
Turing Machines with Atoms,
Constraint Satisfaction Problems,

and Descriptive Complexity

Bartek Klin ∗ Sławomir Lasota* Joanna Ochremiak † Szymon Toruńczyk*

University of Warsaw
{klin,sl,ochremiak,szymtor}@mimuw.edu.pl

Abstract
We study deterministic computability over sets with atoms. We
characterize those alphabets for which Turing machines with atoms
determinize. To this end, the determinization problem is expressed
as a Constraint Satisfaction Problem, and a characterization is ob-
tained from deep results in CSP theory. As an application to De-
scriptive Complexity Theory, within a substantial class of rela-
tional structures including Cai-Fürer-Immerman graphs, we pre-
cisely characterize those subclasses where the logic IFP+C captures
order-invariant polynomial time computation.

Categories and Subject Descriptors F.1.1 [Models of Computa-
tion]: Turing machines; F.4.1 [Mathematical Logic]: Logic and
constraint programming; F.2.2 [Nonnumerical Algorithms and
Problems]: Computations on discrete structures

Keywords Sets with atoms, Turing machines, Constraint Satisfac-
tion Problems, Descriptive Complexity Theory

1. Introduction
Imagine Turing machines which can manipulate not only binary
digits, but also atoms which come from an infinite, countable set.
Moreover, input letters can be finite structures built of atoms. Typ-
ical letters include ordered quadruples of atoms, unordered sets of
eight atoms, or graphs with ten atoms as nodes. Such machines are
called Turing machines with atoms [4], or TMAs for short.

A TMA is allowed to read and write letters on a tape and store
them as parts of its internal state, but it is required to be invariant
with respect to bijective atom renaming. For example, if a machine
in a state that stores a set of two atoms {a, b}, upon reading a
letter {b, c} produces the letter {a, c}, then in a similar state storing
some other set {d, e}, upon reading {e, f}, it must produce {d, f}.
Intuitively, atoms have no discernible structure except equality, and

∗ Supported by ERC Starting Grant “Sosna”.
† Supported by the Polish National Science Centre (NCN) grant
2012/07/B/ST6/01497.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603135

a machine may base its actions on comparisons between atoms,
but not on the identity of particular atoms. It follows that the
language accepted by a TMA is always closed under bijective atom
renaming. For example, over the alphabet of unordered pairs of
atoms, there is a deterministic TMA recognizing the language of
those words which, understood as lists of edges of an undirected
graph, describe connected graphs.

In contrast to classical Turing machines, some TMAs do not
determinize. In [4], a certain language, over a particular alphabet
with each letter built of six atoms, was proved to be recognizable by
a nondeterministic TMA (in polynomial time), but not recognizable
by any deterministic one. An alphabet for which such a language
exists is called nonstandard. On the other hand, alphabets such as
tuples or finite sets of atoms, are standard: every TMA over them
does determinize.

This raises a few questions: how to check whether an alpha-
bet is standard? Is it a decidable property of alphabets? Is the six-
atom alphabet of [4] the simplest nonstandard one? In this paper we
tackle these questions, and in the process we reveal connections of
computation with atoms to some well-studied areas of Theoretical
Computer Science, in particular to the theory of Constraint Satis-
faction Problems (CSP) [8].

First, we recall from [4] that an alphabet A is standard if and
only if a deterministic TMA, given words v and w over A, can
decide whether v can be obtained from w by a bijective atom
renaming. Then we show that if any deterministic TMA decides
this problem then it may be decided by a specific algorithm akin to
consistency algorithms studied in CSP theory.

Exploring this connection further, we show how to encode a
given alphabet as a finite relational template in the sense of CSP,
so that the alphabet is standard if and only if the template is “easy”
in a certain well-known sense (specifically, if it admits a majority
polymorphism). The latter property is clearly decidable, which
gives an effective characterization of standard alphabets. As a direct
application, we show that all alphabets with letters built of up to five
atoms are standard, so the nonstandard alphabet of [4] is indeed a
minimal one. (However, other six-atom nonstandard alphabets do
exist.)

The nonstandard alphabet and language defined in [4] resem-
ble the well-known CFI graphs, introduced in [6] to show a limited
power of a logic IFP+C over unordered structures (more precisely,
an equivalent logic LFP+C was used). We explain this connection
by showing that for an alphabet A with atoms, any word defines
a relational structure, and over the class of structures obtained in
this way, the logic IFP+C captures exactly polynomial time com-
putations by deterministic TMAs. Our results yield a characteriza-
tion of those classes of structures obtained from words with atoms,
over which IFP+C captures polynomial time computations, in the



sense used in Descriptive Complexity. This result can be seen as a
common generalization of the Immerman-Vardi and the Cai-Fürer-
Immerman theorems. In Section 7 we discuss relations with a paper
of Atserias, Bulatov and Dawar [1] and also with the graph isomor-
phism problem for bounded color classes.

2. Turing Machines with Atoms
We begin by recalling some basic notions of sets with atoms [3, 4],
also known as Fraenkel-Mostowski sets [10] or nominal sets [14].
Sets with atoms. Fix a countably infinite set A of atoms. A set with
atoms is any set that can contain atoms or other sets with atoms, in a
well-founded way. Formally, sets with atoms are defined by ordinal
induction: the empty set is the only set at level 0, and sets at level
α either are atoms (which contain no elements) or contain sets at
levels smaller than α.

Examples of sets with atoms include:

• any classical set without atoms,
• the set A itself,
• for any n ∈ N, the set An of all n-tuples and A(n) of non-

repeating n-tuples of atoms (tuples may be encoded by usual
set-theoretic constructions),
• the set

(A
n

)
of sets of atoms of size n,

• the set A∗ of finite words over A,
• the set PfinA of all finite subsets of A, etc.

Bijective atom renaming acts on sets with atoms in a canonical
way; for instance, it acts coordinatewise on A(n). For a set with
atoms X and a bijection π : A → A, by π(X) we denote the set
obtained by consistently replacing atoms in X and in its elements
according to π (formally, this is again defined by ordinal induction).
We say that a set S ⊆ A supports X if X = π(X) for every π
which is the identity on S. For example, a tuple (a, b, c) ∈ A3 is
supported by the set {a, b, c} ⊆ A, but also by any larger set.

A set with atoms is hereditarily finitely supported if it has some
finite support, each of its elements has some finite support, and so
on recursively. In this paper we only consider hereditarily finitely
supported sets, and so in the following we omit this qualification.

It is not difficult to prove (see e.g. [10, Proposition 3.4]) that
every set with atoms has the least finite support with respect to
inclusion. By the support of a set with atoms X we will mean the
least finite support; we denote it by sup(X). If X is a finite set of
atoms, a finite set of such sets or so on, then sup(X) is the set of
those atoms that appear in X .
Equivariance. A set with atoms is equivariant if its support is
empty (note that its elements need not have the empty support).
The example sets listed above are all equivariant.

A relationR ⊆ X×Y between two equivariant sets with atoms
can be seen as a set with atoms itself. It is equivariant if and only if
it is closed under the action of atom renaming, i.e., if for any x ∈ X
and y ∈ Y ,

(x, y) ∈ R implies (π(x), π(y)) ∈ R

for any bijection π : A → A. If the relation is (the graph of) a
function f : X → Y , this translates to:

f(π(x)) = π(f(x))

for any bijection π : A → A and any x ∈ X; i.e., equivariant
functions are those that commute with atom renaming. It follows
that for any x ∈ X the support of f(x) is contained in the support
of x, since a permutation π which fixes x will also fix f(x).
The notion of an equivariant function formalizes the intuition of

a function that only cares about atom equality, and does not depend
on any other structure of the atoms.

