
with out-degree more than one.

Strategies. A strategy is a recipe for determining the next move based on the history of the play. A
player-i strategy is a function σ : V ∗Vi → V , such that for every finite path π that ends in vertex
v we have (v, σ(π)) ∈ E. A strategy has finite memory if it can be implemented by a Moore machine
(M,m0, αn, αu), whereM is a finite set of memory states,m0 is the initial memory state, αu : M×V → M

3

is the update function, and αn : M × Vi → V is the next vertex function. If a play prefix is in state vi
and memory state M , then the strategy choice for the next vertex is v = αn(M, vi) and the memory is
updated to αu(M, vi). A strategy is memoryless if it depends only in the current location of the pebble.
Formally a player-i memoryless strategy is a function σ : Vi → V . (We note that a memoryless strategy
is also a finite-memory strategy.)

We denote the set of all player-i strategies by Si and we denote the set of all player-i finite memory
strategies by FMi.

Game graph according to a finite-memory strategy. For a game graph G = (V = V1 ∪ V2, E, w)
and a player-1 finite-memory strategy σ = (M,m0, αu, αn), we denote the game graph according to
strategy σ by Gσ, and we define it as follows:

– The vertices of Gσ are the Cartesian product V × M ; player-i vertices are Vi ×M ; and the initial
vertex of Gσ is (v0,m0).

– For a player-1 vertex (v,m), the only successor vertex is (αn(v,m), αu(v,m)). For a player-2 vertex
(v,m) the set of successor vertices is {(u, n) | (v, u) ∈ E and αu(v,m) = n}.

We note that the out-degree of all player-1 vertices is one, and thus Gσ is a one-player game graph.
The main property of graphs according to a finite-memory strategy is that every infinite path in Gσ

corresponds to a play that is consistent with σ in G. A game graph according to a memoryless strategy
is a special case of games according to finite-memory strategies. In this case, the game graph is obtained
from G by removing all the player’s out-edges that are not chosen by the memoryless strategy.

Example 1 Consider the game graph from Figure 1 and consider a player-1 strategy σ that in vertex v2
moves the pebble to v3 if v2 was visited an odd number of times and otherwise it moves the pebble to v1.
For example, in the first time that v2 is visited, player 1 moves the pebble to v3, in the second time he
will move the pebble to v1, in the third time to v3 and so on. The strategy σ requires one bit of memory
(i.e., M = {0, 1}), and Gσ is illustrated in Figure 2 (the labeling of the nodes represents the memory
state). In Gσ all the choices are done by player 2.

00

00

11

11

12,3,1

2,-2,2

-3,4,7

1,-2,3

-6,1,1

2,-2,2

-3,4,7

1,-2,3

-6,1,1

-9,5,-6
Fig. 2. Game graph G according to strategy σ.

Values of strategies and games. A tuple (σ, τ) of player-1 and player-2 strategies (respectively)
uniquely defines a play πσ,τ in a given graph. For a game graph G, a quantitative objective obj and a
tuple of strategies (σ, τ) we denote Valσ,τ = obj (πσ,τ). In this paper, we assume that player 1 wishes to
minimize1 the value of the quantitative objective, and we define the value of a player-1 strategy σ to be
Valσ = supτ∈S2

Valσ,τ . (Intuitively, this is the maximal value that player 2 can achieve against strategy
σ.) The minimal value of a game is defined as infσ∈FM1 Valσ. Intuitively, the minimal value of a game
is the minimal value that player 1 can ensure by a finite-memory strategy.

Quantitative and boolean analysis For a given game graph, objective, and a rational threshold r ∈ Q:
The quantitative analysis task is to compute the minimal value of the game that can be enforced by a
finite-memory strategy. The boolean analysis task is to decide whether there is a player-1 finite-memory
strategy σ for which Valσ ≤ r. That is, whether player 1 can assure a value of at most r for the objective.

Boolean games and winning strategies. A boolean game is a game on graph equipped with a winning
condition W ⊆ Eω (that is, a winning condition is a set of infinite paths). A play π is winning for player

1 Since we consider robust objectives, then the same results hold when player-1 goal is to maximize the value of
the objective.

4

1 if π ∈ W , and a strategy σ is a player-1 winning strategy if for every player-2 strategy τ we have
πσ,τ ∈ W . For a quantitative objective obj and a threshold ν ∈ R we denote by (obj , ν) the boolean
winning condition {π ∈ Eω | obj (π) ≤ ν}.

2.2 One-player game solution

In this paper, we consider objectives that have special properties for their one-player game solution and
we present a general scheme that lifts a one-player game solution into a two-player game solution. To
formally define the special properties of the solutions, we give the next definitions.

Definitions and notions for weighted graphs. Let G = (V,E,w : E → Qk) be a k-dimensional
weighted graph. The weight vector of a finite path π = e1 . . . en is w(π) =

∑n
i=1 w(ei) and the average

weight of a path is Avg(π) = w(π)
|π| . For a set of finite paths Π = {π1, . . . , πn} we denote Avg(Π) =

{Avg(π1), . . . ,Avg(πn)}. We denote the set of simple cycles in G by C(G), and we abbreviate Avg(G) =
Avg(C(G)). For a finite set of vectors V = {v1, v2, . . . , vn} ∈ Rk, we denote CONVEX (V) = {

∑n

i=1 αivi |∑n

i=1 αi = 1 and α1, . . . , αn ≥ 0} (see Figure 3). We abbreviate CONVEX (G) = CONVEX (Avg(G)).

rA

r
B

rC

r
D

rE
rF

rG

Fig. 3. CONVEX (A,B,C,D, E, F,G) is the polygon ABDEG.

An m-dimensional simplex is the set S(m) = {(x1, . . . , xm) ∈ Rm | xi ≥ 0 ∧
∑m

i=1 xi = 1}. The simplex
interior is SI(m) = {(x1, . . . , xm) ∈ Rm | xi > 0 ∧

∑m

i=1 xi = 1}, and the rational interior of a simplex
is QSI(m) = SI(m)∩Qm. When m is clear from the context we abbreviate S(m),SI(m) and QSI(m)
with S,SI and QSI (respectively).

Solution for one-player game with special properties. A solution for a one-player quantitative
game is a function f that assigns to every one-player game graph G the maximal value that the player
can achieve in graph G. We note that for prefix-independent objectives, a function f ′ that assigns to
each strongly connected graph its maximal value uniquely defines the solution function f (since the value
of f is the maximal value of f ′ over all the strongly connected component of the graph). In this paper,
we will consider only prefix-independent objective, hence, we define the special properties of a solution
for strongly connected graphs. The special properties that we consider are:

1. First-order definable. For every n ∈ N there is a first-order formula ζn(x1, . . . , xn, y) over 〈R,=, <
,+,×〉 such that for every graph G with Avg(G) = {x1, . . . , xn} we have f(G) = y if and only if
ζn(x1, . . . , xn, y) holds. In addition we require ζn to be computable from n. In the sequel, we write
y = ζn(x1, . . . , xn) instead of ζn(x1, . . . , xn, y).

2. Monotone in CONVEX (G). If for two (strongly connected) graphsH andG we have CONVEX (G) ⊆
CONVEX (H), then f(G) ≤ f(H). As a consequence, we get that for a k-dimensional objective, f
is a function from (Rk)∗ to R, and that f(G) ≡ g(CONVEX (G)) for some function g : (Rk)∗ → R.
Hence, by abusing the notation, we sometime write f(CONVEX (G)) instead of f(G).

3. Continuous function. f is a continuous function. Formally, if f is the solution for a k-dimensional
objective, then for every n ∈ N the function ζn : (Rk)n → R is a continuous function, i.e., for every
ǫ > 0 there exists δ > 0 such that for every two vectors A,B ∈ (Rk)n with |A−B| < δ it holds that
|ζn(A)− ζn(B)| < ǫ.

We will show computability for the quantitative analysis problem for objectives that have a solution
that satisfies the above three properties. We also consider a fourth special property, and we will show
decidability for the boolean analysis problem for objectives that have a solution that satisfies all four
properties.

5

4. Fourth property. A solution f = {ζ1, . . . , ζn, ζn+1, . . . } satisfies the fourth property if the next problem
is decidable (for the set {ζ1, . . . , ζn, ζn+1, . . . }):
– Input: a threshold ν ∈ Q and a set of n matrices A1, . . . , An, where Ai is a k × mi matrix for

some mi ∈ N.
– Task: determine if the inequality ζn(A1 ·x1, . . . , An ·xm) ≤ ν subject to xi ∈ QSI(mi) is feasible

(note that the result of the multiplication Ai · xi is a vector of size k).

In the next example we demonstrate the above properties.

Example 2 Consider the two-dimensional one-player solution function f(G) =
max(x,y)∈CONVEX(G)[max(x + y + 10,−x + y + 10,min(−x + y − 10, x + y − 10))]. We demon-
strate that f is first-order definable by giving the explicit formula for ζ2, that is, the formula for a
(strongly connected) graph with only two simple cycles with average weights (x1, y1) and (x2, y2).

ζ2(x1, y1, x2, y2, r) ≡
∀α1, α2, x, y(α1 ≥ 0 ∧ α2 ≥ 0 ∧ (α1 + α2 = 1) ∧ (x = α1x1 + α2x2) ∧ (y = α1y1 + α2y2)) �

r ≥ max(x+ y + 10,−x+ y + 10,min(−x+ y − 10, x+ y − 10))
∧
∃α1, α2, x, y(α1 ≥ 0 ∧ α2 ≥ 0 ∧ (α1 + α2 = 1) ∧ (x = α1x1 + α2x2) ∧ (y = α1y1 + α2y2))∧
r = max(x+ y + 10,−x+ y + 10,min(−x+ y − 10, x+ y − 10))

(Technically max and min are not in 〈R, <,+,×〉, but they are trivially definable in this vocabulary.)
Clearly if for two graphs we have CONVEX (G1) ⊆ CONVEX (G2), then f(G1) ≤ f(G2) (hence, f is
monotone), and ζ2 is obviously a continuous function (and in general ζn is also continuous). Hence, f
satisfies Properties 1-3. In Figure 4 we illustrate the geometrical interpretation of Property 2, namely,
the fact that the value of f depends only in CONVEX (G). The equality max(x + y + 10,−x + y +
10,min(−x + y − 10, x+ y − 10)) = 0 is represented by the thick line. The points that are connected by
the dotted line represent the weights of the simple cycles of a strongly connected graph G1 and the points
that are connected by the dashed line represent the weights of the simple cycles of a strongly connected
graph G2. The reader can see that CONVEX (G1) is below the thick line and CONVEX (G2) intersects
with it. Hence, f(G1) < 0 and f(G2) > 0.

