
ar
X

iv
:1

40
1.

46
66

v1
  [

cs
.S

C
] 

 1
9 

Ja
n 

20
14

Parallel Telescoping and Parameterized

Picard–Vessiot Theory ∗

Shaoshi Chen, Ruyong Feng, and Ziming Li
KLMM, AMSS, Chinese Academy of Sciences

Beijing 100190, (China)
schen,ryfeng@amss.ac.cn,

zmli@mmrc.iss.ac.cn

Michael F. Singer
Department of Mathematics,

North Carolina State University
Raleigh, NC 27695-8205 (USA)

singer@math.ncsu.edu

February 14, 2018

Abstract

Parallel telescoping is a natural generalization of differential creative-

telescoping for single integrals to line integrals. It computes a linear

ordinary differential operator L, called a parallel telescoper, for several

multivariate functions, such that the applications of L to the functions

yield antiderivatives of a single function. We present a necessary and

sufficient condition guaranteeing the existence of parallel telescopers for

differentially finite functions, and develop an algorithm to compute min-

imal ones for compatible hyperexponential functions. Besides computing

annihilators of parametric line integrals, we use the parallel telescoping for

determining Galois groups of parameterized partial differential systems of

first order.

1 Introduction

The problem of finding linear differential equations with polynomial coefficients
for parametric integrals has a long history. It at least dates back to Picard [27]
who proved the existence of such linear differential equations for integrals of
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a 973 project (2011CB302401), M.F.S. was supported by the NSF grant CCF-1017217.
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algebraic functions involving parameters. His result has been generalized to
higher-dimensional cases and led to Gauss–Manin connections [21, 22, 14]. The
key for obtaining such linear differential equations is the method of creative
telescoping, which was first formulated as an algorithmic tool by Zeilberger and
his collaborators in 1990s [34, 35, 33]. The method enables us to prove a large
amount of combinatorial identities in an automatic way [26]. For more recent
developments, see the survey article [16].

Given a function f(t, x) described by two linear differential equations with
polynomial coefficients in t and x, the method of differential creative-telescoping
[1] finds a linear differential operator L in ∂/∂t with polynomial coefficients in t
such that L(f) = ∂g/∂x, where g is usually a linear combination of partial
derivatives of f over the field of rational functions in t and x. The operator L
is called a telescoper for f , and the function g is called a certificate of L. They
can be used to evaluate parametric integrals of f with respect to x.

Recently, a connection has been revealed between the method of differential
creative-telescoping and Galois theory of parameterized differential equations
in [8, 2, 9, 28, 12]. Consider a first-order partial differential system of the form:

∂Y

∂x1
= f1, . . . ,

∂Y

∂xn

= fn, (1)

where f1, . . . , fn are rational functions in t, x1, . . . , xn satisfying compatibility
conditions. Its parameterized Galois group can be determined by constructing
a linear ordinary differential operator L in ∂/∂t with polynomial coefficients in t
such that

L(f1) =
∂g

∂x1
, . . . , L(fn) =

∂g

∂xn

for a single rational function g. The operator L will be referred as to a parallel
telescoper for f1, . . . , fn with respect to x1, . . . , xn. Parallel telescopers may
also be used to evaluate parametric line integrals in the same manner as we do
for single integrals by classical creative-telescoping.

In this paper, we present a necessary and sufficient condition guarantee-
ing the existence of parallel telescopers for differentially finite functions (see
Definition 2). The condition can easily be verified if the given functions are
hyperexponential. We develop an algorithm to compute a parallel telescoper of
minimal order for compatible hyperexponential functions. The algorithm can
be used for constructing parallel telescopers for non-compatible ones, although
its output may not be of minimal order. We also show how to determine the
Galois group of a differential system of the form (1) by parallel telescoping.