For example, the only equivariant function from A to A is the
identity, the only equvariant functions from A(n) to A are the n
projections, and the only equivariant function from A to An is the
diagonal. There is no equivariant function from

(A
2

)
to A. Indeed,

suppose that f :
(A

2

)
→ A is such that, say,

f({a, b}) = a

for some a 6= b ∈ A. Then f is not equivariant, since for a bijection
π that swaps a and b:

f(π({a, b})) = f({a, b}) = a 6= b = π(a) = π(f({a, b})).

Intuitively, there is no way of choosing one atom out of two when
all one has is atom equality. However,{

({a, b}, a) | a, b ∈ A, a 6= b
}

is an equivariant relation between
(A

2

)
and A. Note that it relates

{a, b} both to a and b.
Notational convention. Most often we will make a pragmatic
distinction between those sets that we consider as collections of
interesting elements (for example, the sets A, A(n), etc.), and those
that serve mostly as elements of other sets (such as particular atoms,
tuples of atoms, etc.). The former will usually be equivariant, and
will be denoted by capital letters X , Y , A, and referred to as sets
with atoms. The latter will often have nonempty least support, and
will be denoted by small letters x, y, a, b, etc., and referred to as
elements.
Orbit-finite sets. Elements naturally fall into disjoint orbits: x and
y are in the same orbit if π(x) = y for some bijection π : A→ A.
A set is equivariant if and only if it is a union of orbits. For example,
A, A(n) and

(A
n

)
comprise one orbit each. The set A2 decomposes

into two orbits – the diagonal and its complement – and A∗ and
PfinA have infinitely many orbits. In sets with atoms, sets with
finitely many orbits (or orbit-finite sets) play the role of finite sets.
The dimension of a set A, denoted dimA, is the maximal size of
the support of any of its elements. Every orbit-finite set has a finite
dimension.

For every element x there is a unique single-orbit set – called
the orbit of x – which contains x, namely the set of all elements of
the form π(x), where π is an atom permutation. For any finite set
of elements there is a smallest equivariant set containing it, which
is orbit-finite. Every orbit-finite set arises in this way, so orbit-finite
sets indeed are “finite up to atom renaming”.
Automorphisms of elements. Let x be an element. A permuta-
tion π of supx is an automorphism of x if x is fixed by some
(equivalently, every) permutation of atoms which extends π. Auto-
morphisms of x form a group of permutations of sup(x), denoted
Aut(x). For example, if x is an unordered pair {a, b} of distinct
atoms, then Aut(x) is the symmetric group on {a, b}. On the other
hand, if x is the ordered pair (a, b), then Aut(x) is the trivial group
acting on {a, b}. If x is a finite relational structure with atoms as
nodes, such as a graph, then Aut(x) is the classical automorphism
group of x.

When x and y are in the same orbit then Aut(x) and Aut(y)
are isomorphic as permutation groups. The converse almost holds:
if Aut(x) and Aut(y) are isomorphic as permutation groups, then
the orbit of x maps equivariantly and bijectively to the orbit of
y. This means that orbit-finite sets can be presented (up to equiv-
ariant bijection) by finite collections of finite permutation groups.
Moreover, properties of orbit-finite sets, such as the standardness
of orbit-finite alphabets, can be considered as properties of finite
permutation groups.



Turing machines. Following [4], a Turing machine with atoms
(TMA) is defined exactly as an ordinary Turing machine, but with
finite sets replaced by orbit-finite sets with atoms. Thus a TMA
consists of an input alphabet A, a work alphabet B ⊇ A, and set of
states Q with distinguished subsets of initial and accepting states,
all these orbit-finite sets with atoms, and an equivariant transition
relation

δ ⊆ Q×B ×Q×B × {−1, 0, 1}
where the last atomless component encodes possible moves of the
machine head as usual. An input is a finite word w ∈ A∗, and the
definitions of a machine configuration, transition between configu-
rations, machine run, acceptance and the language recognized by a
machine are as in the classical case. A machine is deterministic if
the transition relation is a partial function and there is exactly one
initial state.

Some examples of TMAs were given in [4]; we follow with a
few more to illustrate TMA determinization issues.

Example 2.1. Consider the alphabet A2 of ordered pairs of atoms;
a word over this alphabet may be seen as a finite directed (multi-
)graph with atoms as vertices. TMAs can decide all standard graph-
theoretic properties of such words in a uniform way. Indeed, let
the working alphabet of a machine M additionally contain single
atoms as letters. The machine, given an input word w, may begin
by deterministically computing (and writing to its tape) an ordered
list of all atoms in w, in the order of appearance. This is done
by checking, for each letter (a, b) of the input, whether a (and,
further, b) appear in the list constructed so far, and if not, by adding
them to the list. For this, it is important that a deterministic TMA,
given a letter (a, b), may compute the atoms a and b; indeed, both
projections from A2 to A are equivariant functions.

Once an ordered list of all atoms in w is computed, the ma-
chine M may simulate any classical, atomless algorithm on finite
directed (multi-)graphs, representing every atom in w by the num-
ber of its position in the list. If the simulated algorithm is determin-
istic, then so is M .

Example 2.2. Consider now the alphabet
(A

2

)
of unordered pairs

of atoms. By analogy to the previous example, a word may now
be seen as a finite undirected (multi-)graph. The simple approach
sketched above does not work as it is. Indeed, as we explained
before, there is no equivariant function that, given a letter {a, b},
returns the atom a. As a result, a deterministic TMA cannot, in
general, compute a total order of atoms that appear in a word over(A

2

)
.
Fortunately, in this case the problem may be overcome rather

easily. Note that taking the intersection, or the difference, of two
sets of atoms is an equivariant function. Therefore, if some atom
appears in one letter but not in another, then a deterministic TMA
can detect this, and output this atom at the end of the tape. This
way, the machine outputs all vertices of all non-isolated edges, in
some order. Based on this order, a machine may again simulate
any classical algorithm on finite undirected (multi-)graphs as in
Example 2.1, with the only difference that it must remember that
the input graph has a certain number of isolated edges that are not
represented in the computed list of atoms.

Example 2.3. Consider the alphabet A of unordered pairs of dis-
joint, ordered pairs of atoms. Its letters are of the form

l = {(a, c), (b, d)}
for distinct a, b, c, d ∈ A, and we may draw them as graphs:

Above, the same letter is depicted in four different ways, depending
on the ordering of atoms chosen in the picture. It has a four-element

support and two automorphisms:

sup(l) = {a, b, c, d} Aut(l) = {(), (a b)(c d)}.
Here and in the following, we use the usual cycle decomposition
notation to describe finite permutations.

Given a letter as above, we shall call the set {a, b} its left bag
and {c, d} its right bag. Consider the language L ⊆ A∗ of words
l1l2 · · · ln such that:

(i) for 1 ≤ i < n, the right bag of li equals the left bag of li+1,
(ii) the right bag of ln equals the left bag of l1,

(iii) otherwise, bags are pairwise disjoint, and
(iv) it is possible to choose one pair of atoms (an “edge”) from each

li so that the chosen edges form a directed cycle of length n.