Fig. 4.

2.3 Informal overview of the solution for two-player games

The key notion for our solution is games according to strategies. When a one-player solution f is given, the
boolean analysis problem amounts to determining whether there is a finite-memory strategy σ such that
for every strongly-connected component (SCC) S ∈ Gσ it holds that f(CONVEX (S)) ≤ ν. In Lemma 4
we show that w.l.o.g we may assume that for any σ the graph Gσ is strongly connected. Hence, in
Section 3 we investigate the set {CONVEX (Gσ) | σ ∈ FM1} and obtain a computable characterization
for it. In Section 4 we exploit the properties of the one-player solution and the results of Section 3 and
we obtain a first-order formula over rationals that computes the values that player 1 can enforce. We
use the fact that f is continuous to show that the formula has the same infimum over rationals and reals,

6

and hence, due to Tarski’s Theorem the infimum value is computable. We also show that if Property 4
holds, then one can effectively determine whether the formula has an assignment that gives a value of at
most ν. In Section 5 we apply these results for mean-payoff expressions. We show that their one-player
solution satisfies Properties 1-3, and that it satisfies property 4 if and only if H10 (Q) is decidable.

3 CONVEX Cycles Problem

In this section, we consider the next problem:

Problem 1 (CONVEX cycles problem) – Input: a k-dimensional game graph G and a set of k-
dimensional vectors V.

– Task: determine whether there is a player-1 finite-memory strategy σ such that CONVEX (Gσ) ⊆
CONVEX (V). (We call such strategy a realizing strategy.)

We first present the solution for the above problem, and then we show how to find all the sets of vectors
for which there is a realizing player-1 finite-memory strategy.

The solution for Problem 1 relies on the next lemma.

Lemma 1 For a game graph G and a set of vectors V, there exists a player-1 finite-memory strategy
σ for which CONVEX (Gσ) ⊆ CONVEX (V) iff for every player-2 memoryless strategy τi there exists a
player-1 finite-memory strategy σi such that CONVEX ((Gτi)σi) ⊆ CONVEX (V).

Proof. The proof for the direction from left to right is trivial (since any cycle in (Gτi)σ is also a cycle in
Gσ).

Our proof for the converse direction is inspired by [12], and the key intuition of the proof is the
following. Let v be a player-2 vertex, with two out-edges e1 and e2, and let G1 = G − {e1} and G2 =
G−{e2}. Suppose that player 1 has two finite-memory strategies σ1 and σ2 such that CONVEX (Gσi

i) ⊆
CONVEX (V) (for i = 1, 2). Then player 1 can combine the two strategies over G− {e1} and G− {e2},
and he can obtain a finite-memory strategy σ, such that each simple cycles in Gσ is a convex combination
of cycles from Gσ1

1 and Gσ2
2 , and hence, CONVEX (Gσ) ⊆ CONVEX (V). Hence, either player 1 has a

realizable strategy for G or he does not have realizable strategy for G1 = G−{e1} or for G2 = G−{e2}.
Since this holds for every player-2 state, the proof follows.

In order to formally prove the key intuition we claim that if player 1 has a realizable strategy σi against
any player-2 memoryless strategy, then he has a realizable strategy σ that satisfies CONVEX (Gσ) ⊆
CONVEX (V), and we prove the claim by induction on the number of player-2 vertices with out-degree
greater then one. The base case, where all of player-2 vertices have out-degree one, is trivial. For the
inductive step, let us assume that there is a player-2 vertex v with out-edges e1 and e2 (if there is no
such vertex, then we are in the base case). For i = 1, 2, let Gi be G − {ei}. If player-2 has a violating
memoryless strategy in either G1 or G2, then surely this is also a violating memoryless strategy for G,
and the claim follows. Otherwise, we construct a realizable player-1 strategy in G in the following way.
For i = 1, 2, let σi be a finite-memory player-1 realizable strategy in Gi, If in σ1 (resp., σ2), the vertex
v is unreachable then it is surely a winning strategy also for G. Otherwise, there exists a memory state
m such that (m, v) is a vertex in Gσ1

1 , and we denote by σ′
1 the strategy that is obtained by changing σ1

initial memory state to m. We construct σ in the following way. The memory structure of σ is a tuple
(M1,M2, {1, 2}) where M1 is the memory structure of σ′

1, M2 is the memory structure of σ2, and the
third value in the tuple indicates if we are playing according to σ′

1 or σ2. At the beginning of a play, σ
decides according to σ2 (and updates M2 accordingly). If σ decides according to σ2 and edge e1 is visited,
then σ decides according to σ′

1 (and updates M1 accordingly), until edge e2 is visited, and then σ again
decides according to σ2, and so on. We note that σ is a finite-memory strategy, and that any simple

cycle in Gσ is a composition of simple cycles from G
σ′

1
1 and Gσ2

2 . Hence, the average weight of any simple
cycle in Gσ is λx1 +(1−λ)x2 for some λ ∈ [0, 1] and xi ∈ Avg(Gi) ⊆ CONVEX (V). And thus, a convex
combination of x1 and x2 is also in CONVEX (V), and we get that CONVEX (Gσ) ⊆ CONVEX (V).
Therefore, σ is a realizing strategy and the proof is completed.

We now wish to characterize all the sets of vectors that have a realizing strategy. For this purpose we
give the next definition. For a player-2 memoryless strategy τ , let Πτ

e be the (finite) set of Eulerian cyclic
paths in Gτ , that is Πτ

e contains only cyclic paths that visit every edge at most once. For every path

7

π ∈ Πτ
e , let c1, . . . , ct be the simple cycles that occur in π and we associate a t× k matrix Aπ to every

path π such that the i-th column of the matrix is Avg(ci). We observe that

{Avg(π) | π is a cyclic path in Gτ} =
⋃

π∈Πτ
e

{Aπ · x | x ∈ QSI}

The next lemma shows how to compute the realizable sets of vectors.

Lemma 2 Let G be a k-dimensional graph, and let τ1, . . . , τℓ be the (finitely many) player-2 memoryless
strategies in G. A set of vectors V ⊆ Rk is realizable if and only if there exist x1, . . . , xℓ ∈ Rk such that
xi ∈

⋃
π∈Π

τi
e
{Aπ · x | x ∈ QSI} (for every i ∈ {1, . . . , ℓ}) and CONVEX (x1, . . . , xℓ) ⊆ CONVEX (V).

Proof. First we characterize the realizable vector sets when a player-2 memoryless strategy τ is given,
that is, we characterize the realizable vectors in a one-player game. A finite-memory strategy σ in a one-
player graph Gτ is an ultimately periodic infinite path, and (Gτ)σ is a lasso shaped graph with exactly
one cycle. The cycle of (Gτ)σ is obviously a cyclic path in Gτ , and thus V is realizable in Gτ iff there is
a cyclic path π in Gτ with Avg(π) ∈ CONVEX (V).

Hence, by Lemma 1, we get that V is realizable iff for every player-2 memoryless strategy τi there
is a cyclic path πi in Gτi with Avg(πi) ∈ CONVEX (V). Since such witness πi exists iff there exists
xi ∈

⋃
π∈Π

τi
e
{Aπ · x | x ∈ QSI} with Avg(πi) = xi, then the proof is completed.

In the next example we illustrate the geometrical interpretation of Lemma 2.

Example 3 Consider the game graph G in Figure 5, where the box vertices are controlled by player 2.
Player 2 has two possible memoryless strategies, namely, τ1 that follows the edge v0 → v1 and τ2 that
follows v0 → v4. In Gτ1 the set of Eulerian cyclic paths Πτ1

e contains all cyclic sub-paths of the Eulerian
cyclic path v1 → v2 → v2 → v3 → v3 → v1. Hence, the average weight of any infinite lasso path in
Gτ1 is a convex combination of Avg(v1 → v2 → v3 → v1), Avg(v2 → v2) and Avg(v3 → v3) (points D,
F and E in Figure 6). In Gτ2 , an Eulerian cyclic path is either a sub-path of v4 → v5 → v5 → v4 or
the path v6 → v6. Hence, the average weight of any infinite lasso path is either a convex combination of
Avg(v4 → v5 → v4) and Avg(v5 → v5) (points A and B in Figure 6), or it is Avg(v6 → v6) (point C in
Figure 6). By Lemma 2, we get that a set of vectors V is realizable if and only if CONVEX (V) intersects
with the polygon DEF and with either the line AB or with the point C (or with both).

v0

v1 v2 v3

v4 v5 v6

(0,0)

(0,0)

(1,3) (1,3)

(1,3)

(3,2) (2,1)

(-3,-2) (-1,-7)

(-3,-2)

(-2,-1) (-1,-3)

Fig. 5. Game graph G.

4 Generic Solution for Games with Quantitative Objectives

In this section we solve the quantitative analysis problem for games with quantitative objectives that
satisfy Properties 1-3 and we solve the boolean analysis problem for objectives that satisfy Properties 1-4.
We first give a conceptual (i.e., not always computable) solution for the boolean analysis problem, and
then extend the solution for the quantitative analysis problem.

