Edinburgh Research Explorer

Abstract Interpretation from Buchi Automata

Citation for published version:

Hofmann, M & Chen, W 2014, Abstract Interpretation from Buchi Automata. in Proceedings of the Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-
Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). CSL-LICS '14, ACM, New York,
NY, USA. https://doi.org/10.1145/2603088.2603127

Digital Object Identifier (DOI):
10.1145/2603088.2603127

Link:
Link to publication record in Edinburgh Research Explorer

Document Version: _
Early version, also known as pre-print

Published In:
Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic
(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 24. Apr. 2024

https://doi.org/10.1145/2603088.2603127
https://doi.org/10.1145/2603088.2603127
https://www.research.ed.ac.uk/en/publications/14535450-49d9-4e81-b913-55af4d4a4ac5

banner above paper title

Abstract Interpretation from Biichi Automata

Martin Hofmann

LMU Munich, Germany
martin.hofmann@ifi.Imu.de

Abstract

We describe the construction of an abstract lattice from a given
Buchi automata. The abstract lattice is finite and has the following
key properties. (i) There is a Galois connection between it and
the (infinite) lattice of languages of finite and infinite words over
a given alphabet. (ii) The abstraction is faithful with respect to
acceptance by the automaton. (iii) Least fixpoints and w-iterations
(but not in general greatest fixpoints) can be computed on the level
of the abstract lattice.

This allows one to develop an abstract interpretation capable of
checking whether finite and infinite traces of a (recursive) program
are accepted by a policy automaton. It is also possible to cast this
analysis in form of a type and effect system with the effects being
elements of the abstract lattice.

While the resulting decidability and complexity results are
known (regular model checking for pushdown systems) the ab-
stract lattice provides a new point of view and enables smooth
integration with data types, objects, higher-order functions which
are best handled with abstract interpretation or type systems.

We demonstrate this by generalising our type-and-effect sys-
tems to object-oriented programs and higher-order functions.

Categories and Subject Descriptors Theory of computation [Se-
mantics and reasoning]: Program reasoning

Keywords Type Systems, Type-and-Effect Systems, Temporal
Properties, Liveness

1. Introduction

A great range of techniques and tools have been developed and
studied for the prediction of program behaviours without actually
running the program [8, 10, 11, 13, 25, 27]. One of them, originat-
ing from type inference in functional programming languages, is
the type and effect discipline [24]. As a refinement of type systems
in programming languages, types are annotated with information
characterizing dynamic behaviours of programs—effects. As a re-
sult, a well-typed program satisfies some properties regarding its
side-effects as well. This type-based technique has been used for
all kinds of static analysis of programs, e.g. flow analysis [26], de-
pendency analysis [1], resource allocation analysis [33], and amor-
tised analysis [19, 20], etc. In particular, a type and effect system

[Copyright notice will appear here once ’preprint’ option is removed.]

short description of paper

‘Wei Chen

University of Edinburgh, UK
wchen2Q@inf.ed.ac.uk

was developed by Grabowski et al. [16] to verify that a particu-
lar programming guideline for secure web-programming has been
adhered to. Generalizing from this, one could model a program-
ming guideline as a property of traces that a program might have,
where traces are sequences of events that are issued by a certain in-
strumentation of the program with special event-issuing operations.
This instrumentation would be part of the formalised guideline. A
finite state machine would then be used to specify the set of accept-
able traces. Most policies involve safety properties which can be
assessed by examining finite portions of traces. In some cases, how-
ever, properties pertaining to liveness and fairness [3] can become
relevant. For instance, a guideline could be that calls to appropriate
logging functions must be made again and again or that event han-
dlers should not become stuck, e.g. in the Java Swing framework.

This motivated us to investigate the possibility of using type
systems in this situation as well. Our aim is not to offer new
algorithms for deciding certain temporal properties or indeed to
compete with the existing methods which are numerous [5, 8, 13,
25], but to extend the reach of type systems. Our solution goes,
however, beyond a simple reformulation of an existing algorithm;
the abstract domain based Biichi automata may well be useful in its
on right and is an original contribution of this work.

For the sake of simplicity, we introduce and study a small
language consisting of recursive first-order procedures and non-
deterministic choices. The language explicitly allows infinite re-
cursions. In this language, except for primitive procedures which
have events as arguments, other procedures have no inputs.

We remark that in essence our language is the same as the
pushdown systems that have been studied in detail by a number
of authors [5, 29, 35].

Once a satisfactory type system for such a simple language has
been found, it can be combined with known techniques [4, 28]
to scale to a type system for a large fragment of Java or similar
languages. Alternatively, one can use our simple language as a
target of a preliminary abstraction step.

Then, we develop the Biichi type and effect system to cap-
ture correctly finite and infinite traces. Since branching is non-
deterministic in our language, we can even establish a completeness
result. Completeness, of course, will be lost, once we re-introduce
data-dependent branching.

As a demonstration, we extend the Biichi type and effect system
for this small language to a Biichi type and effect system for
Featherweight Java with field update [4].

The main technical contribution of this paper is the design
of an abstract domain in the sense of abstract interpretation [10,
11] based on Biichi automata or rather a mild extension of those
allowing infinite as well as finite words. The proofs of soundness
and completeness of the type system are based on clear-cut lattice-
theoretic properties of this abstraction.

As in the finitary case, this Biichi abstraction is based on equiv-
alence relations on finite words generated by the policy Biichi au-
tomaton. Abstracted effects are no longer sets of such equivalence

2015/4/21

classes, but rather sets of pairs of the form (U, V') with U, V classes
and representing the infinitary language UV*“. While such pairs
appear in Biichi’s original complementation construction for Biichi
automata [6] and have subsequently been used by a number of au-
thors [12, 17, 30], they have never been used in the context of type
systems and abstract interpretation.

1.1 Related work

As already mentioned, our language of parameterless procedures is
equivalent to pushdown systems for which model-checking of tem-
poral properties has been extensively studied [7, 15, 29, 35]. Push-
down systems, on the other hand, are special cases of higher-order
recursion systems introduced by Knapik et al. [22] and extensively
studied by Ong and his collaborators, e.g. [2, 23].

The latter work [23] also casts model checking into the form of a
type system. More precisely, from an alternating parity automaton
a type system for higher-order recursion schemes is derived such
that a scheme is typable iff its evaluation tree would be accepted by
the automaton. In this way, in particular all mu-calculus definable
properties of the evaluation tree become expressible. Regarding
trace languages as opposed to tree properties alternating parity
automata are equivalent to Biichi automata since both capture the
(w—)regular languages. Thus for the trace language of interest here
the system from loc.cit. is equal in expressive power to our type
system. Moreover, Biichi automata are a well-established means
for formulating specifications.

The difference is that Kobayashi and Ong’s system has a much
more semantic flavour not unlike the intersection type systems used
to characterise strong normalisation. More concretely, the well-
formedness condition for recursions in that system requires the
solution of a parity game whose size is proportional to the size
of the program (number of function symbols to be precise) which
is known to be equivalent to model checking trees against mu-
calculus formulas.