For example, the four-letter word on the left belongs to L, and the
one on the right does not, as it fails the condition (iv):

An equivalent (slightly informal) phrasing of condition (iv) is that
the atoms can be arranged in such a way, that the letters have no
crossings.

To investigate the recognizability of L, note that functions that
return the left and the right bag of a given letter:

{a, b} ← [ {(a, c), (b, d)} 7→ {c, d}
are equivariant, and therefore computable in a single step by a
deterministic TMA. Since comparing two bags for equality (and
checking whether they are disjoint) is also deterministically com-
putable, it is clear that a deteministic TMA can check conditions
(i)-(iii) in the definition of L. These conditions ensure that the in-
put word has the shape of a circular band; the remaining condition
(iv) says that it is a simple band, and not a “Möbius strip”.

A nondeterministic TMA can check the condition (iv) easily,
guessing one edge from each letter of the input, writing them on the
tape, and then deterministically checking that they form a directed
cycle. For this, the work alphabet should be extended to include
single edges, i.e., ordered pairs of atoms.

Although a deterministic TMA is unable to guess an edge from
a letter of the alphabet A, condition (iv) can still be checked deter-
ministically. To this end, note that two letters of A that share a bag,
may be deterministically composed with an equivariant function
that acts as follows:

A deterministic machine can sequentially compose the input letters
from the input in this way, storing intermediate results in its state,
and finally check that the structure obtained at the end is of the
form:

.

The above deterministic construction relies on the fact that non-
local dependencies on bags in the input word may be encoded as
small structures of atoms (i.e. intermediate results of the composi-
tion process). In [4], an alphabet was proposed where this fortunate
property fails, and as a consequence, TMAs do not determinize. We
briefly recall that example now.

Example 2.4. Generalizing Example 2.3, consider an alphabet A
whose letters are four-element sets of atom triples of the following
shape, containing six atoms altogether:

l = {(a, c, e), (a, d, f), (b, c, f), (b, d, e)}.



It is straightforward to check that l has four automorphisms:

sup(l) = {a, b, c, d, e, f}
Aut(l) = {(), (a b)(c d), (a b)(e f), (c d)(e f)}.

A letter like this may be depicted in eight different ways, as a
hyperedge on six vertices, with a positive or negative sign:

The rule is that each time a pair of atoms at some corner exchanges
positions, the sign changes. This is analogous to Example 2.3,
where each time a pair exchanges positions, then a crossing in the
graph either appears or disappears.

In the alphabet of Example 2.3, an automorphism of a letter
could swap a pair of atoms in a bag if and only if it swapped
the remaining atoms as well. Here, the situation is a little more
complicated: there are three exchangeable pairs of atoms in a letter,
and an automorphism can perform a swap in any two (but not all
three) of them. This enables much more complicated dependencies
between bags. In [4], letters of A were used to cover a surface
(specifically, a torus) as depicted below (atoms are represented by
dots):

One then considers the language of words whose letters form
such a torus (where the correct shape is ensured by conditions
analogous to (i)-(iii) in Example 2.3) and satisfy an additional
requirement analogous to (iv) in Example 2.3: that one can swap
the atoms in such a way that each letter gets a positive sign. Note
that swapping a pair of atoms changes the signs of both letters
which contain this pair. A nondeterministic TMA can recognize
this language similarly to Example 2.3, but, as is proved with
a geometric argument, a deterministic TMA cannot recognize it.
More details on this can be found in [4].

Example 2.5. Another way of arranging six atoms in a letter is a
two-element set of disjoint three-element sets:

l =
{
{a, b, c}, {d, e, f}

}
which may be presented as an undirected graph:

A letter like this has support {a, b, c, d, e, f} and 3! · 3! · 2 = 72
automorphisms. As we will show in Section 5, TMAs over this
alphabet A do not determinize. On the other hand, as will also
easily follow from our results, machines over ordered pairs of
disjoint three-element sets of atoms, or over two-element sets of
disjoint ordered triples of atoms, do determinize.

An alphabet will be called standard if all nondeterministically
recognizable languages over it are also deterministially decidable;
otherwise it is nonstandard. Our aim is to provide an effective
characterization of these properties.

3. Word isomorphism and (k, l)-consistency
Recall that for any element x, an automorphism of x is a bijection
on its support which extends to a bijection of atoms that fixes x.

More generally, an isomorphism from x to y is a bijection from
sup(x) to sup(y) which extends to an atom bijection that maps x
to y. Note that x and y are isomorphic in this sense if and only if
they are in the same orbit.

The word isomorphism problem for an orbit-finite alphabet A is
the language

IsoA = {vw ∈ A∗ | v is isomorphic to w}.

We recall the following theorem from [4]:

Theorem 3.1. An alphabet A is standard if and only if the lan-
guage IsoA is decidable by a deterministic TMA.

We will now study the word isomorphism problem in more
detail. As a first step to test isomorphism, a TMA may determine
whether two words are similar, as described below.

3.1 Word similarity

Bags. We say that two atoms coappear in a word w ∈ A∗ if they
belong to its support and belong to the supports of exactly the same
letters of w. Coappearance is an equivalence relation on sup(w),
and its equivalence classes will be called bags of w, a notion that
appeared in Example 2.3. A bag is either disjoint from or contained
in the support of any letter of w, moreover it is determined by
the sequence of letters which contain it. The set of all bags in w
will be denoted by Bags(w). It inherits a total ordering from the
lexicographic ordering on subsequences of w.
Similar words. Suppose that two words v and w over A have the
same length and the same number of bags. We say that a letter of
v corresponds to a letter of w if they are on the same positions in
those words. Similarly a bag B in v corresponds to a bag B̃ in w if
for every letter of v which contains B, the corresponding letter in
w contains B̃, and vice versa.

We say that the words v and w are similar if each bag of v has
a corresponding bag of the same size in w, and vice versa. Similar
words induce a bijective correspondence between their bags. When
v and w are understood from the context, we denote by B̃ the bag
in w corresponding to a bag B in v.

Lemma 3.2. There exists a deterministic TMA which determines
whether two input words w, v ∈ A∗ are similar.

Note that similar words are not necessarily isomorphic, as wit-
nessed by the two four-letter words in Example 2.3.

3.2 Consistency
We now go beyond local interactions between intersecting letters
and proceed to a more refined analysis of the structure of the words
v and w. In this section, fix two similar words v and w over A.
Translations. An isomorphism σ from v to w decomposes into
a family of bijections – one bijection σB from B to B̃ per each
bag in v. In this section, we study families of bijections between
corresponding bags which are “candidates” for forming a global
isomorphism from v to w.

Let B = {B1, . . . , Bn} be some family of bags of v. A trans-
lation on domain B is a family of bijections σ = (σB)B∈B, where
σB is a bijection from B to B̃. The size of σ is the size of its do-
main. A translation σ covers a letter l of the word v, if its domain
contains all the bags of l.
Local consistency. A translation σ is locally consistent if it induces
an isomorphism of every letter of v which it covers to the corre-
sponding letter in w. Note that an isomorphism between v and w
induces a locally consistent translation on the domain of all bags
of v. Conversely, any locally consistent translation on that domain
gives an isomorphism from v to w.