An equivalent formulation for the boolean analysis problem is to ask whether for a game graph G and
a threshold ν there is a player-1 (finite-memory) strategy σ such that the one-player solution over Gσ is
at most ν. By the third property (convex monotonicity), it is enough to determine whether there is σ such
that for every SCC S of Gσ it holds that f(CONVEX (S)) ≤ ν (where f is the solution for the one-player
game). However, we first show how to determine whether there is σ such that f(CONVEX (Gσ)) ≤ ν
and only then solve the original problem.

8

r

A

r

B

r

C

r

D

r

E

r

F

Fig. 6.

Lemma 3 Let f be a one-player solution that satisfies Properties 1-3. Then infσ∈FM1 f(CONVEX (Gσ))
is computable (when the input is a game graph G). If f also satisfies Property 4, then the problem of
determining whether there is a player-1 finite-memory strategy σ such that f(CONVEX (Gσ)) ≤ ν is
decidable (when the input is G and ν).

Proof. Let τ1, . . . , τm be all player-2 memoryless strategies in G (note that m is at most exponen-
tial in |G|). By Lemma 2, and by the monotonicity of f , there is a player-1 strategy σ that satisfies
f(CONVEX (Gσ)) ≤ ν if and only if there are matrices Aπ1 , . . . , Aπm

and vectors x1, . . . , xm such that
πi ∈ Πτi

e and xi ∈ QSI and ζm(Aπ1 · x1, . . . , Aπm
· xm) ≤ ν. For every τi, the set Πτi

e is finite (and
at most of exponential size). Hence, we can enumerate all m-tuples of Πτ1

e × · · · × Πτm
e and check if

for at least one tuple there is a solution to the inequality ζm(Aπ1 · x1, . . . , Aπm
· xm) ≤ ν. If f satisfies

Property 4, then for a given π1, . . . , πm we can effectively check if the inequality is satisfiable. Hence,
we can effectively determine whether there is σ such that f(CONVEX (Gσ)) ≤ ν. Moreover, for a given
π1, . . . , πm the expression infx1,...,xm∈SI ζm(Aπ1 ·x1, . . . , Aπm

·xm) is first-order definable (recall that ζm is
first-order definable) over 〈R, <,+,×〉 (note that xi ranges over SI and not over QSI) and therefore, by
Taski’s Theorem [13] its value is computable. Since ζm is continuous we get that infx1,...,xm∈SI ζm(Aπ1 ·
x1, . . . , Aπm

· xm) = infx1,...,xm∈QSI ζm(Aπ1 · x1, . . . , Aπm
· xm). Finally, by Lemma 2, we have that

infσ∈FM1 f(CONVEX (Gσ)) = infπ1∈Π
τ1
e ,...,πm∈Π

τm
e

infx1,...,xm∈QSI ζm(Aπ1 ·x1, . . . , Aπm
·xm), and since

Πτi
e is finite we get that infσ∈FM1 f(CONVEX (Gσ)) is computable.

Before presenting the algorithm for the boolean analysis problem we recall the (standard) definitions of
winning regions and attractors. Let G be a game graph with an initial vertex v0, and let v be an arbitrary
vertex in G. We denote by (G, v) the game graph that is formed from G by changing the initial vertex to
v. We say that a vertex v is in player-1 winning region (denoted by Win1) if player 1 wins in (G, v) (that
is, player 1 has a finite-memory strategy that assures a value at most ν to the objective). The player-1
attractor set of a vertex v (denoted by Attr1(v)) contains all the vertices from which player 1 can force
reachability to v (after finite number of rounds). It is well known that the attractor set of a vertex is
computable (even in linear time) and that player 1 can force reachability by a finite-memory strategy (in
fact, even by a memoryless strategy). The next remark shows another important property of attractors
and winning regions.

Remark 1 Let G be a game graph over a boolean objective that is formed by a quantitative objective with
a solution function f and a threshold ν, and let v be a vertex in G. Then for every vertex u /∈ Attr1(v),
if σ is a finite-memory player-1 strategy for (G, u), then σ is a winning strategy in (G−Attr1(v), u).

Proof. We denote H = G − Attr1(v) and we observe that (H,u)σ is a subgraph of (G, u)σ. Hence,
for every SCC S ∈ H there is a corresponding SCC S′ ∈ G such that f(CONVEX (S′)) ≤ ν. Since
CONVEX (S) ⊆ CONVEX (S′) and by the monotonicity of f we get that f(CONVEX (S)) ≤ ν and
therefore σ is a winning strategy in (H,u).

Algorithm 1 computes player-1 winning region, and we prove its correctness in Lemma 4

Lemma 4 Algorithm 1 computes player-1 winning region.

9

Algorithm 1 Player-1 winning region computation for quantitative objectives

WinningRegion(G,f, ν)

for v ∈ G do

if ∃σ s.t f(CONVEX ((G, v)σ)) ≤ ν then

W ← Attr1(v)
W ←W∪WinningRegion(G− Attr1(v), f, ν)
return W

end if

end for

return ∅

Proof. We first prove that in every step of the algorithm, if a vertex u ∈ W , then u ∈ Win1. We prove the
assertion by considering the next three cases: (i) There is a strategy σ for which f(CONVEX ((G, u)σ)) ≤
ν. In this case, for every SCC S ∈ (G, u)σ we have that CONVEX (S) ⊆ CONVEX ((G, u)σ) and by the
monotonicity of f we get that f(CONVEX (S)) ≤ ν. Hence, u ∈ Win1. (ii) There is a vertex v and a
strategy σ s.t f(CONVEX ((G, v)σ)) ≤ ν and u ∈ Attr1(v). In this case, v is in player-1 winning region
and therefore the attractor of v is also in Win1. (iii) For some vertex v we have u ∈WinningRegion(G−
Attr1(v), f, ν) and f(CONVEX ((G, v)σ)) ≤ ν for some strategy σ. By a simple induction on the size of
the graph we get that u is in player-1 winning region for the game graph G − Attr1(v). The following
strategy is a winning strategy for (G, u): (a) play according to the winning strategy over G − Attr1(v);
(b) if the pebble is in vertex v, then play according to σ. Hence, if u ∈ W , then u ∈ Win1 and we get
that Win1 ⊇ W .

In order prove the converse direction, we first prove that ifWin1 6= ∅, thenW 6= ∅. Indeed, if v ∈ Win1,
then for some strategy σ we have that for every SCC S ∈ (G, v)σ it holds that f(CONVEX (S)) ≤ ν.
Let S′ be a terminal SCC in (G, v)σ and let (u,m) be a vertex in S′ (where u is a vertex in G and m is
a memory state of σ). Let σ′ be the strategy that is formed by changing σ initial memory state to m.
Then (G, u)σ

′

= S′, and therefore f(CONVEX ((G, u)σ
′

)) ≤ ν. Hence, the if condition in the for loop is
satisfied at least once, and W 6= ∅. We are now ready to prove that Win1 ⊆ W . Towards a contradiction
we assume the existence of u ∈ (Win1 − W). By the definition of Algorithm 1 it follows that there is
a subgraph H ⊆ G such that u ∈ H and the algorithm returns ∅ when it runs over H . Hence, player-1
winning region in H is empty (namely, u /∈ Win1 over game graph H) and by Remark 1 we get that
u /∈ Win1 in game graph G and the contradiction follows. Thus Win1 ⊆ W .

We present a similar algorithm for the computation of quantitative analysis of quantitative objec-
tives. For this purpose we extend the notion of winning regions to quantitative objectives by defining
value regions. For a threshold ν we say that a vertex v is in ν value region (denoted by VR(ν)) if
infσ∈FM1 supτ∈S2

Valσ,τ = ν (when the initial vertex of the game is v). Algorithm 2 computes value
regions by a call to ValueRegion(G, f,−∞), and its correctness follows by the same arguments as in
the proof of Lemma 4. We note that if f satisfies Properties 1-3, then by Lemma 3, there is an effective

Algorithm 2 Value region computation for quantitative objectives. The algorithm invokes
ValueRegion(G, f,−∞).

ValueRegion(G, f,ValLowerBound)

if G 6= ∅ then
for v ∈ G do

I [v]← max(infσ∈FM1 f(CONVEX ((G, v)σ)),ValLowerBound)
end for

u← argminv∈G I [v] {Choose u s.t I [u] = minv∈G I [v]}
VR(I [u])← VR(I [u]) ∪Attr1(u) {Add Attr1(u) to the value region of I [u]}
return ValueRegion(G−Attr1(u), f, I [u]) {Continue the computation recursively. The new lower bound
is I [u].}

end if

procedure to compute infσ∈FM1 f(CONVEX ((G, v)σ)) (hence, Algorithm 2 can be effectively executed)

10

and if f satisfies Properties 1-4, then by the same lemma we get that there is a procedure to determine
whether f(CONVEX ((G, v)σ)) ≤ ν (hence, Algorithm 1 can be effectively executed). Hence, we get the
main result of this section.

Theorem 1 Let f be the one-player solution of a quantitative objective.

– If f satisfies Properties 1-3, then the corresponding quantitative analysis problem is computable.
– If f satisfies Properties 1-4, then the corresponding boolean analysis problem is decidable.

We note that Theorem 1 provides a recipe for the construction of ǫ-optimal strategies. If the infimum
value that player 1 can achieve is ν, then the process that enumerates all σ ∈ FM1 and halts if the
one-player solution of Gσ is at most ν + ǫ will always terminate. Similarly, if the boolean analysis
problem is decidable, then it is possible to effectively construct a finite-memory strategy that assures the
corresponding threshold (we first check if such a strategy exists, and if it does exist, then we enumerate
all finite-memory strategies until we find a strategy σ such that the solution for Gσ is at most ν).

5 Games with Mean-Payoff Expression Objectives

In this section, we give the formal definition of mean-payoff expressions and we use the results of Section 4
to analyze games with mean-payoff expressions. In Subsection 5.1 we define mean-payoff expressions and
show that optimal strategies may require infinite memory. In Subsection 5.2 we analyze mean-payoff
expression games.