The rest of the paper is organized as follows. In Section 2, we review the
notion of differentially finite elements. In Section 3, we study the existence
of parallel telescopers. We present an algorithm in Section 4 for constructing
minimal parallel telescopers for hyperexponential functions. In Section 5, par-
allel telescoping is applied to determine Galois groups of parameterized partial
differential systems of first order.
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2 Differentially finite elements

Let k be an algebraically closed field of characteristic zero. Assume that δi is
the usual partial derivative with respect to xi on the field k(x1, . . . , xn) for all i
with 1 ≤ i ≤ n. For brevity, we set x = (x1, . . . , xn). Over the differential
field (k(x), {δ1, . . . , δn}) there is a noncommutative algebra k(x)〈D1, . . . , Dn〉
whose commutation rules are

DiDj = DjDi and Dif = fDi + δi(f)

for all i, j ∈ {1, . . . , n} and f ∈ k(x). The algebra is also called the ring of
differential operators associated to k(x). The commutation rules imply the
following fact:

Fact 1. Let L ∈ k(x)〈D1, . . . , Dn〉 and [Di, L] = DiL−LDi for some i with 1 ≤
i ≤ n.

(i) [Di, L] = 0 if and only if L is free of xi.

(ii) If L is free of Di, then so is [Di, L].

(iii) If L is in k[x]〈D1, . . . , Dn〉, then the degree of [Di, L] in xi is less than
that of L.

Due to the noncommutativity of k(x)〈D1, . . . , Dn〉, we make a convention
that ideals, vector spaces, modules and submodules are all left ones in this
paper.

Let M be a module over k(x)〈D1, . . . , Dn〉. For an operator L in the
ring k(x)〈D1, . . . , Dn〉 and h ∈ M , the scalar product of L and h is denoted
by L(h). We say that L is an annihilator of h if L(h) = 0. The set of all
annihilators of h is denoted by ann(h), which is an ideal in k(x)〈D1, . . . , Dn〉.

Definition 2. Let h be an element of a module over the ring k(x)〈D1, . . . , Dn〉.
We say that h is differentially finite (abbreviated as D-finite) over k(x) if

ann(h)∩k(x)〈Di〉6={0} for all i with 1 ≤ i ≤ n.

It is straightforward to see that h is D-finite if and only if the submodule
generated by h is a finite-dimensional linear space over k(x). It follows that,
if h1, . . . , hm are D-finite elements in a module over k(x)〈D1, . . . , Dn〉, so is
every element in the submodule generated by h1, . . . , hm.

When a module consists of functions in x1, . . . , xn, its D-finite elements are
called D-finite functions, which are ubiquitous in combinatorics as generating
functions. D-finite functions were first systematical investigated by Stanley
in [30]. Their important algebraic properties have been revealed by Lipshitz
in [19, 20]. We recall a lemma in [19, Lemma 3], which is the starting point of
our study on parallel telescopers.
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Lemma 3 (Lipshitz, 1988). If h is a D-finite element in a module over the ring
k(x)〈D1, . . . , Dn〉, then

ann(h) ∩ k(x1, . . . , xi−1, xi+1, . . . , xn)〈Di, Dj〉 6= {0}

for all i, j ∈ {1, . . . , n} with i 6= j.

The next lemma allows one to remove redundant variables.

Lemma 4. Let h be a D-finite element in a module over k(x)〈D1, . . . , Dn〉. If

Dm+1(h) = Dm+2(h) = · · · = Dn(h) = 0

for some m ∈ {1, . . . , n−1}, then h is also aD-finite element over k(x1, . . . , xm).

Proof. By the definition ofD-finite elements, it suffices to show that the intersec-
tion of ann(h) and k(x1, . . . , xm)〈Di〉 is nontrivial for all i with 1 ≤ i ≤ m. Sup-
pose the contrary. Then, without loss of generality, we may further suppose that
every nonzero annihilator of h in k[x]〈D1〉 involves xn. Among those annihila-
tors, we choose one, say P , whose degree in xn is minimal. By Fact 1 (i), [Dn, P ]
is nonzero. By Fact 1 (ii), it belongs to k(x1, . . . , xn)〈D1〉. Since both Dn(h)
and P (h) are equal to zero, [Dn, P ] is also a nonzero annihilator of h in k[x]〈D1〉.
By Fact 1 (iii), it has degree in xn less than that of P , a contradiction.