Our type system, on the other hand, deviates from the standard
type systems used in programming and program analysis only
very slightly; instead of the usual recursion rule (which is clearly
unsound in the context of liveness) we use a rule involving a
type variable. No further semantic conditions need to be checked
once of course the given Biichi automaton has been analysed and
preprocessed. Even though the types of [23] are also based on
possible transitions of a word through the automaton there are
important differences, most notably the closure operation we use
and the precise analysis of w-iteration using the Ramsey theorem.
These two together allow us to precompute a finite abstract lattice
that faithfully represents the concrete lattice of < w-languages. The
analysis of recursive functions, whether mutual or not, thus reduces
to a standard fixpoint iteration in an abstract lattice known from
abstract interpretation.

Another recent work on the use of types for properties of infinite
traces is [21] which embeds formulas of Linear Temporal Logic
into types in the context of functional reactive programming. This
work, however, relies on an encoding of linear temporal logic in
first-order logic with integers, e.g., one models “the event x occurs
infinitely often” as a formula like V23j.2; where z; refers to that
the event x issues at the time j. Dependent types are being used
to turn this into a type system, but questions of inference and
decidability are not considered.

Finally, we mention the work by Skalka and his coauthors which
furnish type-based translations of higher-order [31] and object-
oriented [32] to pushdown systems. The so obtained pushdown sys-
tems can then be fed into off-the-shelf model-checking algorithms.

The difference to our approach is that types do not contain
the full information about the possible traces but only a finite
abstraction which is just fine enough to decide compliance with a

short description of paper

given policy. In this way, one may expect more succinct types, more
efficient inference, and better interaction with the user. Another
difference is that our approach is entirely based on type systems
and abstract interpretation and as such does not rely on external
model-checking software. This might make it easier to integrate our
approach with certification. One can also argue that our approach
is more in line with classical type and effect systems where types
do not contain programs either but rather succinct abstractions akin
to our effects.

2. Preliminaries

Let X be a finite alphabet. We write ™ for the set of finite words
over X, we write =% for the set of finite and infinite words, and
3 for the set of infinite words. Finite words can be concatenated
with finite or infinite words as usual and this extends to languages.

We assume that programs are instrumented with special com-
mands issuing events from X. In this way, we can associate with
each execution of a(n) (instrumented) program P a trace which is
a word from ©=¢. Terminating executions have finite traces (in
37*) whereas nonterminating executions may have finite or infinite
traces.

We also assume a language Lo C X=¢ of finite and infi-
nite traces modelling the allowed traces. This language Lo will
be represented by a finite state automaton 2A—the policy automa-
ton. Writing L(P) for the language of possible (finite and infi-
nite) traces and Lo = L(2) for the policy language we thus are
interested in determining whether or not L(P) C L(2l). While
of course such questions are in general undecidable it becomes
tractable if branches in the control flow of P are overapproximated
by non-determinism or at least only depend on an appropriate finite
abstraction of the data relevant in the branching conditions.

We remark that the expressive power of Biichi automata strictly
subsumes the linear time mu-calculus and equals that of monadic
second-order logic.

We now define a finite lattice 97 and functions

v — P(ES¥)
a:P(E=%) — M

forming a Galois connection (Theorem 2(2)).

The abstraction is faithful with respect to containment in the
language of the policy automaton in the sense that y(a(L(21))) =
L(2A) and hence L C L(2) iff (L) C a(L(2A)) (Theorem 2(5)).

On the other hand, various language-theoretic operations can be
represented faithfully on the level of the abstraction, in particular,
union, concatenation, least fixpoints and w-iteration. These will
allow us to design a type system that computes the abstraction
a(L(P)) of a program’s behaviour.

For the most part, existence of these abstract operations follows
from the Galois connection; in particular, if « o F' = F, o o then
a(lfp(F)) = Ufp(Fa), where Ifp denotes the least fixpoint, Fy is
the corresponding abstraction function of F' and o denotes func-
tional composition. A nontrivial property of our particular abstrac-
tion that does not follow from general lattice-theoretic considera-
tions is the fact that w-iteration can be faithfully represented on the
level of the abstractions: There is an operation (—)(“’) M — M
(with 91, denoting the sublattice containing abstractions of lan-
guages of finite words) satisfying (L) = (L)) (Theorem 4).

This then allows us to represent all the language-theoretic op-
erations arising in the construction of L(P) on the level of the
abstraction. Therefore, we can describe the behaviour of program
parts directly with the abstractions of their behaviours—the ab-
stractions become effects in a type-and-effect system or can be used
for abstract interpretation directly.

2015/4/21

3. Extended Biichi automata

We define a mild generalization of Biichi automata which is capable
of describing languages of both finite and infinite words.

Definition 1. An extended Biichi Automaton is a quintuple 2 =
(Q,%,0,q0, F) where Q is a finite set of states, . is an alphabet;
hereafter always required to be equal to the fixed alphabet of
events; § : Q x X — P(Q) the transition function, the initial state
qo € Q, and the set F C Q of final states. The language L(2) of
A is defined as: the set of all finite words by which a final state can
be reached from the initial state and all infinite words admitting
an infinite run (in the usual sense) which starts from the initial
state and goes through final states infinitely often. Thus, L(21) is the
union of A’s language when understood as a traditional NFA and
its language when understood as a traditional Biichi automaton.

Note that if an extended Biichi automaton accepts an infinite
word then it will also accept infinitely many prefixes of that word.
This means that these automata cannot accept all unions of regular
and w-regular languages.

Our philosophy is that an actually terminating trace could, if
so desired, marked by issuing a special end event, say $. The
finite traces not ending in $ and thus stemming from an idling
computation should be understood as infinite traces which from
some point on consist exclusively of invisible stuttering events,
say v'. Assuming further that each state has an implicit self-loop
labelled v* our acceptance condition for those words is subsumed
by the usual Biichi condition. The following theorem summarises
this.

Theorem 1. Let L1 C X* be a regular language over 3 and
Ly C (XU{v })¥ be an w-regular language. Suppose furthermore
that whenever w € L1 and w' arises from w by inserting v’
symbols in arbitrary positions, then w' € Lo (Of course, Ly may
contain words other than those enforced by this clause). There is
an extended Biichi automaton that accepts the language L1$ U Ly
where LY C 5% comprises all finite and infinite words that can
be obtained from words in Lo by deleting all v -symbols.

Proof. Start with a Biichi automaton for Lo and replace all v'-
edges with e-edges. This automaton viewed as an extended Biichi
automaton then accepts L3 . Form a disjoint union with an NFA
for L1$ which has the additional property that no final state has
an outgoing edge so that no spurious infininite words get accepted
accidentally. O

3.1 Equivalence classes

Following Biichi’s original work we consider equivalence relations
on finite words induced by an extended Biichi automaton.

We write ¢ ~> ¢’ to mean that the state ¢’ is reachable from state
g by using the finite word w. Furthermore, ¢ <> = ¢’ denotes that by
using the finite word w, the state ¢’ can be reached from the state g
in such a way that a final state is visited on the way. In particular,
q % ¢ withq € Forq € Fimplies ¢ ~>r ¢'. Formally, we have
q ~>p ¢ iff there exists ¢” € F and u, v such that w = wv and
q & q// and q// Y, q/.