Example 3.1. Consider the pair of words v, w from Exam-
ple 2.3. Both have four bags: {a, b}, {c, d}, {e, f}, {g, h}. For
i = 1, 2, 3, 4, let σi map the ith bag of v identically to the ith bag
of w. The translation (σ1, σ2) is locally consistent: it covers the
first letter of v, and maps it isomorphically to the corresponding
letter ofw. However, the translation (σ1, σ2, σ3) is not locally con-
sistent, as it fails to map the second letter of v to the second letter
of w.

A consistency algorithm. We now sketch a variant of the (k, l)-
consistency algorithm (see e.g. [2, 8]), adjusted to finding word
isomorphisms. The relationship to the standard (k, l)-consistency
algorithm will become clear in Sec. 4.

The algorithm has two natural numbers k < l as parameters,
and takes a pair of similar words v and w as input.

Let F be a collection of locally consistent translations of size at
most l. We say that F is (k, l)-consistent if:

(1) F is downward-closed: if σ ∈ F is a translation and B is a
subset of its domain, then the restriction (σB)B∈B is in F .

(2) F is weakly upward-closed: if σ ∈ F is a translation of size at
most k and B is a family of at most l bags of v that contains the
domain of σ, then there is a translation σ̄ ∈ F with domain B
which extends σ.

Given two input words v, w, the (k, l)-consistency algorithm
computes the largest (k, l)-consistent collection of locally consis-
tent translations. The algorithm starts with the collection of all
locally consistent translations of size at most l, and repeatedly
removes all translations σ that falsify condition (1) or (2), un-
til a fixpoint is reached. The result of this procedure is denoted
consk,l(vw).

The algorithm for computing consk,l(vw) can be carried out by
a deterministic TMA, where letters of the work alphabet include
families of consistent translations over a common domain of size
at most l. This work alphabet is (contained in) an orbit-finite set,
and admits the operations needed for the fixpoint computation of
consk,l(vw).

If v and w are isomorphic then consk,l(vw) 6= ∅. Indeed, an
isomorphism from v to w induces a locally consistent translation
on the domain of all bags, and all its subfamilies of size at most l
form a (k, l)-consistent collection.

We say that the alphabet A has width (k, l) if the other im-
plication holds, i.e., if for any pair of similar words v, w ∈ A∗,
consk,l(vw) 6= ∅ if and only if v and w are isomorphic.

The following theorem says that the (k, l)-consistency algo-
rithms are in a sense “universal” for recognizing IsoA.

Theorem 3.3. For any alphabetA, the language IsoA is recognized
by a deterministic TMA if and only if there exist numbers k, l such
that A has width (k, l).

One implication is easy: if A has width (k, l) then the lan-
guage IsoA is deterministically recognizable (in polynomial time)
by the TMA which computes consk,l(vw) and tests whether the
result is nonempty. For the other implication, suppose that IsoA
is recognized by a deterministic TMA M and that the family
F = consk,l(vw) is nonempty (for sufficiently large k, l, depend-
ing on M ). Roughly, one then shows that an accepting run of M
over the word vv can be translated, using the family F , into an
accepting run over vw, implying that vw ∈ IsoA.

Together with Theorem 3.1, this gives a characterization of
standard alphabets in terms of width. However, it may not be
clear how the existence of a finite width might be decided. In the
next section, we encode the existence of an isomorphism between
similar words as a constraint satisfaction problem, to draw on the
rich body of results known about those.

4. Constraint Satisfaction Problems
An instance of a Constraint Satisfaction Problem (CSP) [8] consists
of a set of variables, a set of values, called its domain, and a
family of constraints. Each constraint is of the form (v̄, R), where
v̄ = (v1, . . . , vn) is a tuple of variables, and R is an n-ary relation
over the domain; we say that the tuple v̄ is constrained to R. For
a given instance, a partial assignment is a partial mapping of the
variables to the domain. A partial assignment f is called a partial
solution if it satisfies all the constraints, i.e., if v̄ is constrained to
R and f is defined over v̄, then (f(v1), . . . , f(vn)) ∈ R. We drop
the qualifier partial if the mapping is total.

We will be interested in the case where all the above sets are
finite.

4.1 Instances
Fix an orbit-finite alphabet A. The aim is to reduce the word
isomorphism problem over A to a CSP. More precisely, given two
similar words v and w over A, we will construct an instance which
has a solution if and only if v and w are isomorphic. The idea is
that each bag in v is a variable, and an assignment will assign to
it a bijection to the corresponding bag in w. In order to describe
bijections between bags using elements of a finite domain, we need
to introduce canonical representations of various bags. The precise
definition follows.
Maps and atlases. For a bag B, define [B] = [n] = {1, 2, . . . , n}
where n is the size ofB. A map of a bagB is any bijection fromB
to [B], or equivalently, an ordering of the elements of B. An atlas
α on a word v over A is a family of maps: one map αB per each
bag B of v.

Fix two similar words v and w over A, and let α and β be their
atlases. Then [B] =

[
B̃
]

for any bag B in v, and any permutation
τB of [B] induces a bijection σB from B to B̃:

σB = αB · τB · (βB̃)−1 (1)

(we use left-to-right function composition here). The correspon-
dence of σB and τB is bijective. Our aim is to define a CSP in-
stance whose solutions are families (τB)B∈Bags(v), where each
τB is a permutation of [B], such that the corresponding transla-
tion (σB)B∈Bags(v) is locally consistent, and so induces an iso-
morphism from v to w.
The instance. For fixed atlases α and β, we define the following
instance, denoted Iv,αw,β . Its variables are all bags of v. Its domain is
the disjoint union:

DA = S[1] + S[2] + S[3] + · · ·+ S[dimA] (2)

where S[n] is the group of all permutations of [n]. Note that dimA
is the maximal possible size of a bag in a word over A.

Most importantly, there are the constraints. They correspond to
letters of v as follows. For a letter l of v, let B1, . . . , Bn be its
bags in increasing order. The tuple (B1, . . . , Bn) is constrained to
the set Rl of tuples (τ1, . . . , τn) ∈ S[B1] × · · · × S[Bn] such that
the translation (σ1, . . . , σn) induced via (1) is locally consistent,
i.e., forms an isomorphism from l to the corresponding letter of w.
Note that Rl can be seen as an n-ary relation over DA. Such are
the constraints of the instance Iv,αw,β .

The construction implies that partial assignments for Iv,αw,β cor-
respond bijectively to translations from v to w. Moreover, a partial
assignment is a partial solution if and only if the corresponding
translation is locally consistent. The correspondence preserves in-
clusions of partial assignments and translations.

Example 4.1. Over the alphabet consisting of letters {(a, c), (b, d)},
consider the two words v, w from Example 2.3, depicted below



with most atoms represented by dots. Some atlases α, β of v, w are
given; they assign numbers to atoms.

1

2

1 1

2

1

22

1

2

1 1

2

1

22

The instance has four variables B1, B2, B3, B4 corresponding to
the four bags of v. There are four constraints, corresponding to
the letters of v. The first letter constrains the pair (B1, B2) to
the set of pairs R = {(id, id), (σ, σ)} ⊆ S[2] × S[2] (where σ
denotes the transposition on [2]) because only these correspond
to isomorphisms from the first letter of v to the first letter of w.
The pair (B2, B3), however, is constrained to the set of pairs
R′ = {(id, σ), (σ, id)}.

The resulting instance Iv,αw,β is drawn below. Solid edges repre-
sent the constraint R, the dashed edge – the constraint R′.

For different atlases on the same v and w the instance may look
different, but it will always have one or three dashed edges.