3 Parallel Telescopers

In this section, we define the notion of parallel telescopers for several multivari-
ate functions in a module-theoretic setting, and study under what conditions
parallel telescopers exist for D-finite elements.

3.1 Definition of parallel telescopers

In order to define parallel telescopers, we introduce a new indeterminate t,
and extend the field k(x) to k(t,x), which is denoted by K, and set ∆ =
{δt, δ1, . . . , δn}, where δt stands for the usual partial derivative with respect
to t on K. Moreover, let us denote by R the ring K〈Dt, D1, . . . , Dn〉 of linear
differential operators. The notions such as D-finite elements and annihilators
carry over naturally to K and R.

Definition 5. Let f1, . . . , fn be in an R-module. A nonzero operator L ∈
k(t)〈Dt〉 is called a parallel telescoper for f1, . . . , fn with respect to x if there
exists an element g in the submodule generated by f1, . . . , fn over R, such that

L(t,Dt)(fi) = Di(g) for all 1 ≤ i ≤ n.

The element g is called a certificate of L with respect to x.

By Definition 5, the parallel telescopers for f1, . . . , fn and zero form an
ideal in the ring k(t)〈Dt〉. The ideal is principal, since k(t)〈Dt〉 is a left Eu-
clidean domain. A generator of the ideal is called a minimal parallel telescoper
for f1, . . . , fn with respect to x.
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3.2 Existence of parallel telescopers

We derive a necessary and sufficient condition on the existence of parallel tele-
scopers for D-finite elements. To this end, we need a differential analogue of [26,
Thm. 6.2.1].

Lemma 6. Let h be an element of an R-module. If h is D-finite over K, then,
for every i ∈ {1, . . . , n}, there exists a nonzero operator

Li ∈ k(t, x1, . . . , xi−1, xi+1, . . . , xn)〈Dt〉

and an element gi in the submodule generated by h such that Li(h) = Di(gi).

Proof. Let N be the submodule generated by h over R.
By Lemma 3, h has a nonzero annihilator in K〈Dt, Di〉, which is free of xi.

Among all of the xi-free and nonzero annihilators for h, we choose one, say Pi,
whose degree in Di is minimal. If the degree di of Pi in Di is equal to zero,
then the lemma holds by taking Li = Pi and gi = 0. Assume that di > 0. We
can always write

Pi = Li +DiQi, (2)

where Li is in the ring k(t, x1, . . . , xi−1, xi+1, . . . , xn)〈Dt〉, and Qi is in the ring
k(t, x1, . . . , xi−1, xi+1, . . . , xn)〈Dt, Di〉 whose degree in Di is less than di.

Set gi := Qi(h). Since Pi(h) = 0 and gi is in N , it remains to show that Li is
nonzero in (2). Suppose that Li = 0. Then Di(gi) = 0, which, together with the
D-finiteness of gi, implies that gi is D-finite over k(t, x1, . . . , xi−1, xi+1, . . . , xn)
by Lemma 4. Thus, there exists a nonzero linear operator Ri in the ring
k[t, x1, . . . , xi−1, xi+1, . . . , xn]〈Dt〉 such that Ri(gi) = 0. It follows that the
product RiQi is also a nonzero and xi-free annihilator of h. But it has degree
in Di less than di, which contradicts the minimality assumption for the degree
of Pi in Di.

To study the existence of parallel telescopers, we introduce the notion of
compatible elements with respect to x.

Definition 7. The elements f1, . . . , fn of an R-module are said to be com-
patible with respect to x if the compatibility conditions Di(fj) = Dj(fi) for
all 1 ≤ i < j ≤ n hold.

The following lemma shows that the compatibility conditions are sufficient
for the existence of parallel telescopers for D-finite elements.

Lemma 8. Let f1, . . . , fn be elements of an R-module. If they are D-finite
over K and compatible with respect to x, then there exists a parallel telescoper
for f1, . . . , fn with respect to x.