For nonempty words w, u € X7 we define w ~ u as:

VP,4€EQ . P qE P g ANPEFqE PSR,

We then extend ~ to an equivalence relation on X* by adding
€ ~ e. No nonempty word is equivalent to e. We write [w] for
the equivalence class of w € X*. Note that the quotient set X"/~
contains the ~-equivalence classes consisting of nonempty words
and the special class [¢] = {e}.

We can effectively represent a class [w] by the two relations on
states it induces, i.e., by {(¢,¢') | ¢ ~ ¢’} and {(¢,¢) | ¢ ~r

short description of paper

q'}. Note that these relations are independent of the choice of the
representative w. This also implies an upper bound on the number
of classes and a fortiori that there are finitely many.

Lemma 1. If n is the number of states of the policy automaton
2
inducing ~, then $* /~ has at most 2°™" + 1 elements.

We notice that if w ~ w and w’ ~ u’ then ww’ ~ uu’. As a
result, concatenation is well-defined on equivalence classes. Thus,
¥+ / ~ becomes a semigroup and £*/ ~ a monoid.

Notice, however, that monoid multiplication is not in general
the same as concatenation of languages. We have [u][v] = [uv]
by definition and if z € [u],y € [v] then zy € [wv], but if
2y € [uv] it need not be the case that z € [u] and y € [v]. On
the other hand, the language-theoretic concatenation of [u] and [v]
is contained in a (unique) class and this class is [u][v]. The operator-
less juxtaposition for monoid multiplication is therefore to be used
with some care, but on the other hand is vindicated by general
mathematical practice.

The following Lemma is a straightforward consequence of stan-
dard results about Biichi automata [34].

Lemma 2. Fix an extended Biichi automaton 2.

(a) The elements of ©* |~ are regular languages;

(b) forall Cin 3% /~, C N L(A) # (0 implies C C L(2A);

(c) for all C and D in ©* /~, CD“ N L(A) # 0 implies CD“ C
L(A);

(d) for all w € T=% there exist classes C, D € £/~ so that
w € CD¥ and CD = C and DD = D.

The sets CD* (with CD = C and DD = D) thus behave
almost like classes themselves, but an important difference is that
they may nontrivially overlap. If CD“ NUV* # () then in general
one cannot conclude CD¥ = UV*. We also remark that Ramsey’s
theorem is used in the proof of (d). It is actually a special case of
Lemma 5 below so that we do not need to recall the proof here.

Example 1. For a concrete example, consider the following au-
tomaton:

o=
b
There are four equivalence classes: [€] and [a] = (a + b)"a an
[b] = b and [ab] = (a + b)*b — [b]. We have [a][a] = [b][a }
[ab]la] = [a] and [b][b] = [b] and [a][b] = [a][ab] = [b][ab]
[ab][b] = [ab][ab] [abl. Now (ab)* € [ab][ab]” N [a][a]”, b
[ab][ab]” # [a][a]” because a* € [a][a]” \ [ab][ab]®.

4. Biichi Abstraction

Lemma 2 shows that given an extended Biichi automaton 2, with-
out affecting property checking, we can use sets of classes in X"/~
to represent languages over ¥ and sets of pairs of classes (C, D)
sugh that CD = C and DD = D to represent languages over
DI

However, it is necessary to close such sets up under overlapping
“patches”

Definition 2. A pair (C, D) such that CD = C and DD = D
is called a patch. One defines the extent of a patch (C, D) as
~(C,D) = CD*, the set of all finite and infinite words that
admit a decomposition w = wowiws . .. such that wy € C and
w; € D fori > 0. The extent of a set of patches V is defined
by v(V) = U, pyev 1(C, D). Two patches (U, V) and (C, D)
meet if v(U, V) N ~y(C,D) # 0. A set of patches V is closed if
¥(C, D) N~y(V) # B implies (C, D) € V. We define the closure V

2015/4/21

of V as the least closed superset of V. For typographical reasons,
we also write 'V for the closure.

Notice that since there are only finitely many patches we can
effectively compute the closure by successively adding patches.
We call a patch (U, V) finitary if V = [€] thus y(U, V) C 3",

Lemma 3. The extent of a patch contains a finite word iff it is
finitary. Finitary patches only contain finite words and they do
not meet unless they are equal. Sets of finitary patches are always
closed.

Proof. No class other than [¢] contains the empty word, thus a
patch (U, V') with V' # [€] contains infinite words only. The rest is
obvious. O

4.1 The abstract lattice

Our abstract lattice now consists of the closed sets of patches
ordered by inclusion. We thus define

M = {V |V closed}
We also denote 91, the sublattice consisting of sets of finitary

patches.
We define the abstraction function o : P(X=*) — 9 by

a(l)="{U,V)[v(U,V)NL#0}

In other words, to form the abstraction «(L) of a language L we
take the smallest closed set of patches whose extents cover L.

Theorem 2. [. The set 9 ordered by inclusion is a complete
lattice; the sublattice I . is isomorphic to the powerset lattice
P(X*/~).

2. The abstraction function together with the concretisation func-
tion ~ form a Galois connection between 9 and P(L=%):

LCH(V) < a(L)CV

3. a(y(V)) = V holds for all V so we have in fact a Galois
insertion

4. The abstraction function preserves unions, least and greatest
elements, but not in general intersections.

5. If U is the underlying policy automaton then L(L) = ~v(a(L(21))),

hence
LCLA) < «L) Ca(L®))

Proof. Closed sets are closed under union and intersection. So the
lattice-theoretic operations are inherited from the powerset lattice.
The second part is direct from Lemma 3.

For the Galois connection assume L C (V). To show a(L) C
V it is enough to show (U,V) € V whenever (U, V) meets L
since V is closed. So suppose w € ~(U,V) and w € L for
some word w. By assumption, w € ~(V), so w is contained in
some patch (C, D) € V. Thus, since V is closed, it must contain
(U, V) as well. The converse follows directly from the obvious fact
L C y(a(L)).

The fact that we have a Galois insertion, as well as preserva-
tion of least elements and unions is obvious from the definitions.
Preservation of the greatest element follows from Lemma 2(d).

The last part follows from Lemma 2(c). O

Furthermore, the abstraction function preserves unions, least
and greatest elements.

For a monotone operator F' on a complete lattice £ we denote
Ifp its least fixpoint. As is well-known this fixpoint is given by the
formula Ifp(F) = N{X | F(X) C X} where () and C refer to
the lattice-theoretic operations.

The following is folklore and is an easy exercise in general
lattice-theoretic reasoning.

short description of paper

Lemma 4. Let £, M be complete lattices, o : L — M and
v : M — L form a Galois insertion, i.e., both o, 7y are monotone
and a(L) C M <= L C ~(M) and a(y(M)) = M, then
« preserves least fixpoints in the sense that if F : L — L and
F, : M — M are monotone and such that o o F' = F,, o o then

alfp(F)) = lfp(Fa).
4.2 Concatenation and iteration

We will now define some operators on the abstract domain that
track language-theoretic operations on P(3=%).