5.1 Mean-payoff expression objectives

The class of mean-payoff expressions is the closure of single dimension mean-payoff objectives under the
algebraic operations of min,max, sum and numerical complement. Formally, for an infinite sequence of
reals ρ = a1, a2, · · · ∈ Rω, we denote LimInfAvg(ρ) = lim infn→∞

a1+···+an

n
and LimSupAvg(a1, a2, . . .) =

lim supn→∞
a1+···+an

n
. For an infinite sequence of vectors ρ = v1, v2 · · · ∈ (Rk)ω we denote be the

projection of ρ to the i-th dimension by ρi, and we denote LimInfAvg i(ρ) = LimInfAvg(ρi) and
LimSupAvgi(ρ) = LimSupAvg(ρi). An atomic expression over Rk is either LimInfAvg i or LimSupAvgi.
If E1 and E2 are expressions, then −E1, max(E1, E2), min(E1, E2) and sum(E1, E2) are also expressions.
For a sequence ρ ∈ (Rk)ω and an expression E, the value of E(ρ) is LimInfAvg i(ρ) if E = LimInfAvg i,
LimSupAvgi(ρ) if E = LimSupAvg i, op(E1(ρ), E2(ρ)) if E = op(E1, E2) (for op ∈ {min,max, sum})
and −E1(ρ) if E = −E1. Over R2, a possible expression is E = min(LimInfAvg1,LimSupAvg1 +
LimInfAvg2) + max(LimInfAvg1,LimSupAvg2), and the value of E for the sequence (−1, 1)ω is
min(−1,−1 + 1) + max(−1, 1) = 0.

We say that an expression E is of normal form if (i) the numerical complement does not occur
in E; and (ii) for every dimension i, there is at most one occurrence of an atomic expression Ai ∈
{LimInfAvgi,LimSupAvgi}; and (iii) E = max(E1, . . . , Eℓ), where Ei is a max-free expression (that is,
the max operator does not occur in Ei). The next simple lemma shows that w.l.o.g we may consider only
games over normal form expressions.

Lemma 5 For every k-dimensional weighted graph G with a weight function w and an expression E,
we can effectively construct an m-dimensional weight function w′ and a normal form expression F such
that every infinite path in G gets the same value according to (E,w) and according to (F,w′).

Proof. We can easily overcome the restriction on the number of atomic expressions per dimension by
creating several copies of the same dimension (that is, additional dimensions with weights that are
identical to the original dimension). We can create an equivalent numerical complement free expression
by the following recursive process. If E = −LimInfAvgi (respectively, E = −LimSupAvgi), then we
multiply all the weights in dimension i by −1 and define F = LimSupAvg i (resp. F = LimInfAvg i).
F is equivalent to E since LimInfAvg(a1, a2, . . .) = −LimSupAvg(−a1,−a2, . . .). If E = − op(E1, E2),
then we recursively change the weights and construct normal form expressions F1 and F2 that are
equivalent to −E1 and −E2, and return the normal form expression F = op(F1, F2). And we similarly
handle the expression E = op(E1, E2). Finally, if we have a numerical complement free expression E,
then we construct an equivalent expression F = max(F1, . . . , Fℓ), where Fi is a max free expression,

11

by the following recursive procedure: If E is an atomic expression, then we return F = max(E,E). If
E = op(E1, E2), then we recursively construct two expressions F1 and F2, such that Fi is equivalent to
Ei and F1 = max(G1, . . . , Gr), F2 = max(H1, . . . , Hq) (where Hi and Gi are max-free expressions), and
we return F = maxi∈{1,...,r},j∈{1,...,q}{op(Gi, Hj)}.

Hence, in the rest of the paper we will assume w.l.o.g that all the expressions are of normal form. The
next example shows that optimal strategies for mean-payoff expressions may require infinite memory.

Example 4 Consider the game graph in Figure 7 and the expression E =
max(LimInfAvg1,LimInfAvg2). In this game graph there is only one vertex that is controlled by
player 1 and two self-loop edges, namely e1 with w(e1) = (9, 1) and e2 with w(e2) = (1, 9). We first
observe that any finite-memory strategy gives a value of at least 5 to E. Indeed, a finite-memory
strategy induces an ultimately periodic path π with LimInfAvg(π) = αw(e1) + (1 − α)w(e2) for some
α ∈ [0, 1] ∩ Q. Hence, E(π) = max(9α + 1 − α, α + 9 − 9α) = max(8α + 1, 9 − 8α), and the minimum
value for E is obtained when α = 1

2 and we get that the minimal value for E is 5. We now describe a
player-1 infinite-memory strategy that gives a value of at most 2 to E. The strategy is simple. It follows
e2 as long as the average weight in the first dimension is more than 2, then it follows e1 as long as
the average weight in the second dimension is more than 2, and this process is repeated forever (i.e.,
e2 is followed for a while, then e1 and so on). Clearly, in the formed path π the average weight of the
first dimension is at most 2 for infinitely many prefixes of π. Hence LimInfAvg1(π) ≤ 2, and by the
same arguments LimInfAvg2(π) ≤ 2. Thus, E(π) ≤ 2, and we establish the fact that optimal strategies
may require infinite-memory strategies (in this example, the presented infinite-memory strategy is not
optimal, but we demonstrated that the best finite-memory strategy does not give an optimal value).

(9, 1) (1, 9)

Fig. 7.

5.2 Synthesis of a finite-memory controller for mean-payoff expression objectives

In this subsection we apply Theorem 1 to mean-payoff expression objectives. We first prove that the
solution for mean-payoff expressions satisfies Properties 1-3 , and thus the quantitative analysis problem
is computable for mean-payoff expression games. We then show that the boolean analysis problem is inter-
reducible with Hilbert’s tenth problem over rationals (H10 (Q)) by showing that an effective algorithm
for H10 (Q) implies that mean-payoff expressions satisfy Property 4, and by a reduction from H10 (Q) to
mean-payoff expression games.

One-player games were solved in [6] and in [15]. We present our solution from [15] to establish
properties of the one-player solution. For an expression E and a one-player game (G, v0), that is, a game
over graph G with initial vertex v0, we say that a threshold ν is feasible if the player has a strategy that
achieves a value at least ν (we recall that in the one-player setting, the player aim to maximize the value
of the objective). The max-free constraints were presented in [14] (Section A.4), and they describe the
feasible thresholds of a max-free expression (a threshold ν is feasible if the one-player can achieve a value
of at least ν).

Definition 1 (Max-free constraints) Let G be a strongly-connected k-dimensional game graph, and
we recall that C(G) is the set of simple cycles of G. Let E be a max-free expression such that the first
j dimensions of G occur in E as lim-inf (and the others as lim-sup). We define a variable X i

c for every
simple cycle c and index i ∈ {j + 1, . . . , k}, and we define a vector of variables r = (r1, . . . , r2k). Then
the max-free constraints for threshold ν ∈ Q are

1.
∑

c∈C(G)X
i
cAvgm(c) ≥ rm for every i ∈ {j + 1, . . . , k}

and m ∈ {1, . . . , j, i}

12

2.
∑

c∈C(G)X
i
c = 1 for every i ∈ {j + 1, . . . , k}

3. X i
c ≥ 0 for every i ∈ {j + 1, . . . , k} and c ∈ C(G)

4. ME × r ≥ (0, . . . , 0, ν)T

where ME is a matrix that is independent of the graph, and computable from E. (We note that in [14],
the first type of constraints was

∑
c∈C(G)X

i
cwm(c) ≥ rm, where wm is the projection of w to the m-th

dimension, and the second type of constraints was
∑

c∈C(G) |c|X
i
c = 1. It is straight forward to verify

that the constraints are equivalent — in terms of feasibility. In addition, the fourth constraint was
presented as ME × r ≥ bν ; but the proof of Lemma 7 in [14] implies that bν = (0, . . . , 0, ν)T .) We
proved in [15] that a threshold ν is feasible if and only if the corresponding max-free constraints are
feasible. For a max-free expression E, a strongly-connected graph G and a threshold ν, we denote the
max-free constraints by MFC(E,G, ν) and we observe that for a (normal-form) mean-payoff expression
E = max(E1, . . . , Eℓ) and a strongly-connected graph G, the solution function for the one-player game
is f(G) = max{ν ∈ R | ∃i ∈ {1, . . . , ℓ} s.t MFC(Ei, G, ν) is feasible}. By the definition of the max-free
constraints, it easily follows that the solution is a function that is first-order definable and continuous
(i.e., it satisfies Properties 1 and 3). In the next Lemma we prove that the solution also satisfies the
second property.

Lemma 6 Let E be a mean-payoff expression over k dimensions, and let f be its one-player solution
function. Then for every two strongly-connected graphs G and H: if CONVEX (H) ⊆ CONVEX (G),
then f(H) ≤ f(G).

Proof. Since we assume that E = max(E1, . . . , En), where Ei is a max-free expression, it is enough
to prove that if a threshold ν is feasible in H for the max-free expression Ei, then it is also feasible
in G. Let cG1 , . . . , c

G
n and cH1 , . . . , cHm be the simple cycles of G and H respectively. We note that since

CONVEX (H) ⊆ CONVEX (G), then for every convex combination x1, . . . , xm, there is a convex com-
bination y1, . . . , yn such that

∑m

i=1 xiAvg(c
H
i) =

∑n

i=1 yiAvg(c
G
i). Hence, a solution for the max-free

constraints over graph H induces a solution for the max-free constraints over G (by replacing, in the
inequalities of constraints 1 over graph H , every convex combination of cycles of H by the corresponding
convex combination of cycles of G).

Thus, every threshold that is feasible for H is also feasible for G, and the proof follows.

Hence, the one-player solution function of mean-payoff expressions satisfies Properties 1-3 and the next
theorem follows.