4.2 Templates
If T = (D,R1, R2, . . . , Rn) is a relational structure, then we
say that an instance is over the template T if its domain is D
and each relation occurring in a constraint is one of the relations
R1, . . . , Rn.

Fix an orbit-finite alphabet A. We define the template TA as the
set DA from (2) together with all relations on DA which appear
in the constraints of all instances of the form Iv,αw,β . There are only
finitely many such relations because each of them has arity at most
dimA. Moreover, each relation in TA has a special structure: it is
a coset.

If G is a group, then a coset in G is any subset of the form
H · g = {h · g : h ∈ H}, for a subgroup H of G and g ∈ G.

Lemma 4.1. Let v, w be similar words over A and α, β their
atlases. For any letter l of v with bags B1, . . . , Bn, the relation
Rl is a coset in the group S[B1] × · · · × S[Bn], and a subgroup if
v = w and α = β.

Example 4.2. Let A be the alphabet from the previous example.
Then DA = S[1] + S[2] + S[3] + S[4]. Some of the relations of TA
include the binary relations R,R′ ⊆ S[2] × S[2] which appeared
in Example 4.1. Note that R is a subgroup and R′ is its coset in
S[2]×S[2]. Other relations in TA include a unary relation U which
is a subgroup of S[4] isomorphic to Aut(l), where l is a letter of A.
The relation U arises in the instance Il,αl,α , where α is some map on
l.

4.3 Templates of bounded width
Given an instance I , the well-known (k, l)-consistency algorithm
(see e.g. [2, 8]) is completely analogous to the one in Sec. 3.2, but it
computes partial solutions instead of locally consistent translations.
We say that a template T has width (k, l) if for any instance I
over T , consk,l(I) 6= ∅ if and only if I has a solution. A template
of bounded width is a template of width (k, l), for some natural
numbers k, l.

By construction of the instance Iv,αw,β , its partial solutions corre-
spond to locally consistent translations, so we have:

Fact 4.2. For any words v, w over A and their atlases α, β,
consk,l(vw) 6= ∅ if and only if consk,l(Iv,αw,β) 6= ∅.

It is also not difficult to prove the following.

Proposition 4.3. Fix an alphabet A, and let k, l be natural num-
bers. Then the following conditions are equivalent:

1. The alphabet A has width (k, l),
2. The template TA has width (k, l).

The implication from (2) to (1) is immediate from Fact 4.2, since
any pair of words v, w induces an instance Iv,αw,β over TA, and the
consistency algorithm over Iv,αw,β simulates the algorithm over vw.
The converse implication is similar, and uses the the fact that an
arbitrary instance I over TA can be converted into a homomorphi-
cally equivalent instance of the form Iv,αw,β .

4.4 Majority polymorphisms
The bounded width property is decidable for any template [2, 13],
but for templates TA it can be analyzed further using the following
fundamental notions of CSP theory.

Consider a template T over a domain D and a function f :
Dn → D. A relation R in T is compatible with f if by applying f
(coordinatewise) to n tuples from R, we get a tuple in R. We say
that f is a polymorphism of T if all the relations in T are compatible
with f . A majority polymorphism m is a ternary polymorphism
such that for all x, y ∈ D we have

m(x, x, y) = m(x, y, x) = m(y, x, x) = x. (3)

Another example of a ternary polymorphism is a Maltsev poly-
morphism M which for all x, y ∈ D satisfies

M(x, x, y) = M(y, x, x) = y. (4)

For every alphabetA, the template TA has a Maltsev polymorphism
M defined by:

M(x, y, z) = xy−1z, if x, y, z ∈ S[n] for some n,

and for other arguments defined arbitrarily but satisfying (4). This
is a polymorphism since, by Lemma 4.1, every relation in TA is a
coset.

A relational structure is a core if every endomorphism of it is a
bijection. Every relational structure T has an induced substructure
C which is a core and which is a retract of T , i.e. there is a
homomorphism from T onto C which is the identity on C. We
call C the core of T (a core is unique up to isomorphism).

The key technical result of CSP theory that we need is:

Theorem 4.4 ([7]). If a core template has a Maltsev polymorphism
and has bounded width, then it has a majority polymorphism.

The following lemma does not hold for arbitrary relational tem-
plates, but it does for templates TA:

Lemma 4.5. For any alphabet A, the template TA has a majority
polymorphism if and only if its core has a majority polymorphism.

From this we deduce:

Lemma 4.6. For any alphabet A, the template TA has bounded
width if and only if TA has a majority polymorphism.

Proof. The right-to-left implication is classical [8] and holds for
any template T . To prove the left-to-right implication, let C be the
core of TA, and let r be a homomorphism of TA onto C which is
the identity on C. Then C has a Maltsev polymorphism r ◦ M ,
where M is a Maltsev polymorphism of TA. It is well known (and
easy to see) that a template has bounded width if and only if its
core has; therefore, C has bounded width. By Theorem 4.4, C
has a majority polymorphism. Therefore, by Lemma 4.5, TA has
a majority polymorphism.

We arrive at the main result of this paper:



Theorem 4.7. An alphabetA is standard if and only if its template
TA has a majority polymorphism.

Proof. Follows from Theorems 3.1 and 3.3, Proposition 4.3, and
Lemma 4.6.

5. Applications
Theorem 4.7 gives a decidable (in the classical sense) characteri-
zation of standard alphabets. Indeed, given A represented as a fi-
nite collection of finite permutation group, the template TA can be
computed, since all relations in it arise from words of bounded size.
Then one can try every ternary function on the domain of TA for the
polymorphism property and majority equations. (Note that there are
also more efficient, polynomial time procedures of testing whether
a template has bounded width [2, 13].) Rather than illustrate this
tedious procedure, we show on examples how the existence of a
majority polymorphism, or the lack thereof, may be deduced by
studying the structure of a template TA.

5.1 Alphabets of dimension up to five are standard
We will show that any alphabet A of dimension (at most) five is
standard. The domain of the template TA of such an alphabet has
(at most) five components:

DA = S[1] + S[2] + S[3] + S[4] + S[5].

By definition of TA, every relation in it is of the form:

R ⊆ S[n1] × S[n2] × · · · × S[nk] (5)

where
∑k
i=1 ni ≤ 5. Moreover, R is always a coset in the product

group on the right.
For a function m : D3

A → DA to be a polymorphism, it is
required that every relationR in TA is compatible withm, i.e., that
whenever the first three rows below are tuples in R, the resulting
tuple also is in R, where ρi = m(σi, τi, νi):

m

σ1 σ2 σ3 · · · σk ∈ R
τ1 τ2 τ3 · · · τk ∈ R
ν1 ν2 ν3 · · · νk ∈ R
ρ1 ρ2 ρ3 · · · ρk ∈ R.

We will show that there exists a majority function for which all
coset relations R as in (5) are compatible, thereby proving that
every alphabet of dimension A is standard.

According to (5), every relation R determines a tuple of com-
ponents S[ni] so that ith element of a tuple in R belongs to the ith
component. As a result, to define a polymorphism m on TA, it is
enough to define m(x, y, z) for x, y and z in the same S[n]. On
the remaining triples m may be defined arbitrarily, without com-
promising the polymorphism property.

We shall now study the structure of coset relations R as in (5)
in some more detail. First, consider a relation R where some ni
in (5) equals 1, and letR−i be the projection ofR to all coordinates
except i. Clearly, R−i is a coset relation. It is easy to see that R is
compatible with a given majority function m if and only if R−i is.
As a result, such relationsRmay safely be excluded when checking
the polymorphism property on all coset relations.