Definition 3. ForUd € M. and V € M we define their abstract
concatenation by

u-v = ({(AC,D) | (A, [e]) eUAN(C,D) € V}})

Theorem 3. . IfU € M, andV € M thenU -V € M.

2. a(Lle) = Oé(L1) . Oé(Lz).

3. If both U and V are finitary so is U - V. The abstract concate-
nation operation is monotone.

Proof. If (AC,D)) € U -V and (C,D) € V then ACD = AC
since CD = C.

For the second part it is easy to see from the definition and using
the Galois connection that (L1 L2) C a(L1) - a(L2).

For the converse, since (L1 L2) is closed, it suffices to prove

{(AC, D) | (A,[e]) €U A (C,D) € V} C a(L1Ls)

So, assume (AC, D) € a(L1) - a(Lz2) where (A, [e]) € a(L1)
and (C, D) € a(Ls). It follows that AN Ly # 0. If (C, D) meets
Ly then (AC, D) meets L1Ly and we are done. Otherwise, we
can inductively assume that (C, D) meets (C’, D’) € a(L2) and
(AC',D") € a(LiL2) has already been shown. It then follows
that (AC, D) € a(L1Lo) since (AC, D) meets (AC’, D").

The third part of the lemma is direct. O

We remark that since finite iteration can be defined as a least
fixpoint of operations that can be tracked on the level of the ab-
straction it is easy to define an operator (—)™*) on 9. so that
a(L*) = a(L)™ holds for L C X*. Namely, we simply take
U™ =1fp(A\X.a({e}) vl - X).

The situation is different with the infinite iteration L“ of a
language L. C X*. It can be expressed as a greatest fixpoint of
an operator that is representable on the level of the abstraction. To
wit, L* equals the greatest fixpoint of AX.(L —{e})- X UG where
G = L"ife € L and G = , otherwise.

However, the abstraction does not in general preserve greatest
fixpoints. For a concrete counterexample, consider the automaton
from Example 1 and let L = {a}, we have a(L) = {([a], [¢])} and

a(L)* = {([al, [al), ([ab], [ab])}

Yet, the greatest fixpoint of (AX.«(L)-X) also contains ([ab], [0]).

Fortunately, it is possible to track infinite iteration on the level
of the abstraction but this is a nontrivial result that again requires
the use of the Ramsey theorem.

Definition 4. For U € 9. we define the abstract w-iteration by
U = a(yu)*)

It is clear that if it is at all possible to track w-iteration then
this definition works but whether it is is not yet clear. We also
remark that despite its seemingly nonconstructive definition U/ @)
can easily be computed using, e.g. Biichi nonemptiness by noticing
that CD® NU“) is w regular.

The required use of Ramsey’s theorem is encapsulated in the
following combinatorial lemma.

2015/4/21

Lemma 5. Let (L;)ic1 be afamily of classes (from X* / ~) and put
P=1c;L:i € Y% Ge., P comprises finite or infinite words of
the form wiwaws . .. where w; € L; fori > 1. There exist classes
U,V € QwhereUV = U,VV =V such that P CUV*®.

Proof. Let w € P and write w = wiwaws---w;--- Where
w; € L;. If w is a finite word then there exists n such that w; = €
(and L; = [¢]) for i > n and we can choose U = L1i...Lp_1
and V' = [¢]. Otherwise, use Ramsey’s theorem as in the proof
of Lemma 2 to obtain a sequence of indices i1 < i2 < i3 <
i < ... and classes U,V where V. # [¢] and VV = V,
UV = U such that wiws ... w;; € U, wi;41...wi, € V and
Wiy+1 ... Wiy € V and so on. It follows that U = LiLa... Ly,
and V = Lik+1...Lik+1 for k > 1 and thus P C UV as
required. O

We are now in a position to assert the desired correctness of
abstract w-iteration which constitutes our main technical result.

Theorem 4. For any L C X* one has
a(L¥) = a(L)“
The operator (—)“) is monotone.

Proof. The direction C is direct from the definition; for the con-
verse assume (U, V) € a(L)“) = a(y(a(L))*). Since a(L*)
is closed, we may without loss of generality assume that UV N
v(a(L))” # 0. Pick w € UV® N v(a(L))” and decompose
w = wiws ... where w; € y(a(L)). Define L; := [w;] and
apply Lemma 5 to obtain U’, V' with [], L; C U'V'“. Note that,
since w € P, we have UV NU'V'Y #£ ().

Now, since w; € y(a(L)), by the definition of cr, we must have
that L; N L # (). Choose w; € L; N L. The word wjws ... is
then contained in L N U'V’“, so (U’, V') € a(L*) and, finally,
(U,V) € a(L¥) since a(L¥) is closed and UV* N U'V'™ #
0. O

5. Applications

We begin by the definition of a type system for a simple language
with recursive procedures and nondeterministic branching. It would
be possible to include state and data-dependent branching, but since
the type system we design is oblivious to those we refrain from
doing so.

5.1 Recursive procedures

The syntax of expressions is: e ::= o(a) | f | e1; e2 | e1 ? e2 where
o(a) is the only primitive procedure which generates an event a
taken from a fixed alphabet 3 of events and f ranges over pro-
cedures defined by expressions. Parentheses are used to elimi-
nate ambiguity. We assume that the operator ; is right-associative
and has higher priority than the operator 7. As an example, we
can define procedures f and g as: f = o(b)?0(a); g and g =
f; g; (o(b) ?0(a)). Formally, thus a program consists of a finite
set of procedure identifiers F and for each f € F an expression
ey defining f where calls to procedures from F are allowed and in
particular, f may occur recursively in ey.

From now on, we fix such a program P = (F, (ef)rer) and
call an expression e well-formed if it uses calls to procedures from
F only.

Since the operator ? is non-deterministic and non-primitive pro-
cedures have no arguments, stacks and heaps are not needed at this
level of abstraction.

A formal semantics is given in Appendix A. Here, we merely
assume that two judgments e | w forw € ¥* and e T w forw €
=% have been defined with the following intended meaning. If e |

short description of paper

w holds then there exists a terminating execution of e producing the
finite trace w. If e T w then there exists a non-terminating execution
of e producing the finite or infinite trace w. All possible executions
of e are captured by these two judgments. The judgements can
be defined in a variety of ways, e.g. using inductive/coinductive
definitions, by translation to pushdown systems [29], or using finite
approximations. For a detailed elaboration of the third option we
refer to our report [18].

5.2 Biichi types

A pair (U,V) where Y € M. and V € 9 is called a Biichi
effect. A Biichi effect approximates the traces of an expression e
if whenever e | w then w € y(U) and if e T w then w € (V).

Intuitively, our typing judgement will derive judgements of the
form F e& (U, V) with the idea that if such judgement is derivable
then (U, V) approximates e. Given this intuition, typing rules like
PRIM, IF are self-explanatory if we ignore for now the (¥) deco-
rations. Rule SEQ takes the fact into account that in a sequential
composition ej; ez even a finite trace of e; dominates if e; does
not terminate.

In order to overcome the obstacle with recursive procedures
discussed in the introduction we need to parameterise Biichi effects
with abstractions of traces (finite or infinite) of non-terminating
procedures. To this end, we introduce formal expressions of the
form

U “x-x)un
Xex
where X is a finite set of variables. We use notation like V(%) for
such expressions.