Theorem 2 The quantitative analysis problem for mean-payoff expression games (where player 1 is
restricted to finite-memory strategies) is computable.

We now show that the solution for one-player mean-payoff expression games satisfies Property 4 if and
only if H10 (Q) is decidable. We first prove the direction from right to left.

Lemma 7 If H10 (Q) is decidable, then mean-payoff expressions satisfy the fourth property.

Proof. Let G be an arbitrary strongly connected graph with n simple cycles, let C(G) = {c1, . . . , cn} be
its set of simple cycles, let E = max(E1, . . . , Em) be a mean-payoff expression (where Ei is a max-free
expression), and let ν be a rational threshold. We recall that the sentence (ζn(Avg(c1), . . . ,Avg(cn) ≤ ν)
is equivalent to the statement: ”For every y > ν and i ∈ {1, . . . ,m}, the constraints MFC(Ei, G, y)
are infeasible.” By the definition of the max-free constraints, when the set Avg(G) is fixed the above
statement is easily reduced to the infeasibility ofm linear systems. Motzkins Transposition Theorem (e.g.,
Theorem 1 in [2]) gives a witness to the infeasibility of a set of linear inequalities. We use Lagrange
four-square Theorem to construct a Diophantine equation that has a rational root if and only if the
witness exists. We show that the construction works also when Avg(G) is not fixed, i.e., when Avg(G) =
{A1x1, . . . , A1xn} for some n matrices A1, . . . , An and n vectors of rational variables x1, . . . , xn ∈ QSI.
(The details of the construction are given in the appendix.) Hence, if H10 (Q) is decidable, then mean-
payoff expressions satisfy the fourth property.

We now prove the reduction from H10 (Q) to the boolean analysis of mean-payoff expression games, and
we show that there is a reduction even for a simpler subclass of mean-payoff expressions. An expression

13

E is sum-free and LimInfAvg-only if only the min and max operators occur in E and all the atomic
expressions in E are of the form LimInfAvg i. (In addition, the numerical complement operator also
does not occur). The next lemma shows that the boolean analysis problem for sum-free LimInfAvg-only
expressions is H10 (Q)-hard.

Lemma 8 If the boolean analysis problem is decidable for sum-free LimInfAvg-only expressions, then
H10 (Q) is decidable.

Proof. We only present a rough and informal sketch of the proof. The full proof is given in the appendix.
We first show a reduction from H10 (Q) to the problem of finding a rational solution for two set of
variables Q = {q1, . . . , qn} and P = {p1, . . . , pn} and a set of constraints, each of them is of the form:
(i)

∑
i∈I αiqi ≤ 0, for some I ⊆ {1, . . . , n}; or (ii)

∑
i∈I αipi ≤ 0, for some I ⊆ {1, . . . , n}; or (iii) qipj =

qkpℓ for some i, j, k, ℓ ∈ {1, . . . , n}; subject to qi, pi > 0. We then show a reduction from the boolean
analysis problem to the above problem. We illustrate the reduction by showing the construction for the
set of constraints {q1 − 2q2 ≤ 0, 2p1 − 3p2 ≤ 0, p1q1 = p2q2}. For the these constraints we build a game
graph G that is illustrated in Figure 8. In the figure we explicitly show only part of the weight vectors
and only part of the dimensions. The initial vertex of G is s0 and this vertex is a player-2 vertex (and the
rest are player-1 vertices). The objective of the game is the expression E = max(1,min(2, 3),min(4, 5)),
where i stands for LimInfAvg i (for i = 1, 2, 3, 4, 5), and the threshold is 0. In G, player 2 has only two
memoryless strategies, namely τ1 = s0 → b1 and τ1 = s0 → a1. We rely on Lemma 4 and show that
player 1 has a winning strategy if and only if there is a finite path π1 that visits only the self-loops of b2 and
a path π2 that visits only the self-loops of a2 such that every vector in v ∈ CONVEX (Avg(π1),Avg(π2))
satisfies the winning condition, i.e., if v = (v1, v2, v3, v4, v5), then max(v1,min(v2, v3),min(v4, v5)) ≤ 0.
We observe that for any such path π1 it holds that Avg(π1) = q1(3, 1, 0,−1, 0) + q2(−2, 0,−1, 0, 1)
and similarly Avg(π2) = p1(2,−1, 0, 1, 0) + p2(−1, 0, 1, 0,−1) for some positive rational q1, q2, p1, p2. We
further observe that if q1 − 2q2 > 0, then Avg(π1) is positive in the first dimension, and thus there is
a vector v ∈ CONVEX (Avg(π1),Avg(π2)) that gives a positive value to the expression. Hence, it must
hold that q1 − 2q2 ≤ 0 and similarly 2p1 − 3p2 ≤ 0. Moreover, we prove that if p1q1 6= p2q2, then there
exists v ∈ CONVEX (Avg(π1),Avg(π2)) that is positive either in dimensions 2 and 3 or in dimensions 4
and 5. Hence, it must hold that p1q1 = p2q2 and the proof follows.

s0

a1 a2

b1b2

(2,-1,0,1,0)

(-1,0,1,0,-1)

(3,1,0,-1,0)

(-2,0,-1,0,1)

Fig. 8.

The next theorem summarizes the results of Lemmas 8 and 7

Theorem 3 The boolean analysis problem for mean-payoff expression games (when player 1 is restricted
to finite-memory strategies) is inter-reducible with H10 (Q), and it is H10 (Q)-hard even for sum-free
LimInfAvg-only expressions.

We also consider the case where both players are restricted to finite-memory strategies. In this setting, the
quantitative analysis problem is to compute infσ∈FM1 supτ∈FM2

Valσ,τ . The boolean analysis problem
is to determine whether player 1 has a finite-memory strategy that assures a value of at most ν against
any player-2 finite-memory strategy.

Theorem 4 When both players are restricted to finite-memory strategies: (i) the quantitative anal-
ysis problem for mean-payoff expression games is computable; (ii) the boolean analysis problem for
mean-payoff expression games is inter-reducible with H10 (Q), and it is H10 (Q)-hard even for sum-free
LimInfAvg-only expressions.

14

Proof. We present a sketch of the proof. The full proof is given in the appendix. Informally, when both
players are restricted to finite-memory strategies, the outcome of a play is an ultimately periodic path,
and thus we may assume that all the atomic expressions are of the form of LimInfAvg (because for
periodic paths we have LimInfAvg(π) = LimSupAvg(π)). We also show that if all the atomic expressions
are LimInfAvg and player 1 is restricted to finite-memory strategies, then player 2 can achieve a value
greater than ν if and only if he can do it with a finite-memory strategy, and the proof follows.

As a final remark, we note that while the boolean analysis for sum-free LimInfAvg-only expressions is
H10 (Q)-hard when player 1 is restricted to a finite-memory strategy (and also when both players are
restricted to finite-memory strategies), the next lemma shows that the problem is decidable when both
players may use arbitrary strategies.

Lemma 9 (Theorem 5 in [16]) When both players may use arbitrary strategies, the boolean analysis
of sum-free LimInfAvg-only expression games is decidable.

Proof. The proof follows from Theorem 5 in [16] due to the fact that there is an immediate translation
from sum-free LimInfAvg-only expressions to the

∨∧
MeanPayoffInf≤(ν) objectives that were defined

in [16].

6 Discussion and Future Work

In this work we studied the synthesis of finite-memory strategies for games with robust multidimensional
mean-payoff objectives, and we obtained two main results. The first is a positive result, namely, the
computability of the quantitative analysis problem. The second has a negative flavour, and it shows that
the boolean analysis is inter-reducible with Hilbert’s Tenth problem over rationals. From a practical point
of view, the positive result is the most interesting, since for the first time (to the best of our knowledge)
a recipe is given for computing ǫ-optimal finite-memory strategies for a robust class of quantitative
objectives. A future work is to investigate whether the construction of these ǫ-optimal strategies is
feasible, both in terms of memory size and computational complexity. From the theoretical point of
view, the negative result is a bit surprising since it suggests that the boolean analysis is harder than the
optimization problem, and in computer science typically there is a naive reduction from optimization
problems to the corresponding decision problems. However, in our case, the optimization computes only
the greatest upper bound, and since optimal finite-memory strategies need not exist, then the reduction
fails. In fact, the hardness result suggests that it is even H10 (Q)-hard to determine whether an optimal
strategy exists. A future work is to investigate games in which player 1 may use arbitrary infinite-
memory strategies. Additional direction for future work is to consider more general algebraic structures
over multidimensional mean-payoff objectives.

Acknowledgements. I would like to thank Prof. Alexander Rabinovich, my Ph.d supervisor, for many
discussions on this work, and in particular for (i) discussions on Hilbert tenth problem and Tarski’s
Theorem; and (ii) suggesting to present a modular and abstract solution.

References

1. R. Alur, A. Degorre, O. Maler, and G. Weiss. On omega-languages defined by mean-payoff conditions.
FOSSACS, 2009.

2. A. Ben-Israel. Motzkins transposition theorem, and the related theorems of farkas, gordan and stiemke.
Encyclopaedia of Mathematics, 2001.

3. U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman. Temporal specifications with accumulative
values. In LICS, 2011.

4. T. Brázdil, V. Brozek, K. Chatterjee, V. Forejt, and A. Kucera. Two views on multiple mean-payoff objectives
in markov decision processes. In LICS, 2011.

5. T. Brázdil, K. Chatterjee, A. Kucera, and P. Novotný. Efficient controller synthesis for consumption games
with multiple resource types. In CAV, 2012.

6. K. Chatterjee, L. Doyen, H. Edelsbrunner, T. A. Henzinger, and P. Rannou. Mean-payoff automaton expres-
sions. In CONCUR, 2010.

7. K. Chatterjee, L. Doyen, and T. A. Henzinger. Expressiveness and closure properties for quantitative lan-
guages. LICS, 2009.