On the other hand, assumeR is unary. Call a ternary functionm
conservative if m(σ, τ, ν) ∈ {σ, τ, ν} for all arguments σ, τ and
ν. It is easy to see that all unary relations are compatible with every
conservative function. Therefore, for any conservative m, we may
disregard all unary relations in TA as well.

Now consider binary relations R ⊆ S[2] × S[2] in TA. S[2]

has two elements, so there is only one way to define a majority
function on this component: the majority equations determine it
fully. It is easy to check that every binary relation on a two-element
set is compatible with the unique majority function on it, so such
relations may also be disregarded.

The only remaining case is binary relations R ⊆ S[2] × S[3].
Arranging the elements of S[2] and S[3] in a diagram:

() (1 2) ∈ S[2]

() (1 2) (1 3) (2 3) (1 2 3) (1 3 2) ∈ S[3]

we may draw any R as a bipartite graph. Recall that any R in
TA is a subgroup or a coset in the group S[2] × S[3]. Let us
consider subgroups first; all are depicted here (dots correspond to
permutations as drawn above)

•
(i)

•

• • • • • •

•
(ii)

•

• • • • • •

•
(iii)

•

• • • • • •

•
(iv)

•

• • • • • •

•
(v)

•

• • • • • •

•
(vi)

•

• • • • • •

•
(vii)

•

• • • • • •

•
(viii)

•

• • • • • •

•
(ix)

•

• • • • • •

with the exception of two conjugate subgroups per each of (ii), (iv)
and (vi), which are isomorphic to them as bipartite graphs. Recall
that there is only one way to define a majority function on S[2]; the
question is whether we can extend it with a majority function m on
S[3] so that all relations above are compatible with it. It is easy to
see that, as far as such exentions are concerned:

• (i)-(iv) and (vi) are compatible with any majority function,
• (v) is compatible with any conservative function,
• (vii) and (ix) are compatible with any function.

The only remaining case is (viii). The group S[3] contains three
even permutations (), (1 2 3) and (1 3 2), and three odd ones (1 2),
(1 3), and (2 3). We say that a function m : S3

[3] → S[3] is odd-
even-majority ifm(π1, π2, π3) is even whenever at least two of π1,
π2, π3 are even, and odd otherwise. It is easy to check that:

• (viii) is compatible with any odd-even-majority function.

Cosets in S[2] × S[3] do not pose additional problems. Indeed,
all cosets of (i)-(vii) are isomorphic to their respective subgroups
as bipartite graphs, and they are compatible with functions listed
above for their respective subgroups. The full group (ix) has no
cosets, and the unique coset of (viii) is its complement as a bipartite
graph, and it is compatible with every odd-even-majority function.

Altogether we have proved that every ternary function on DA
that is conservative, a majority, and an odd-even-majority when
restricted to S3

[3], is a polymorphism on TA. It is easy to define a
function with all these properties, and as a result, TA has a majority
polymorphism, so A is standard.

5.2 Some nonstandard alphabets of dimension six
As one could expect, there are standard alphabets of dimensions
greater than five. For instance, the alphabet

(A
k

)
of k-element sets

of atoms is standard for any k. It is easy to see this by looking at
their templates, but there is an even simpler argument: over such an
alphabet, two words are isomorphic if and only if they are similar.

However, there are nonstandard alphabets of dimension six.
Consider the alphabet from Example 2.4. We depict a fragment of
a word v over this alphabet (with atoms anonymized as dots as in
Example 4.1), where the letter in the center intersects three other
letters, splitting it into three bags:



Consider the instance Iv,αv,α , where α is any atlas on v (its choice
will not affect the following). The triple of bags is constrained
to a ternary relation R on S[2] that consists of those triples of
permutations where the swap σ = (1 2) ∈ S[2] appears zero or
two times.

As S[2] has only two elements, there is exactly one majority
function m on S3

[2]. As it turns out, it is not compatible with R:

m

() σ σ ∈ R
σ () σ ∈ R
σ σ () ∈ R
σ σ σ 6∈ R,

hence m is not a polymorphim of TA and the alphabet from Ex-
ample 2.4 is nonstandard. The reader should enjoy comparing this
short argument with the pain suffered in [4] to prove the same result
directly, without using CSP theory.

Now consider Example 2.5, and a fragment of a word v with
a letter split into two bags of size two and four (the left and right
atoms are in one bag), together with an atlas α as below:

1

2

2

3

4

1

In the instance Iv,αv,α , the two bags of this letter are constrained to
a binary relation R{1,2} ⊆ S[4] × S[2] which is the graph of the
partial function f{1,2} : S[4] → S[2] such that

f{1,2}(π) =

{
() iff π preserves the set {1, 2},
σ iff π maps {1, 2} to {3, 4}.

For the same word but different atlases other relations R{1,3} and
R{1,4}, which are graphs of partial functions f{1,3} and f{1,4}
defined analogously to f{1,2}, can be obtained.

Assume any majority function m on the domain of TA. For the
following permutations in S[4]:

π1 = (1 2)(3 4) π2 = (1 3)(2 4) π3 = (1 4)(2 3)

consider the value χ = m(π1, π2, π3). Since f{1,2}(π1) = (),
f{1,2}(π2) = σ, and f{1,2}(π3) = σ, if m where a polymorphism
then we would have f{1,2}(χ) = m((), σ, σ) = σ. Analogously
we can prove that f{1,3}(χ) = f{1,4}(χ) = σ. This means that
the permutation χ maps each of sets {1, 2}, {1, 3}, {1, 4} to their
complements, which is impossible. As a result, m cannot be a
polymorphism, hence the alphabet of Example 2.5 is nonstandard.

6. Descriptive Complexity
We relate our results concerning TMAs to logics over relational
structures. To this end, we first describe a class of finite relational
structures which correspond to words with atoms. We then describe
how TMAs over such words correspond, in terms of expressive
power, to certain logics over these relational structures.

In this section we consider both classical Turing machines and
TMAs, but only deterministic ones.

6.1 Linearly patched structures
Below we consider finite relational structures over a finite vocab-
ulary, assuming without loss of generality that the domains of the
structures are subsets of the set A of atoms.

A patched structure is a relational structure M together with a
collection of substructures of M (not necessarily induced substruc-
tures) which we call patches of M, such that M is covered by its
patches, i.e. the domain and relations of M are the set-theoretical
unions (not necessarily disjoint) of the domains and relations of its
patches, respectively. We say that M is linearly patched if a linear

order on its patches is provided. For a finite family P of relational
structures, we say that M is linearly P-patched, if every patch of
M is isomorphic to some structure in P .

In order to evaluate logical formulas on a linearly patched struc-
ture, we add the set of patches to its domain; additionally, we in-
clude a binary relation witch connects each patch with all its ver-
tices, and also for each relation R of arity n we add a relation R̂
which contains all tuples (p, v1, . . . , vn) consisting of a patch p
and n vertices, such thatR(v1, . . . , vn) holds in p. This allows for-
mulas to quantify both over vertices and patches. Finally, we allow
formulas to refer to the linear order on patches.