If 77 maps variables from X to elements from 9% and V(X) is an
expression over X then V(n) € 9 denotes the value obtained by
replacing a variable X with n(X) and evaluating.

We extend concatenation and union to these formal expressions
in the obvious way so that in particular (U - V)(n) = U - (V(n))
and (V1 U V2)(n) = Vi(n) U Va(n). By extension, we also call a
pair (U, V(X)) with U € M, a Biichi effect.

An environment A binds procedures f to pairs (U, X) with
U € M, and X a variable. A typing judgement takes the form

AFe& U, V(X))

where A is an environment, e is an expression whose (non-
primitive) procedures are all bound in A and (U, V(X)) is a Biichi
effect and the variables X are also bound in A.

PRIM
A+ o(a) & (a({a}),0)

SEQ
AF@l &(Z/{1,V1(:{)) AFGQ&(UQ,VQ(:{))

AF e ;€2 & (1/{1 . Z/{Q,Vl(%) Jif - VQ(%))

IF
Abe & UL (X) Ak ex & (Us, Va(X))

Aler?es & (Z/[l UUQ,Vl(X) U VQ(:{))
CALL-A
Af&UX)Ef& U, X)
CALL-B
Af&UX) e & U, A XUV(X - X))
AFf&U,AY V(E-X)uA“)
Figure 1. The Biichi Type and Effect System

To illustrate the remaining rules dealing with procedure, let
us consider the example m = o(b) ? o(a);m. We derive the
judgement

m&(a(a™d), X) F o(b)?0(a); m&(a(b)Ua(a)-a(ab), a(a)-X)

2015/4/21

where, of course, a*b was “cleverly chosen” and will in practice
be found by automatic inference. Using the fact that a(b) U a(a) -
(a(a™b)) = a(a®b) and rule CALL-B we can now conclude the
expected judgement

Fm() & (a(a*b), a(a)™)

where we may note that a(a)) = a(a®) by Theorems 2, 3, 4,
and the remark about finite iteration after the proof of Theorem 3.

In general, we can offer the following intuition for rule CALL-
B. The premise says that an infinite trace of ey will either be
captured by V(X — X)) or else begin with a finite prefix .4 followed
by acall to f. Thus, an infinite trace of f will either go through the
A loop a finite number of times (possible not at all) and then evolve
according to V(X — X)) or keep doing A forever.

Next, we formulate the soundness property of our type system.

Definition 5. An environment A is justified if for all f & (U, X)
inAonehas A+ e; & (U, A- XUV(X— X)) for some A € M,,
and expression V(X — X). An assignment function) satisfies an
environment A if whenever f & (U, X) in A and f | w then
w € n(X). We write n |= A to mean that the environment A is
Jjustified and that the assignment function n satisfies A.

‘We can now state our soundness theorem as follows.

Theorem 5 (Soundness). Given an environment /A and an as-
signment function n such that n = A then whenever A +
e & (U, V(X)) for an expression e, then we have: e | w implies
w € U and e | w implies w € V().

The proof is by induction on derivations; since we have not
formally defined traces there is no point giving detail here; instead
we refer to [18].

There is a corresponding completeness result. Fix for each
non-primitive procedure f € F a unique variable Xy. If A=
(Af)rer is a family of finitary abstractions, ie., Ay € M.,
define the corresponding environment A(/T) as to contain the
bindings f & (Ay, Xy). For each function body ey we can
now derive using the rules except the last one a unique typing
A(A) F e5 & The passage from A to C = (Cs)ser defines

a monotone operator ¢ on the lattice sz _If Bis the least fixpoint

—

of this operator then A(B) is justified and we get the judgements

—

A(B) ey & (Bf, V(X)). Successive application of the last rule
then gives judgements - f & (Uy, V) and a direct induction shows
thatin fact Uy = {w | f | w}and Vy = {w | f T w}. We have
thus shown:

Theorem 6 (Completeness). The judgements b f : (a({w | f |
w}),a({w | f T w})) are derivable for each f.

Now, in order to certify that all traces of a given program with
main entry point f are accepted by the policy automaton it suffices
to derive - f &(U, V) and to check that i/ UV C a(L(2)).

5.3 Type inference and complexity

Given that the abstract lattices and thus the set of types is finite,
type inference is a standard application of well-known techniques.
We therefore just sketch it here to give an idea of the complexity.
From a given program we can construct in linear time a skeleton
typing derivation for the finitary effect annotations. The skeleton
typing derivation contains variables in place of actual effect anno-
tations; the number of these variables is linear in the program size.
The side conditions of the typing rules then become constraints on
these variables and any solution will yield a valid typing derivation.
In quadratic time (assuming that 91 has constant size) we can then
compute the least solution of these constraints using the usual iter-
ation algorithms known from abstract interpretation. Once we have

short description of paper

in this way obtained the finitary effect annotations we can then (in
linear time) derive the infinitary ones using the (—)* and infinitary
concatenation operators on 1.

Once the type of an expression has been found one can then
check (in constant time) whether the language denoted by it is
accepted by the policy automaton.

If we are interested in complexity as a function of the size of the
policy automaton the situation is of course different. The important
parameter here is the size of the abstract lattices since the number
of iterations as well as the runtime of the algorithms for computing
the abstractions of concatenation, union, infinite iteration are linear
in this parameter. Lemma 1 gives a single exponential bound on
the number of classes. The resulting (single-)exponential in 7 run-
time of our algorithms is no surprise since the PSPACE-complete
problem of universality of Biichi automata is easily reduced to type
checking. We believe that by clever space management our algo-
rithms can be implemented in polynomial space but we have not
verified this.

On a positive note we remark that for a small policy automaton
the set of classes is manageable as we see in the examples below.
We also note that once the classes have been computed and the
abstract functions tabulated one can then analyse many programs
of arbitrary size.

5.4 Extended Example
Consider the following C-like program:

0 #define TIMEOUT 65536

1 while (true) {

2 int i,s; i = s = 0;

3 while (i++ < TIMEOUT && s == 0) {
4 s = auth(); /* o(a) */

5 } /x o(c) */

6 work(); /* o(b) */

7

}

We would like to verify that line 6 is executed infinitely often under
the fairness assumption that the while loop 3 always terminates. To
this end, we can annotate the above program by uncommenting the
event-issuing commands and abstract the so annotated program as
the definition:

f=g;00); f g = (o(a); g) 7 o(c)

We are then interested in the property “infinitely many b” assuming
that “infinitely often ¢” (fairness) or equivalently: “infinitely many
b or finitely many c¢.” This property can be readily expressed as the
following Biichi automaton:

a,b,c

a,b,c

By the definition of ~, we have that the set Q consists of the
following equivalence classes:

] ={e} la]l ={a}
[aa] = ata

[ab] = a™b

[eb] = (a+c)"cla+)b
[bcb] = (a+b+c)cla+b+c)b—[cb]

*

[ccal = (a+c)Te U (a+c)*cla+c)a

b = {b} [={c}
[ba] = (a +b)Ta — [aq]
[bb] = (a +b)*b — [ab]

2015/4/21

[bea) = (a+b+c)Te U

(a+b+c)cla+b+c)a—|cca)l.