15

8. K. Chatterjee, L. Doyen, and T. A. Henzinger. Quantitative languages. ACM Trans. Comput. Log., 2010.
9. K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Generalized mean-payoff and energy games. In

FSTTCS, 2010.
10. K. Chatterjee, M. Randour, and J.-F. Raskin. Strategy synthesis for multi-dimensional quantitative objec-

tives. In CONCUR, 2012.
11. M. Droste and G. Rahonis. Weighted automata and weighted logics on infinite words. In Developments in

Language Theory, 2006.
12. E. Kopczyński. Half-positional determinacy of infinite games. ICALP, 2006.
13. A. Tarski. A decision method for elementary algebra and geometry. 1951.
14. Y. Velner. The complexity of mean-payoff automaton expression. CoRR, 2011.
15. Y. Velner. The complexity of mean-payoff automaton expression. ICALP, 2012.
16. Y. Velner and A. Rabinovich. Church synthesis problem for noisy input. In FOSSACS, 2011.

16

A Proof of Lemma 7

Let G be an arbitrary strongly connected graph with n simple cycles, let C(G) = {C1, . . . , Cn} be
its set of simple cycles, let E = max(E1, . . . , Em) be a mean-payoff expression (where Ei is a max-free
expression), and let ν be a rational threshold. We recall that the sentence (ζn(Avg(C1), . . . ,Avg(Cn) ≤ ν))
is equivalent to the statement:

For every y > ν and i ∈ {1, . . . ,m}, the constraints MFC(Ei, G, y) are infeasible.

By the definition of the max-free constraints, when the set Avg(G) is fixed the above statement is easily
reduced to the infeasibility of m linear systems, each of them is of the form:

Ai
Avg(G)x ≤ bi and Bi

Avg(G)x < ci

By Motzkins Transposition Theorem (e.g., Theorem 1 in [2]) the infeasibility of a linear system

Ai
Avg(G)x ≤ bi and Bi

Avg(G)x < ci is equivalent to the existence of two non-negative vectors y, z ≥ 0
such that either

– z = 0 and (Ai
Avg(G))

T y = 0 and bi
T
y < 0; or

– z 6= 0 and (Ai
Avg(G))

T y + (Bi
Avg(G))

T z = 0 and bi
T
y + ci

T
z ≤ 0

Since every linear inequality has a rational solution (when the coefficients are rational) we get that if such
y and z exist, then there also exist rational y and z that satisfy the above. Hence the above statement
is equivalent to the rational feasibility of the following constraints (for variables y = (y1, . . . , yr), z =
(z1, . . . , zr), p1, p2 and q):

– p1 > 0, p2 > 0, q ≥ 0
– y ≥ 0, z ≥ 0
– (Ai

Avg(G))
T y + (Bi

Avg(G))
T z = 0

– (
∑r

j=1 zi − p1)(bi
T
y + p2) = 0

– (
∑r

j=1 zi)(b
i
T
y + ci

T
z + q) = 0

By Lagrange’s four-square Theorem, every natural number is the sum of four integer squares. Therefore,
every inequality of the form x ≥ 0 is equivalent to the rational feasibility of the equation

x =
x2
1 + x2

2 + x2
3 + x2

4

1 + x2
5 + x2

6 + x2
7 + x2

8

and every inequality of the form x > 0 is equivalent to the rational feasibility of the equation

x =
1 + x2

1 + x2
2 + x2

3 + x2
4

1 + x2
5 + x2

6 + x2
7 + x2

8

and the equations of the above form can be easily transformed into Diophantine equations. Hence, we
get that the infeasibility of a linear system

Ai
Avg(G)x ≤ bi and Bi

Avg(G)x < ci

is equivalent to the rational feasibility of several Diophantine equations D1 = 0, D2 = 0, . . . , Dr = 0,
and therefore it is equivalent to the rational feasibility of Di = D2

1 + · · ·+D2
r = 0. Therefore, when the

set of simple cycles is fixed, the simultaneous infeasibility of all the max-free constraints is equivalent
to the rational feasibility of the Diophantine equation DAvg(G) =

∑m
i=1(D

i)2 = 0. We also note that if
Avg(G) is not fixed, that is Avg(Ci) is a vector of variables (for i = 1, . . . , n), then DAvg(C) = 0 remains
a Diophantine equation.

We are now ready to prove that the solution for one-player mean-payoff games is satisfies Property 4
(if H10 (Q) is decidable). For n matrices A1, . . . , An the rational satisfiability of ζn(A1x1, . . . , Anxn) ≤ ν
is equivalent to the existence of a rational solution to DAvg(G) = 0 (for Avg(G) = {A1x1, . . . , Anxn}).
We can encode the requirement that x1, . . . , xn ∈ QSI by a Diophantine equations K(x1, . . . , xn) =
0 by the same techniques we used for the construction of DAvg(G) = 0. Hence, the satisfiability of
ζn(A1x1, . . . , Anxn) ≤ ν is equivalent to the existence of a rational solution to the Diophantine equation
K2 +D2 = 0, and if H10 (Q) is decidable, then we can effectively determine whether K2 +D2 = 0 has
a rational solution and the proof follows.

17

B Proof of Lemma 8

We prove Lemma 8 in the next three subsections. In the first subsection we present an alternative
formulation for H10 (Q). In the second subsection we prove a simple technical lemma on vectors. In the
third subsection we present a reduction from the problem we presented in the first subsection to sum-free
LimInfAvg-only games, and the reduction relies on the lemma that we prove in the second subsection.

We note that the first two subsection are technical and tedious, but they relay only on basic algebra.

B.1 Alternative formulations of H10(Q)

In this subsection, we present five problems; the first problem is H10 (Q), and we show a reduction from
the i-th problem to the i + 1-th problem, for i = 1, 2, 3, 4. Thus, we get that there is a reduction from
H10 (Q) to the fifth problem (that is, Problem 6), and in the third subsection we will show a reduction
from that problem to mean-payoff expression games.

Problem 2 (H10 (Q)) For a polynomial P , find a rational solution to

P (q1, . . . , qn) = 0

Problem 3 Find a rational solution to

q0 · P (
q1
q0

, . . . ,
qn
q0

) = 0

(for a polynomial P) subject to

– q0 ≤ qi for every i = 1, . . . , n; and
– qi ≥ 1 for every i = 0, . . . , n.

Lemma 10 There is a reduction from H10 (Q) to Problem 3.

Proof. We first note that we can easily reduce H10 (Q) to the problem of finding a rational solution
for the polynomial equation D(q1, q2, . . . , qn) = 0 subject to q1, q2, . . . , qn ≥ 1. (The reduction is triv-
ial, a polynomial equation P (q1, . . . , qn) = 0 has a solution if and only if the polynomial equation
D(p1, . . . , p2n) = P (p1 − p2, p3 − p4, . . . , p2n−1 − p2n) = 0 has a solution that satisfies pi ≥ 1.) We define
P = D and we note that q0 · P = 0 has a rational solution (subject to q0 ≥ 1) if and only if P = 0 has a
rational solution, and it is trivial to observe that P = 0 has a rational solution (subject to q0 ≥ qi and
qi ≥ 1) if and only if D = 0 has a rational solution (subject to qi ≥ 1).

Problem 4 For a given a set of variables Q = {q1, . . . , qn}, and a set of equations such that at most
one equation is of the form

∑
i∈I αiqi = 0, for some I ⊆ {0, . . . , n} and αi ∈ Q for every i ∈ I.

and all the other equations are of the form

qiqj = qkqℓ for some i, j, k, ℓ ∈ {0, . . . , n}.

find a rational solution that satisfies 1 ≤ q0 ≤ qi for every i = 1, . . . , n.

Lemma 11 There is a reduction from Problem 3 to Problem 4.

Proof. We prove the lemma by giving a generic example that demonstrates the reduction. Suppose that

the equation with the form of Problem 3 is q0 · P (q1
q0
, . . . , qn

q0
) = 5

q21q2q
3
3

q50
+

q21
q0

+ 7q0, then we reduce it to

a problem with the form of Problem 4 by defining the following equations:

– p0 · q0 = q0 · q0 (equivalent to p0 = q0)

– p1 · q0 = q1 · q1 (equivalent to p1 =
q21
q0
)

– p2 · q0 = q3 · q3 and p3 · q0 = p2 · q3 (equivalent to p3 =
q33
q20
)

18

– p4 · q0 = p1 · p3 (equivalent to p4 =
q21q

3
3

q40
)

– p5 · q0 = p4q2 (equivalent to p5 =
q21q2q

3
3

q50
)

– 5p5 + p1 + 7q0 = 0, subject to 1 ≤ q0 ≤ q1, q2, q3, p0, p1, p2, p3, p4, p5 and qi, pj ≥ 1 (equivalent to
q0 · P (q1

q0
, . . . , qn

q0
) = 0)

A solution to the above equations that satisfies 1 ≤ q0 ≤ q1, q2, q3, p1, p2, p3, p4, p5 is clearly a solution
for q0 · P = 0 that satisfies Problem 3 conditions. Conversely, a solution to q0 · P = 0 that satisfies
Problem 3 conditions is a solution for the above constraints, and since 1 ≤ q0 ≤ q1, q2, q3 we also get
that q0 ≤ p1, p2, p3, p4, p5 and a solution to the above equitations follows.

Problem 5 For a given sets of variables Q = {q1, . . . , qn}, P = {p1, . . . , pn}, and a given set of equa-
tions, each of the form of either:

–
∑

i∈I αiqi = 0, for some I ⊆ {1, . . . , n}; or
– qipj = qkpℓ for some i, j, k, ℓ ∈ {1, . . . , n}; or
– qi =

1
2

∑n
j=1 qj, for some i ∈ {1, . . . , n}; or

– pi =
1
2

∑n
j=1 pj, for some i ∈ {1, . . . , n}; or

find a rational solution that satisfies

– q1 ≤ qi, for i = 1, . . . , n; and
– qi, pi ≥ 1 for i = 1, . . . , n; and
–

∑n
i=1 pi =

∑n
i=1 qi.