Example 6.1. Let P be the singleton family containing the graph
with two vertices and one undirected edge. Then a linearly P-
patched structure is the same thing as an undirected graph without
isolated vertices, together with a linear order on its edges. As a
purely relational structure, this is represented as the union of the
set of vertices and the set of edges, together with a linear order on
the set of edges, and a ternary relation which says that two given
vertices are endpoints of a given edge.

Example 6.2. The CFI graphs [6] can be constructed from three-
regular graphs, by replacing each vertex by a certain gadget G
with ten nodes, which correspond to the six atoms and four triples
of the letter {(a, c, e), (a, d, f), (b, c, f), (b, d, e)} from Exam-
ple 2.4, and with edges connecting each triple with its elements.
Neighboring gadgets are then connected by identifying two ex-
changeable pairs of atoms. If the original three-regular graph is or-
dered, then the resulting structure is a linearly P-patched struc-
ture, where P = {G}.

6.2 Linearly patched structures and words with atoms
For a relational structure M consider the set AM of all relational
structures isomorphic to M. Then AM is a single-orbit set.

Fact 6.1. Every single-orbit set is related by an equivariant bijec-
tion to AM, for some finite relational structure M.

For a finite collection P of finite relational structures, let AP
denote the disjoint union of the alphabets AM, for M ∈ P .

Linearly P-patched structures correspond to words over the al-
phabet AP . Indeed, a word w induces a linearly patched structure
with sup(w) as the domain and the letters of w as patches. Con-
versely, a linearly P-patched structure defines a word whose letters
are the patches. This allows us to move freely between structures
and words, and to view TMAs over AP as recognisers of linearly
P-patched structures. For instance, by Fact 6.1, Theorem 3.1 may
be reformulated as:

Lemma 6.2. For every fixed finite collection P , isomorphism of
linearly P-patched structures is recognizable by a deterministic
TMA if and only if the alphabet AP is standard.

6.3 Order-invariant classical polynomial time
Let us come back to the world of classical (atomless) computa-
tions. Any relational structure has a description, i.e., a list of iden-
tifiers (one unique binary string per each element of the universe)
and for each relation, a list of its tuples, referred via the identi-
fiers. Note that a fixed structure has many descriptions, depending
on the chosen identifiers and orderings. In this non-unique way, re-
lational structures are presented as inputs for classical Turing ma-
chines. We assume that these descriptions use a fixed finite alpha-
bet, say {0, 1}.

A classical Turing machine is order-invariant if given on input
a description of a relational structure, the output of the machine
does not depend on the chosen description. For example, a Turing
machine which checks whether a graph is connected is order-



invariant, whereas a Turing machine which checks whether the first
two vertices are adjacent is not.

Order-invariant Turing machines can be therefore viewed as rec-
ognizers of relational structures; however, it is undecidable whether
a given Turing machine is order-invariant. One of the main open
questions in Finite Model Theory, and in Descriptive Complex-
ity Theory in particular, is whether there is a logic which captures
order-invariant polynomial time. Such a logic is a class of formulas
with decidable syntax, such that every formula can be effectively
translated into a polynomial time order-invariant Turing machine
accepting the same structures, and conversely: every property rec-
ognized by a polynomial time order-invariant Turing machine is
definable by a formula. For example, first order logic satisfies only
half of the requirements: a formula, such as ∀x∃y.E(x, y), gives
rise to a polynomial time algorithm, which is order-invariant; how-
ever, graph connectedness is not definable by a first order formula.

One can relativize the above definitions to a class of structures
C, to say that a logic captures order-invariant polynomial time
Turing machines over C.

Observe that we can use two types of Turing machines to accept
linearly P-patched structures: deterministic TMAs, and classical
Turing machines, which are order-invariant. The latter ones are – a
priori – more powerful, as they have access to a linear ordering
of the elements of the structure, which comes from the chosen
description of the structure. On the other hand TMAs only have
access to a linear ordering of the patches. Our results allow to
characterize those families P for which the two types of machines
are equally expressive. Furthermore, we relate these machines to
the IFP logic.

6.4 IFP and IFP+C

We roughly describe the logics IFP and IFP+C. They are extensions
of first order logic, which capture order-invariant polynomial time
over some classes of structures, but not over all structures. For
precise definitions and overviews of the cited results, see e.g. [11].

Instead of providing the precise definition of IFP, we give an
illustrative example, and then roughly sketch the general form of
the syntax.

Example 6.3. Consider structures over a relational language with
one binary symbolE; they can be seen as directed graphs (possibly
with self-loops). The following formula, with free variables x, y,
says that there is a directed path from x to y:(

IFPR,z
[
(z = x) ∨ ∃v : R(v) ∧ E(v, z)

])
(y) (�)

The semantics is as follows. Let x, y be vertices of a graph. Start
with R being the empty set of vertices, treated as a unary relation.
Repeat indefinitely the following inflationary step:

Add to R those vertices z which satisfy the subformula
of (�) delimited by the brackets [ ].

The formula (�) holds for the pair of vertices (x, y) if y belongs
to R in some step of the loop. Observe that the property described
by (�) is not first-order definable.

The general form of the construct is IFPR,z̄[φ(x̄, z̄)](ȳ). Com-
paring to (�), there can be tuples of variables x̄, ȳ, z̄ instead of sin-
gle variables x, y, z, under the restriction that ȳ and z̄ have the same
length, say n. Then R is interpreted as an n-ary relation which is
computed in an inflationary manner, starting from the empty rela-
tion.

The logic IFP+C further extends IFP by a construct #x̄φ(x̄, ȳ)
which allows to count (using a special counting sort) the number of
assignments for x̄ satisfying φ(x̄, ȳ).

It is not difficult to prove that a formula of IFP+C can be
effectively translated into an equivalent polynomial time Turing

machine, which is automatically order-invariant. The polynomial
bound is a consequence of the fact that for finite models, due to the
inflationary mode of computation, stabilization is reached after a
polynomial number of steps.

The Immerman-Vardi theorem states that IFP (and, in conse-
quence, IFP+C) captures order-invariant polynomial time over lin-
early ordered structures [12, 15]. On the other hand, IFP+C does
not capture order-invariant polynomial time over all graphs, as
proved in [6] using the CFI graphs. Our aim is to generalize both
these results, using TMAs. How can TMAs be useful for studying
the logic IFP?
IFP over linearly P-patched structures. In the Immerman-Vardi
theorem, instead of linearly ordered structures, one could equiv-
alently use graphs (without isolated vertices) whose set of edges
is linearly ordered. This is more consistent with linearly patched
structures (see Example 6.1). The following proposition is then
a generalization of the Immerman-Vardi theorem to linearly P-
patched structures instead of graphs with ordered edges, and TMAs
instead of Turing machines.

Proposition 6.3. The logics IFP and IFP+C capture polynomial
time TMAs over linearly P-patched structures.

6.5 Main result
The main result of this section is:

Theorem 6.4. The logic IFP captures order-invariant polynomial
time over linearly P-patched structures if and only if the alphabet
AP is standard.

Observe that IFP can be replaced by IFP+C in the above the-
orem, since those logics are equivalent over linearly P-patched
structures by Proposition 6.3. Also, this proposition allows us to
use polynomial time TMAs instead of the logic IFP in the proof.

Proof. Fix a finite family P of structures, and let AP be the corre-
sponding alphabet with atoms.

We first show the left-to-right implication. Assume that poly-
nomial time deterministic TMAs capture classical order-invariant
Turing machines over linearly P-patched structures. Then, in par-
ticular, deterministic TMAs can express the isomorphism problem
of linearly P-patched structures, according to Lemma 6.5 below.
Lemma 6.2 then implies that the alphabet AP is standard, proving
the left-to-right implication.