Further, we have the following patches:

([e], [¢]) (lal, [¢]) ([0], [¢]) ([l [¢])

([aal,[e]) (bal,[e) ([ad],[e]) ([60], [e])

(bl [e) ([bcbl,[e]) ([ccal,[e]) ([beal, [€])

([aa], [aa]) ~ ([bal,[aa]) ([ba,[ba]) ~ ([bb], [bb])

([bed], [bb]) ([beb], [bed]) ([ccal, [aa]) ([ecal, [cea])

([bea], [aa]) ([bea], [ba]) ([bea), [ccal) ([beal, [bea])
Then, the abstraction a(L(2)) comprises all patches except

{(l¢], [¢]), ([ccal, [ccal), ([beal, [ccal)}

By using the Biichi type and effect system, we get the effect of g as
the pair:

Uy, Vy) = ({[¢], [ccal}, {([ad], [aa])}) .
The effect of f is the pair (Uy, Vy) given as follows:

(0, {([aal, [aal), ([bcal, [aal), ([beb], [beb]), ([beal, [beal)}) -

Since Uy U Vy C () the program satisfies the desired fairness
property as expected.

The following two subsections provide directions for future
work; the results announced there have not been completely elab-
orated yet. We include them to demonstrate the potential of our
method for possible extensions.

5.5 Region-Based Biichi Type and Effect System

We sketch an integration of the Biichi type and effect system with
the region type system for Java given by Beringer et al [4]. Let
us first explain why this integration is interesting and useful by an
example. Considering the following fragment of Java-like code:

class C {
void f (String arg);
}

It could be refined using two different regions r and r’ with Biichi
effects (U,V) and (U’,V?) respectively as follows:

class Cer {
void f (String@X arg) & (U,V);
}
class Cer’ {
void f (String@X’ arg) & (U’,V’);
}

Then, an object o typed COr expects a String@X as argument to
f and o. £ () will exhibit a (U, V) effect. An object o1 typed COr’
expects a String@X’ as argument to £ and ol.£f () will exhibit a
(U?,V?) effect. In this particular case, regions denote locations at
which effects are produced.

Generally, a region » € Reg is a static abstraction of concrete
locations which can be considered as a set of concrete locations. A
class type C' can then be equipped with a set R of regions, yielding
arefined type Cr that places the constraint that its members belong
to one of the regions in R. We summarize these definitions and
introduce new varaiabls as follows:

R,S € P(Reg) Cgr,T,0 € (Cls x P(Reg)) W {unit} = Typ

Here, the unit type is introduced for typing the expression o(a). It
is easy to define the subtype relation between region-based types:
Cr <: Cx ifand only if C < C' A R C R’. and to extend this
definition to sequences of types as follows:

T<:o & [gl=[F| A VieF|.oi<: 0]

short description of paper

T-LET

T-1r

With respect to the subtype relation, the following field typings:
A%t A9 € Cls x Reg x Fld — Typ

assign to each field in each region-annotated class respectively a
set-type which is a contravariant type for data written to the field
and a get-type which is a covariant type for data read from the field.
The following well-formedness conditions on A®** and A9¢* are
imposed:

A*HCor,)
and if D < C, then

AN, f) < A%N(D,r, f) A AYN(D,r, f) <: ASN(C,r, f)

Given a Biichi automaton £, let M. and M<,, be the Biichi
abstractions for ©* and X% respectively, as defined in Section 4.
We define effects as: Eff = M. x Mc,,. Then, the following
typing rule:

M € Cls x Reg x Fld — Typ x Typ X Eff

assigns to each method in each region-annotated class a functional
type with an effect. The subtype relation

_wu,w)
g — T

< AN, f)

W'y
g — T

between effect annotated functional types is defined as:
T<TAT<T NUCU ANV Y

That is, the input type is contravariant and the output type is covari-
ant. The well-formedness condition on M is:

D<C = M(D,r,m)<:M(C,r,m)

for all classes, regions, and methods.

With the above definitions, combinined with the type and effect
system given in Section 4, we arrive at the region-based Biichi type
and effect system as follows:

Fhoe:7& U, V(X))
<7 ucu’ V(X) CV'(X)

.
T-S
U Thae:r & U,V (%)

T-PRIM

I Fo o(a) : unit & (o« ({a}), D)
T-NULL

ko null : Cy & (i ({€}),0)
T-VAR

Dyz:7haz:7& (ac({€}),0)
T-NEW

I'ta new C : Cpy & (o« ({€}), 0)

Vre R.AYNC,r f) < T
Dyz:Crlbaz.f:7& (au({€}),0)
VreR.T <: A*Y(C,r, f)
Tz:Cryy:Thazfi=y:7& (a({e}),0)

or Ur V) 7 = M(C,r,m)

vre R, X
I,2:Cgr,7: aFm:rm()7 & (U, Urer{X:})
[ho e & (U, Vi(X))

Dz :mba ez 12 & (Uz, V2(X))
Pholetz=e1ines: 72 & (Us - U, V1i(X) Ul - Va2(X))
I,z : Crns,y : Dras Fae1 0 7 & (Ur, V1 (X))

F X . C’R,y Ds }—Ql €2 T& (UQ,VQ(.%))

Iz :Cr,y: Ds Fa
if z = ythenej else ez : 7 & (U UlU2, V1 (X) U V2 (X))

The typing judgement for expressions e is

T-GET

T-SET

™ <: 0 — T
T-CALL

2015/4/21

] Fl—gle:T&(U,V(ff))‘

with I" the type environment, 2l the policy Biichi automaton, 7 the
type of e, U the set of finite traces, and V(X) the expression for
infinite traces. Definition

VE)CV(X) & YneX— Mo, . Vn) <V

is used in the rule T-SUB. Notice that in Section 4, there are two
typing rules for function calls. That is, one rule is used to directly
get the effect if the effect has been assumed in the environment and
another rule is used to derive the effect with an effect assumption
added into the environment. However, in order to integrate with
region-based type systems, in our region-based Biichi type and
effect system, we only use the rule T-CALL. That is, the set I/ of
finite traces is taken from the declarations of finite traces in M.
As for the set of infinite traces, we only put a set of placeholders
X,. Notice that for different methods in different classes these
placeholders range over X and are indexed by their regions.

Further, a program P is well-typed if and only if for all classes
C, regions r, and methods m such that

mtable(C,r,m) = (Z,e) A M(C,r,m) =5, U, Vr)

Tr
the following typing:
this: Cypy,Tz:oke:7& (U, A - X, UV(X - {X,}))
is derivable and there is an assignment 7 : X — M <,, satisfying:
n(Xr) = A -V(n) UAT A Ve 2 n(Xr)

That is, a program is well-typed if and only if the constraints
produced by the region-based Biichi type and effect system are
satisfiable with respect to region-based type and effect declarations
for all classes, all regions and all methods defined in this program.