Lemma 12 There is a reduction from Problem 4 to Problem 5.

Proof. To show a reduction, we need to show how to encode an equation of the form of q1q2 = q3q4 with
equations of the above form. For this purpose we define the equations:

– qn+1 = 1
2

∑n+1
j=1 qj and pn+1 = 1

2

∑n+1
j=1 pj

– q2pn+1 = qn+1p1
– q4pn+1 = qn+1p2
– q1p1 = q3p2

It is straight forward to observe that if
∑n+1

j=1 qj =
∑n+1

j=1 pj then the above set of equations are equivalent
to q1q2 = q3q4.

Problem 6 For a given sets of variables Q = {q1, . . . , qn}, P = {p1, . . . , pn}, and a given set of con-
straints, each of the form of either:

–
∑

i∈I αiqi ≤ 0, for some I ⊆ {1, . . . , n}; or
–

∑
i∈I αipi ≤ 0, for some I ⊆ {1, . . . , n}; or

– qipj = qkpℓ for some i, j, k, ℓ ∈ {1, . . . , n}

find a rational solution that satisfies

– qi, pi > 0 for i = 1, . . . , n

Lemma 13 There is a reduction from Problem 5 to Problem 6.

Proof. The reduction is straight forward. We replace every equation of the form of
∑

i∈I αiqi = 0 with
two constraints

∑
i∈I αiqi ≤ 0 and

∑
i∈I −αiqi ≤ 0. We replace qi =

1
2

∑n

j=1 qj with
∑

j∈{1,...,n}−{i}
1
2qj−

1
2qi ≤ 0 and

∑
j∈{1,...,n}−{i} −

1
2qj+

1
2qi ≤ 0. We replace pi =

1
2

∑n

j=1 pj with
∑

j∈{1,...,n}−{i}
1
2pj−

1
2pi ≤

0 and
∑

j∈{1,...,n}−{i} −
1
2pj + 1

2pi ≤ 0. In addition, we add n constraints q1 ≤ qi for i = 1, . . . , n.
It is straight forward to observe that if the above formed constraints have a rational solution Q =
{q1, . . . , qn}, P = {p1, . . . , pn} that satisfies qi, pi > 0, then for every rational positive m we get that
mQ = {mq1, . . . ,mqn}, P = {p1, . . . , pn} and Q = {q1, . . . , qn},mP = {mp1, . . . ,mpn} are also solutions.
Hence, a solution to the formed constraints implies that there is a solution that satisfies qi, pi ≥ 1 and∑n

i=1 pi =
∑n

i=1 qi. And conversely, if the formed constraints are not satisfiable, then clearly the original
equations are not solvable.

19

B.2 Auxiliary lemma

In this subsection, we prove the next lemma.

Lemma 14 Let α1, α2, β1, β2 be strictly positive rationals, and let v1(α1) = α1 · (−1, 0, 1, 0), v2(α2) =
α2 · (0, 1, 0,−1), u1(β1) = β1 · (1, 0,−1, 0), and u2(β2) = β2 · (0,−1, 0, 1). For every m,n ∈ Q we denote
by the vector x(m,n) = (x1, x2, x3, x4) the sum m(v1 + v2) + n(u1 + u2). Then the following assertions
are equivalent:

1. β1

α1
= β2

α2
.

2. For every non-negative rationals m,n: max(min(x1, x2),min(x3, x4)) ≤ 0.

Proof. By definition x1 = −mα1 + nβ1, x2 = mα2 − nβ2, x3 = −x1 and x4 = −x2.

We first prove that assertion 1 implies assertion 2. Suppose that β1

α1
= β2

α2
, let m and n be arbitrary

non-negative rationals, and we denote k = m
n
. In order to prove that max(min(x1, x2),min(x3, x4)) ≤ 0,

it is enough to show that if x1 > 0, then x2 < 0 (since in this case x3 = −x1 < 0). Suppose that x1 > 0.
Hence, β1 > kα1, and we get that k < β1

α1
. By definition, x2 = n(kα2 − β2), and since we assumed

that β1

α1
= β2

α2
, and we proved that k < β1

α1
, we get that x2 < 0, and the claim that assertion 1 implies

assertion 2 follows.

In order to prove that assertion 2 implies assertion 1, we consider two distinct cases. In the first
case we assume (towards a contradiction) that β1

α1
> β2

α2
, and we choose m and n that satisfy β1

α1
>

k = m
n

> β2

α2
. We claim that x1 > 0 and x2 > 0, and therefore a contradiction to the assumption

that max(min(x1, x2),min(x3, x4)) ≤ 0 follows. Indeed, since β1

α1
> k, then x1 = n(−kα1 + β) > 0,

and since k > β2

α2
, then x2 = n(kα2 − β2) > 0. In the second case, we assume that β1

α1
< β2

α2
, and by

similar arguments, we get that x3, x4 > 0 and a contradiction follows. Hence, in both cases we get that
assertion 2 implies assertion 1, and the proof of the lemma follows.

B.3 The reduction

In this subsection, we present a reduction from Problem 6 to the boolean synthesis problem for mean-
payoff expressions (when player 1 is restricted to finite-memory strategies). The reduction is as following:
For a given sets of variables Q = {q1, . . . , qn}, P = {p1, . . . , pn}, and a given set of constraints, each of
the form of either:

–
∑

i∈I αiqi ≤ 0, for some I ⊆ {1, . . . , n}; or

–
∑

i∈I αipi ≤ 0, for some I ⊆ {1, . . . , n}; or

– qipj = qkpℓ for some i, j, k, ℓ ∈ {1, . . . , n}

We denote by t1 the number of constraints that are of the first form, and w.l.o.g we assume that the
number of constraints that are of the second form is also t1. We denote by t2 the number of constraints
that are of the third form. We construct a k = 2 + n + t1 + 4t2 dimensional game graph with 5 states
(see Figure 9), and an expression

E = max(LimInfAvg1, . . . ,LimInfAvg2+n+t1
, E1, . . . , E2t2)

where

Ei = min(LimInfAvg2+n+t1+2i,LimInfAvg2+n+t1+2i+1)

The transitions of the graph are described in Figure 9, and each of the states a2 and b2 has n self-loop
edges.

20

s0

a1 a2

b1 b2

(0, 0, 1n, 0)

0

0

(0, 0, 1n, 0)

0

0

(1,−1, 0n, 0)

(1,−1, 0n, 0)

(−1, 1, ∗n, ∗)

. . .

(−1, 1, ∗n, ∗)

. . .

Fig. 9. The graph that is formed by the reduction. s0 is player-2 state and a1, a2, b1, b2 are player-1 states. 0
denotes a vector of zeros; 1n denotes a vector of n ones, 0n denotes a vector of n zeros, and the weights of ∗ and
∗n are given in the description of the reduction

The weight vector w of the i-th self-loop edge of state a2 is determined according to the next rules:

1. The first two dimensions of w are −1 and +1 (respectively). Intuitively, this assures that player 1
will not stay forever in state a1 or in state a2.

2. The weight of dimension 2 + i is −1 and for j ∈ {1, . . . , n} − {i} the weight of dimensions j is 0.
Intuitively, this assures that player 1 will visit edge i at least once.

3. If the j-th type-1 equation is
∑

m∈I αmqm ≤ 0, then if i ∈ I, then the weight in dimension 2+ n+ j
is −αm. Otherwise, we assign zero for this dimension. Intuitively, this enforce player 1 to visits edge
i for qi times in such way that

∑
m∈I αmqm ≤ 0.

4. If the j-th type-3 equation is qmpr = qkpℓ, then the weights of the four dimensions 2+n+ t1+4j, 2+
n+ t1 + 4j + 1, 2 + n+ t1 + 4j + 2, 2 + n+ t1 + 4j + 3 are:
– If i = m, then the weights are (−1, 0, 1, 0)
– If i = k, then the weights are (0, 1, 0,−1)
– Otherwise, the weights are (0, 0, 0, 0)

The weight vector w of the i-th self-loop edge of state b2 is determined according to the next rules:

1. The first 2+n dimensions are determined by the same rules that we presented to the self-loop edges
of state a2.

2. If the j-th type-2 equation is
∑

m∈I αmpm ≤ 0, then if i ∈ I, then the weight in dimension 2 + n+ j
is −αm. Otherwise, we assign zero for this dimension. Intuitively, this enforce player 1 to visits edge
i for pi times in such way that

∑
m∈I αmpm ≤ 0.

3. If the j-th type-3 equation is qmpr = qkpℓ, then the weights of the four dimensions 2+n+ t1+4j, 2+
n+ t1 + 4j + 1, 2 + n+ t1 + 4j + 2, 2 + n+ t1 + 4j + 3 are:
– If i = m, then the weights are (1, 0,−1, 0)
– If i = k, then the weights are (0,−1, 0, 1)
– Otherwise, the weights are (0, 0, 0, 0)

In the rest of this subsection, we will prove that player 1 has a finite-memory strategy that assures non-
positive value for the expression E if and only if the given set of equations has a solution that satisfies
Problem 6 limitations.

In the next lemmas we prove key properties of the game. The first lemma characterized the one-player
game solution for the expression E.

21

Lemma 15 Let G be an arbitrary strongly connected k-dimensional weighted one-player game graph,
and let f be the one-player solution for the expression E. Then f(G) > 0 if and only if

– G has a simple cycle with positive average weight in a dimension i ∈ {1, . . . , 2 + n+ t1}; or
– G has two simple cycles C1 and C2, and there exist an index i ∈ {1, . . . , 2t2} and two positive rationals

m,n for which
mAvg(C1)+nAvg(C2) is positive is dimension 2+n+t1+2i and in dimension 2+n+t1+2i+1.