Lemma 6.5. Isomorphism of linearly P-patched structures is de-
cidable by an order-invariant polynomial time Turing machine.

Proof. As shown in Section 4, the isomorphism problem for lin-
early P-patched structures reduces to the CSP problem over the
template TAP . For a fixed alphabet AP , the reduction is polyno-
mial. It is known [5] that for a template with a Maltsev polymor-
phism, the induced CSP is in polynomial time.

For the proof of the other implication, we show that if AP is
standard, then polynomial time TMAs are equally expressive as
classical order-invariant polynomial time Turing machines.

Consider the language DP containing all words of the form
w#desc, where w ∈ A∗P and desc ∈ {0, 1}∗ is a description
(cf. Section 6.3) of the linearly P-patched relational structure cor-
responding to w. Reusing the (k, l)-consistency algorithm for rec-
ognizing the language DP , we get the following:

Lemma 6.6. If the alphabet AP is standard, then the language
DP is recognized by a polynomial time TMA.



The following lemma shows that if AP is standard, then not
only descriptions can be recognized, but also produced in polyno-
mial time (i.e., there is a polynomial time canonisation algorithm).

Lemma 6.7. Using a machine for the language DP as blackbox,
a polynomial time TMA can produce, for an input word w ∈ A∗P ,
a description desc ∈ {0, 1}∗ of the structure corresponding to w.

Proof. This can be done by finding descriptions of longer and
longer prefixes of w. There is no need of backtracking, since any
description of a prefix can be extended to a description of the whole
word. Moreover, to extend the description of a prefix by one letter,
the machine needs to check only constantly many possible candi-
date strings over {0, 1} and for each candidate, run the machine
for DP (the constant depends on the alphabet AP but not on the
length of the input).

Suppose that AP is standard and let L be a property of linearly
P-patched structures, recognized by a classical polynomial time
Turing machine M . Then a TMA over AP can decide, for an input
word w, whether the structure corresponding to w has property L,
in the following two steps. In the first step, the machine produces a
description of the structure corresponding to the wordw, according
to Lemmas 6.6 and 6.7. In the second step the machine simulates,
on that description, the order-invariant polynomial time Turing
machine M recognizing L.

This proves the right-to-left implication of Theorem 6.4.

Many results of the previous sections can be translated into re-
sults about logic. For example, from Section 5.1 and Theorem 6.4,
we get:

Corollary 6.8. If no structure in P has more than five elements,
then IFP captures order-invariant polynomial time computations
over linearly P-patched structures.

As a byproduct of the proof of Theorem 6.4 we obtain a “logic”
that captures order-invariant polynomial time over linearly P-
patched structures (even ifAP is nonstandard), namely TMAs with
an oracle for the language DP . This can be converted to a more
reasonable logic (as in Proposition 6.3), namely, an extension of
IFP+C by a construct which tests whether two linearly P-patched
structures are isomorphic.

7. Related work
The paper [1] also studies a relationship between the logic IFP+C
and templates of bounded width. The emphasis there is to deter-
mine for which templates T there exists a formula of IFP+C which
holds in a given structure (instance) I over the signature of T if
and only if I maps homomorphically to T . It follows from that pa-
per (see Corollary 23) and from later deep results from algebraic
CSP theory [2] that this happens precisely when T has bounded
width. In our paper, a similar, but weaker result is implicit (see The-
orem 3.3, Proposition 4.3 and Proposition 6.3): it concerns only
templates of the form TA, where A is an alphabet. In particular,
those templates have a Maltsev polymorphism.
Graph Isomorphism problem. The graph isomorphism problem
with bounded color classes is the problem of deciding whether
there is a color-preserving isomorphism between two given colored
graphs G,H , where the coloring is such that at most k vertices
get the same color (where k is a fixed parameter). This problem is
the first restricted version of the graph isomorphism problem to be
shown in PTime using group theoretic methods [9].

Colored graphs whose color classes have size at most k can be
seen as patched structures, where the patches are the subgraphs
induced by any pair of colors. Therefore, each patch is a graph

with at most 2k vertices. Let P be the family of all graphs on ver-
tices {1, . . . , 2k}. Then the isomorphism problem of such colored
graphs reduces to the isomorphism problem for linearly P-patched
structures – the patches are linearly ordered according to an arbi-
trary linear ordering of the set of pairs of colors. It therefore follows
from Lemma 6.5 that this can be done in polynomial time (and in
logarithmic space if the alphabet AP is standard, using [7]). Our
proof does not rely on group theory, but instead uses the polyno-
mial algorithm for solving CSPs over a template admitting a Malt-
sev polymorphism [5].

Acknowledgments
We are grateful to Marcin Kozik for guiding us in the land of Con-
straint Satisfaction Problems, to Mikołaj Bojańczyk for inspiring
discussions on sets with atoms, and to anonymous reviewers for
insightful comments.

References
[1] A. Atserias, A. Bulatov, and A. Dawar. Affine systems of equations

and counting infinitary logic. Theoretical Computer Science, 410(18):
1666 – 1683, 2009.

[2] L. Barto and M. Kozik. Constraint satisfaction problems of bounded
width. In Procs. FOCS’09, pages 595–603. IEEE Computer Society,
2009.

[3] M. Bojańczyk, B. Klin, and S. Lasota. Automata with group actions.
In Proc. LICS’11, pages 355–364, 2011.

[4] M. Bojańczyk, B. Klin, S. Lasota, and S. Toruńczyk. Turing machines
with atoms. In Proc. LICS’13, pages 183–192, 2013.

[5] A. A. Bulatov and V. Dalmau. A simple algorithm for Mal’tsev
constraints. SIAM J. Comput., 36(1):16–27, 2006.

[6] J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the
number of variables for graph identifications. Combinatorica, 12(4):
389–410, 1992.

[7] V. Dalmau and B. Larose. Maltsev + Datalog –> symmetric Datalog.
In Procs. LICS, pages 297–306. IEEE Computer Society, 2008.

[8] T. Feder and M. Y. Vardi. The computational structure of monotone
monadic SNP and constraint satisfaction: A study through Datalog and
group theory. SIAM J. Comput., 28(1):57–104, 1998.

[9] M. Furst, J. Hopcroft, and E. Luks. Polynomial-time algorithms for
permutation groups. In Proceedings of the 21st Annual Symposium
on Foundations of Computer Science, SFCS ’80, pages 36–41. IEEE
Computer Society, 1980.

[10] M. Gabbay and A. M. Pitts. A new approach to abstract syntax with
variable binding. Formal Asp. Comput., 13(3-5):341–363, 2002.

[11] M. Grohe. Descriptive complexity, canonisation, and de-
finable graph structure theory, December 2013. URL
http://www.automata.rwth-aachen.de/~grohe/cap/index.en.

[12] N. Immerman. Upper and lower bounds for first order expressibility.
J. Comput. Syst. Sci., 25(1):76–98, 1982.

[13] B. Larose, M. Valeriote, and L. Zádori. Omitting types, bounded width
and the ability to count. Int. J. Algebra and Computation, 19(5):647–
668, 2009.

[14] A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science,
volume 57 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2013.

[15] M. Y. Vardi. The complexity of relational query languages (extended
abstract). In STOC, pages 137–146, 1982.