5.6 Higher-order functions

We extend our language with parameters and higher-order func-
tions so that terms are now given by the grammar:

ex=z|xz?y|o(a)|z;y|letx=erines|recfx.e

where x ranges over variables. We still do not model basic types
and thus use nondeterministic choice in place of variables. The
primitive event-issuing commands are as before. As in the previous
section, we assume let-normal-form.

The construct rec f x.e stands for a recursive function with ar-

gument x, body e, and recursive call f. For example, rec f z.0(a) 7z ; f

denotes a function which runs its argument x an undetermined
number of times followed by an a event or else runs x ad infinitum.
Of course, as before, we understand the non-determinism as arising
from the abstraction of concrete data.

We now use a type-and-effect system with types given by the
following grammar:

T 1= unit | /\71 o
iel
where [is a finite index set and the ¢; are Biichi effects (with

variables as before). A typing context I' binds variables to types;
the typing judgement takes the form

I'Fe:7&¢€

and expresses that given the bindings in I' the evaluation of expres-
sion has effect € and—if it terminates—produces a result of type
7. The typing rules are standard except for the following recursion
rule where the premise is supposed to hold for each ¢ € I and the

short description of paper

T-REC

variable X" should not appear in any of I and the 7;, 7/.
I xm, f: /\ T s XUB:)

icl

ket & Ui, Ai - X UB;)

U, A BuA)
F}—rec:rf.e:/\n(S)T{&([e],[e])
iel
We will give details including a formal statement and proof of type
soundness and applications in a future paper.

6. Conclusions

We have shown how to obtain a finite abstraction of the lattice of
languages of finite and infinite words over a fixed alphabet. The
abstraction is parametrized by a fixed Biichi automaton formalis-
ing a desired policy. We have shown that the abstraction is fine
enough to retain all relevant information for deciding whether or
not the traces of a given program would be accepted by the policy
automaton. We have also shown how the language-theoretic oper-
ations of union, concatenation, least-fixed point, Kleene star, and,
finally w-iteration can be adequately represented on the level of the
abstraction.

As an application of these results, We have developed a type-
and-effect system for capturing possibly infinite traces of recur-
sively defined first-order procedures. The type-and-effect system
is sound and complete with respect to inclusion of traces in a given
Biichi (“policy”) automaton. The effect annotations are from a fi-
nite set that can be effectively computed from the Biichi automaton.
Type inference using constraint solving is thus possible. We em-
phasize that the resulting ability to decide satisfaction of temporal
properties of traces is not claimed as a new result here; since it has
long been known in the context of model checking. The novelty lies
in the presentation as a type and effect system that follows the stan-
dard pattern of such systems. As we explain below, this opens the
way for smooth integration with existing type-theoretic technology.

We have shown how the type system allows to express non-
trivial fairness properties arising from the abstraction of loops that
are known to terminate. We have sketched extensions of our sim-
ple type system to class-based object-oriented languages and also,
albeit more briefly, with higher-order functions.

A. Trace Semantics

Let =% be the set of all finite and infinite sequences generated
from the set 3 of primitive events. We call an element w in =% a
trace. Given traces w and u, we define the concatenation w - w as:
wuifw € ¥ and w if w € X* where ¥* and 3 are respectively
sets of all finite and infinite sequences over . So, 5% = S*US¥
and ©* = ZtU{e}. As usual, we may write wu instead of w-u. We
are concerned with finite prefixes of the trace generated by a given
expression. We call them observed traces. Notice that all observed
traces are in X.*. Let e be the definition (a well-formed expression)
of f. The observed trace semantics is given in Figure 2. We write

eflw efftw
o@la oafa efe flw ffw

er w e2du erw ex fhu er ftw
er;esdw-u e1; ez fhw

er;ezfrfw-u

e1 Jw ez | w er frw ez ff w
e1?eslw e1?ealw erTesftw e;?es fw

Figure 2. The Observed Trace Semantics

e || w to mean that the finite trace generated by e is w. In particular,

2015/4/21

e terminates. We write e 1) w to mean that w is a finite prefix of
the trace generated by e. Let the notation v < w denote that v is a
finite prefix of w. We have: if e || w or e {} w, then for all u < w,
e u.

We now turn to define infinite traces of non-terminating pro-
grams. Unfortunately, the observed trace semantics does not con-
tain enough information for this. Let us consider the following def-
initions: f = o(a), g = (o(a) ; h) ? o(a), and h = h. Notice that
the observed traces of f and g are exactly the same. However, the
procedure g has a path leading to an unproductive infinite recursion
h while f is non-recursive. In order to fix this problem, let us intro-
duce the extended set ¥ {v'} of events and use (Xt {v'})=* for
the set of all extended traces. The observed extended trace seman-
tics is same as the observed trace semantics except for the rule for
function application in which a v'-event is automatically generated.

That is, f?{ﬁfﬂ. The specific symbol v" is added to the beginning
of trace w of ey. By doing this, unproductive infinite recursions
can be distinguished from productive cases by observed extended
traces v'*.

For all observed extended traces w, let f(w) denote the trace ob-
tained from w by removing all v's. Based on the observed extended

trace semantics, we define trace semantics as follows.

Definition 6 (Trace Semantics). For all expressions e and extended
traces w in (X W {v' })S¥,

elw=Fw e (BW{vD)elw Aw=0w);

efw=3w € TW{vhH Vusw . .efu)Aw=0w).

We say w is a trace of e if e | wore T w.

Notice that if e | w, then w is in ¥* and all executions of e
terminate. If e 7 w, then w is in ©=% and all executions of e do
not terminate. In our definition of trace semantics, the symbol v
is introduced to distinguish finite traces generated by terminating
programs and non-terminating programs. When the trace semantics
is well-defined, we remove all v's.

We remark that this way of defining the semantics is one of
several possibilities; alternatives would consist of using a small
step operational semantics or a coinductive definition. For instance,
Cousot et al [9] define a generalization of structured operational
semantics (G°°SOS), is used to describe the finite and infinite
executions of programs. At the end of the day we need to define the
two judgements e | w meaning that e terminates with trace w so,
necessarily w € ¥* and e 7 w meaning that e does not terminate
(runs forever) and its trace is w. In this case, w may either be an
infinite word (w € X“) or a finite word (w € X) in which case
e’s evaluation gets stuck in an infinite loop but e does not output
events during this loop.

An important fine point is that at our level of abstraction pro-
grams have a finite store which means that by Konig’s lemma “arbi-
trarily long” and “infinitely long” coincide. In a language allowing
the nondeterministic selection of integers we could write a program
that admits traces (outputting as) of any finite length but not hav-
ing an infinite trace. Then, our trace semantics would erroneously
ascribe the trace a® to such a program. But, fortunately, in our sit-
uation this does not occur. As a result, for some language exten-
sions, one may need to consider more complicated formal defini-
tions of trace semantics. This would, however, have no influence on
the type system we define and only very little influence on correct-
ness proofs.

Acknowledgments

This research is supported by the DFG-funded project “Verification
of polymorphic noninterference for mobile code” (PolyNI).

short description of paper

References

[1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus
of dependency. In A. W. Appel and A. Aiken, editors, POPL, pages
147-160. ACM, 1999. ISBN 1-58113-095-3.