Proof. The proof follows directly by the definitions of the max-free constraints (Definition 1).

Lemma 16 In the mean-payoff expression game over game graph G (that is constructed by the reduction)
and threshold 0, player 1 wins from vertex s0 if and only if he has a finite-memory strategy σ such that
f(CONVEX (Gσ)) ≤ 0 (where f is the one-player solution for the expression E).

Proof. By the construction of G it follows that if player 1 strategy is to loop for ever in state a1 or b1,
then the lim-inf of the average weight in dimension 1 will be 1 and E will get a positive value. Similarly,
if player 1 strategy is to loop forever in state b2 or a2, then the average weight in dimension 2 is positive,
and so does the value of E. Hence, every player-1 winning strategy will visit the initial state s0 infinitely
often. Therefore, if σ′ is a player-1 winning strategy, then every SCC in Gσ′

contains a vertex (s0,m) (for
some memory state m). Let S be a terminal SCC in Gσ′

and let (s0,m) be a vertex in S. We construct
the witness strategy σ by changing the initial memory state o σ′ to m. If σ′ is a winning strategy, then
by definition f(S) ≤ 0 and since Gσ = S we get that f(CONVEX (G)) ≤ 0.

Hence, if player 1 wins in the game, then such σ exists, and the proof for the converse direction is
trivial (since such a strategy σ is a winning strategy).

In the game graph G player 2 has only two possible memoryless strategies: the first strategy is to follow
the edge (s0, a1), and we denote this strategy by τ1, and the second strategy is to follow (s0, b1), and we
denote it by τ2.

Lemma 17 There exists a player-1 strategy for which f(Gσ) ≤ 0 if and only if there exist cyclic paths π1

and π2 such that πi is a cyclic path in Gτi that visits all the edges of Gτi and f(CONVEX (π1, π2)) ≤ 0.

Proof. By Lemma 1 such σ exists if and only if there exist two ultimately periodic paths ρ1 and ρ2 such
that ρi is an infinite path in the graph Gτi and f(CONVEX (Avg(ρ1),Avg(ρ2))) ≤ 0. Hence, the proof
for the direction from right to left follows. In order to prove the converse direction we assume that such
ρ1 and ρ2 exist and show how to construct π1 and π2. Let ρ1 = π0(π1)

ω (i.e., π1 is the periodic finite
path in ρ1). We claim that if π1 does not contain all the edges of Gτ1 , then f({Avg(π1)}) > 0. The proof
of the claim is by considering the following distinct cases:

– Case 1: if π1 contains only the cycles s0 → a1 → a2 → s0, then the value of Avg(π) is positive in the
third dimension.

– Case 2: if π1 contains only the self loop of a1, then the value of the first dimension of Avg(π) is
positive

– Case 3: if π1 does not contain the self loop of a1, and contains some of the self loops of a2, then the
second dimension of Avg(π) is positive.

– Case 4: if π1 contains the cycle s0 → a1 → a2 → s0, the self loop of a1 and not the i-th self loop of
a2, then dimension 2 + i of Avg(π) is positive.

Hence, if π1 does not contain all the edges of Gτ1 , then we get that f(Avg(ρ1)) > 0 (since Avg(ρ1) =
Avg(π1)), and since f is monotone, we get that f(CONVEX (Avg(ρ1),Avg(ρ2)) > f(Avg(ρ1)) > 0,
which contradict the definition of ρ1. We construct the witness path π2 in a similar way (i.e., by defining
ρ2 = π′

0(π2)
ω , and the proof that π2 contains all the edges of Gτ2 is similar. Since Avg(πi) = Avg(ρi),

we get that f(CONVEX (Avg(π1),Avg(π2)) ≤ 0 and the proof is complete.

We now give two additional definitions and then prove the correctness of the reduction. Let C1, . . . , Cn

be the simple cycles of Gτ1 . We denote QSI(Gτ1) = {{v ∈ Qk | ∃(x1, . . . , xn) ∈ QSI(n) s.t v =∑n

i=1 xiAvg(Ci)}, and we similarly define QSI(Gτ2). We say that two vectors v1 and v2 are satisfactory
if f(CONVEX (v1, v2)) ≤ 0. We are now ready to prove the correctness of the reduction, and by Lemma 16

22

and Lemma 17 it is enough to prove that there exists vi ∈ QSI(Gτi) (for i = 1, 2) such that v1, v2 are
satisfactory vectors if and only if the given set of equations has a rational solution.

We first prove the direction from right to left. Suppose that the given set of equations has a rational
solution P,Q that satisfies qi, pi > 0. We construct the vector v1 ∈ QSI(Gτ1) by taking 1

1+2
∑

n

i=1 qi

fraction of the average weight of the cycle s0 → a1 → a2 → s0,
2
∑

n

i=1 qi
1+2

∑
n

i=1 qi
fraction of the average weight

of the self loop of a1 and qi
1+2

∑
n

i=1 qi
fraction of the average weight of the i-th self loop of a2. Similarly,

we construct the vector v2 ∈ QSI(Gτ2) by taking 1
1+2

∑
n

i=1 pi
fraction of the average weight of the cycle

s0 → b1 → b2 → s0,
2
∑

n

i=1 pi

1+2
∑

n

i=1 pi
fraction of the average weight of the self loop of b1 and pi

1+2
∑

n

i=1 pi

fraction of the average weight of the i-th self loop of b2. By the construction of G, and since P and Q
are solutions for the equations, it is straight forward to verify that the first 2 + n+ t1 dimensions of v1
and v2 are non-positive. In addition, by Lemma 14, and since P and Q satisfies all the equations of the
form qipj = qkpℓ, we get that for every positive m,n ∈ Q we have that mv1 + nv2 are non-positive in
dimension 2+n+ t1+2i or in dimension 2+n+ t1+2i+1 for every i = 1, . . . , 2t4. Hence, by Lemma 15,
the vectors v1, v2 are satisfactory.

Conversely, suppose that there exist vi ∈ QSI(Gτi) (for i = 1, 2) such that v1, v2 are satisfactory
vectors. We denote by ws0,a the average weight of the cycle s0 → a1 → a2 → s0, by wa1 the average
weight of the self loop of a1, and by wi

a2
the average weight of the i-th self loop of a2. By definition,

there exists n+2 positive rationals x, y, q1, . . . , qn for which v1 = xws0,a+ ywa1 +
∑n

i=1 qiw
i
a2
. Similarly,

we denote by ws0,b the average weight of the cycle s0 → b1 → b2 → s0, by wb1 the average weight of
the self loop of b1, and by wi

b2
the average weight of the i-th self loop of b2, and by definition, there

exists n + 2 positive rationals x, y, p1, . . . , pn for which v1 = xws0,b + ywb1 +
∑n

i=1 piw
i
b2
. We claim the

Q = {q1, . . . , qn}, P = {p1, . . . , pn} are a solution to the given set of equations. By Lemma 15 and by
the construction of the graph, it immediately follows that Q and P satisfy all the type-1 and type-2
constraints. In addition, by Lemma 14 (and by Lemma 15) we get that all the type-3 equations are also
satisfied. Hence, we get that if there exist vi ∈ QSI(Gτi) (for i = 1, 2) such that v1, v2 are satisfactory
vectors, then the given set of constraints have a solution.

To conclude, we get that the boolean analysis problem for mean-payoff expressions is harder than
H10 (Q), and the proof of Lemma 8 follows.

C Proof of Theorem 4

When both players are restricted to finite-memory strategies the outcome of the game is an ultimately
periodic path π = π1(π2)

ω. Thus, for every dimension i we have LimInfAvg i(π) = LimSupAvgi(π).
Hence, w.l.o.g we may assume that the game objective is a LimInfAvg-only expression. In this section,
we will show a reduction from games in which both players are restricted to finite-memory strategies
to games in which only player 1 is restricted to finite-memory strategies. The reduction is based on the
next lemma.

Lemma 18 Let E be a LimInfAvg-only expression and let G be a multidimensional weighted graph, and
the goal of player 1 is to assure E ≤ ν. Then a player-1 finite-memory strategy is winning if and only if
it wins against every player-2 finite-memory strategy.

Proof. The proof for the direction from left to right is trivial. To prove the converse direction we fix a
player-1 finite-memory strategy σ and we show that if player 2 a strategy that wins against σ, then he
also has a finite-memory winning strategy. We note that when σ is fixed, a player-2 strategy is an infinite
path in Gσ and a player-2 finite-memory strategy is an ultimately periodic path in Gσ. Hence, there exists
an infinite path π in Gσ for which E assigns a value greater than ν. We claim that for every ǫ > 0 there is
an ultimately periodic path ρ in Gσ such that in every dimension LimInfAvg i(ρǫ) ≥ LimInfAvg i(π)− ǫ.
Indeed, let s be a state that is visited infinitely often by π, and let πs be a suffix of π that begins
in state s, and we observe that LimInfAvg(πs) = LimInfAvg(π). By the definition of LimInfAvg and
by the finiteness of the graph it follows that for every ǫ > 0 there exists a path πǫ that is a prefix
of πs, ends in state s, and LimInfAvg i(πǫ) ≥ LimInfAvg i(πs) − ǫ. We denote by π0 the shortest path
from the initial state to s, and we get that the ultimately periodic path ρǫ = π0(πǫ)

ω satisfies the
assertion of the claim. To complete the proof of the lemma, we denote the number of sum operators in

23

E by # sum and we set ǫ = E(π)−ν

2# sum . It is easy to verify that the ultimately periodic path ρǫ satisfies

E(ρǫ) ≥ E(π)− E(π)−ν

2 = E(π)+ν

2 > ν, and the proof follows.

The proof of Theorem 4 follows immediately from the fact that we only consider LimInfAvg-only expres-
sions and from Lemma 18 and Theorems 2 and 3.

24

	Finite-Memory Strategy Synthesis for Robust Multidimensional Mean-Payoff Objectives