[2] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. The monadic second
order theory of trees given by arbitrary level-two recursion schemes
is decidable. In P. Urzyczyn, editor, TLCA, volume 3461 of Lecture
Notes in Computer Science, pages 39-54. Springer, 2005. ISBN 3-
540-25593-1.

[3] B. Alpen and F. B. Schneider. Recognizing safety and liveness.
Distributed Computing, 2(3):117-126, 1987.

[4] L. Beringer, R. Grabowski, and M. Hofmann. Verifying pointer and
string analyses with region type systems. 7o appear in Computer
Languages, Systems and Structures, 2013.

[5

[t}

A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of
pushdown automata: Application to model-checking. In A. W.
Mazurkiewicz and J. Winkowski, editors, CONCUR, volume 1243 of
Lecture Notes in Computer Science, pages 135-150. Springer, 1997.
ISBN 3-540-63141-0.

[6] J. R. Biichi. On a decision method in restricted second order arith-
metic. In Proc. Congress on Logic, Method, and Philosophy of Sci-
ence, pages 1-12, Stanford, CA, USA, 1962. Stanford University
Press.

[7

—

O. Burkart and B. Steffen. Model checking the full modal mu-calculus
for infinite sequential processes. Theor. Comput. Sci., 221(1-2):251-
270, 1999.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Emerson and Sistla
[14], pages 154-169. ISBN 3-540-67770-4.

[8

—

[9

—

P. Cousot and R. Cousot. Inductive definitions, semantics and abstract
interpretation. In R. Sethi, editor, POPL, pages 83-94. ACM Press,
1992. ISBN 0-89791-453-8.

[10] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. In R. M. Graham, M. A. Harrison, and R. Sethi,
editors, POPL, pages 238-252. ACM, 1977.

[11] P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Log.
Comput., 2(4):511-547, 1992.

[12] C. Dax, M. Hofmann, and M. Lange. A proof system for the linear
time p-calculus. In S. Arun-Kumar and N. Garg, editors, FSTTCS,
volume 4337 of Lecture Notes in Computer Science, pages 273-284.
Springer, 2006. ISBN 3-540-49994-6.

[13] E. A. Emerson and E. M. Clarke. Characterizing correctness properties
of parallel programs using fixpoints. In J. W. de Bakker and J. van
Leeuwen, editors, ICALP, volume 85 of Lecture Notes in Computer
Science, pages 169—181. Springer, 1980. ISBN 3-540-10003-2.

[14] E. A. Emerson and A. P. Sistla, editors. Computer Aided Verification,
12th International Conference, CAV 2000, Chicago, IL, USA, July 15-
19, 2000, Proceedings, volume 1855 of Lecture Notes in Computer
Science, 2000. Springer. ISBN 3-540-67770-4.

[15] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient
algorithms for model checking pushdown systems. In Emerson and
Sistla [14], pages 232-247. ISBN 3-540-67770-4.

[16] R. Grabowski, M. Hofmann, and K. Li. Type-based enforcement of
secure programming guidelines - code injection prevention at sap. In
G. Barthe, A. Datta, and S. Etalle, editors, Formal Aspects in Security
and Trust, volume 7140 of Lecture Notes in Computer Science, pages
182-197. Springer, 2011. ISBN 978-3-642-29419-8.

[17] M. Heizmann, N. D. Jones, and A. Podelski. Size-change termination
and transition invariants. In R. Cousot and M. Martel, editors, SAS,
volume 6337 of Lecture Notes in Computer Science, pages 22-50.
Springer, 2010. ISBN 978-3-642-15768-4.

[18] M. Hofmann and W. Chen. Biichi Types for Infinite Traces and
Liveness. 2014. Technical report uploaded to arxiv.org.

2015/4/21

[19] M. Hofmann and S. Jost. Type-based amortised heap-space analysis.
In P. Sestoft, editor, ESOP, volume 3924 of Lecture Notes in Computer
Science, pages 22-37. Springer, 2006. ISBN 3-540-33095-X.

[20] M. Hofmann and D. Rodriguez. Automatic type inference for amor-
tised heap-space analysis. In M. Felleisen and P. Gardner, editors,
ESOP, volume 7792 of Lecture Notes in Computer Science, pages
593-613. Springer, 2013. ISBN 978-3-642-37035-9.

[21] A. Jeffrey. Ltl types frp: linear-time temporal logic propositions as
types, proofs as functional reactive programs. In K. Claessen and
N. Swamy, editors, PLPV, pages 49-60. ACM, 2012. ISBN 978-1-
4503-1125-0.

[22] T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown
trees are easy. In M. Nielsen and U. Engberg, editors, FoSSaCS,
volume 2303 of Lecture Notes in Computer Science, pages 205-222.
Springer, 2002. ISBN 3-540-43366-X.

N. Kobayashi and C.-H. L. Ong. A type system equivalent to the modal
mu-calculus model checking of higher-order recursion schemes. In
LICS, pages 179-188. IEEE Computer Society, 2009. ISBN 978-0-
7695-3746-7.

[24] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In
J. Ferrante and P. Mager, editors, POPL, pages 47-57. ACM Press,
1988. ISBN 0-89791-252-7.

[25] K. L. McMillan. Symbolic model checking. Kluwer, 1993. ISBN
978-0-7923-9380-1.

[26] C. Mossin. Higher-order value flow graphs. In H. Glaser, P. H.
Hartel, and H. Kuchen, editors, PLILP, volume 1292 of Lecture Notes
in Computer Science, pages 159-173. Springer, 1997. ISBN 3-540-
63398-7.

[27] E. Nielson, H. R. Nielson, and C. Hankin. Principles of program
analysis (2. corr. print). Springer, 2005. ISBN 978-3-540-65410-0.

[28] B. C. Pierce. Advanced Topics in Types and Programming Languages.
The MIT Press, 2004. ISBN 0262162288.

[29] S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Tech-
nische Universitit Miinchen, 2002.

[30] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation prob-
lem for biichi automata with appplications to temporal logic. Theor:
Comput. Sci., 49:217-237, 1987.

[31] C. Skalka. Types and trace effects for object orientation. Higher-Order
and Symbolic Computation, 21(3):239-282, 2008.

[32] C. Skalka, S. F. Smith, and D. V. Horn. Types and trace effects of
higher order programs. J. Funct. Program., 18(2):179-249, 2008.

[33] P. Thiemann. Formalizing resource allocation in a compiler. In
X. Leroy and A. Ohori, editors, Types in Compilation, volume 1473 of
Lecture Notes in Computer Science, pages 178—193. Springer, 1998.
ISBN 3-540-64925-5.

[34] W. Thomas. Languages, automata and logic. In A. Salomaa and
G. Rozenberg, editors, Handbook of Formal Languages, volume 3,
Beyond Words. Springer, Berlin, 1997.

[35] 1. Walukiewicz. Pushdown processes: Games and model checking. In
R. Alur and T. A. Henzinger, editors, CAV, volume 1102 of Lecture

Notes in Computer Science, pages 62—74. Springer, 1996. ISBN 3-
540-61474-5.

[23

short description of paper

2015/4/21