Proof. Set xm = (x1, . . . , xm), and set Rm := k(t,xm)〈Dt, D1, . . . , Dm〉 for
all m with 1≤m≤n.

We proceed by induction on n. If n=1, then f1 has a telescoper in k(t)〈Dt〉
with respect to x1 by Lemma 6. Assume that the lemma holds for any n − 1

5



elements that are both D-finite over k(t,xn−1) and compatible with respect
to xn−1.

Assume that f1, f2, . . . , fn are D-finite over k(t,xn) and compatible with
respect to xn. Denote by N the submodule generated by f1, . . . , fn over Rn.
By Lemma 6, there exists a nonzero operator Ln in k(t,xn−1)〈Dt〉 such that

Ln(fn) = Dn(gn) for some gn ∈ N. (3)

Without loss of generality, we further assume that Ln in (3) is of minimal degree
in Dt and is monic with respect to Dt.

First, we show that Ln belongs to k(t)〈Dt〉. For all i with 1 ≤ i ≤ n − 1,
we set Li = [Di, Ln], which belongs to k(t,xn−1)〈Dt〉 by Fact 1 (ii), and has
degree in Dt less than that of Ln, because Ln is monic with respect to Dt. Note
that LnDi(fn) = LnDn(fi) = DnLn(fi), in which the first equality is immediate
from the compatibility condition Di(fn) = Dn(fi), and the second from the fact
that Ln is free of xn. Thus, Li(fn) = DiLn(fn) − DnLn(fi), which, together
with (3), implies that

Li(fn) = DiDn(gn)−DnLn(fi) = Dn

(

f̃i

)

, (4)

where f̃i := Di(gn) − Ln(fi) for i = 1, . . . , n − 1. Since f̃i belongs to N ,
we see that Li = 0, for otherwise, Ln would not be a nonzero operator that
satisfies (3) and has minimal degree in Dt by (4). Thus, Ln is free of xi by
Fact 1 (i). Accordingly, Ln ∈ k(t)〈Dt〉. Moreover, Li = 0 and (4) imply

Dn(f̃i) = 0 for all i with 1 ≤ i ≤ n− 1. (5)

Next, we apply the induction hypothesis to f̃1, . . . , f̃n−1. Since f1, . . . , fn are
D-finite over k(t,xn), so is gn, and so is f̃i for all i with 1 ≤ i ≤ n− 1. By (5)
and Lemma 4, f̃i is D-finite over k(t,xn−1). Moreover, f̃1, . . . , f̃n−1 are com-
patible with respect to xn−1 because f1, . . . , fn−1 are compatible with respect
to xn−1 and because Ln is free of xn−1. Therefore, there exist a nonzero opera-
tor L̃ ∈ k(t)〈Dt〉 and an element g̃ in the submodule generated by f̃1, . . . , f̃n−1

over Rn−1 such that

L̃
(

f̃i

)

=Di (g̃) for i∈{1, . . . , n− 1} and Dn (g̃)=0. (6)

The first equality in (6) is due to the induction hypothesis, and the second due
to (5). Moreover, g̃ belongs to N .

At last, we verify that L̃Ln is a parallel telescoper for f1, . . . , fn. Set g =
L̃(gn) − g̃. It belongs to N because both gn and g̃ do. For i ∈ {1, . . . , n − 1},
L̃Ln(fi) = L̃

(

Di(gn)− f̃i

)

by the definition of f̃i in (4). It follows from L̃Di =

DiL̃ and the first equality of (6) that, for all i ∈ {1, . . . , n− 1},

L̃Ln(fi) = DiL̃(gn)−Di (g̃) = Di

(

L̃(gn)− g̃
)

= Di(g).
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Applying L̃Ln to fn, we get

L̃Ln(fn) = L̃Dn(gn) = Dn

(

L̃(gn)
)

= Dn(g),

in which the first equality follows from (3) and the last from the second one
in (6). Therefore, L̃L is indeed a parallel telescoper for f1, . . . , fn with respect
to xn.

The next theorem is a necessary and sufficient condition on the existence of
parallel telescopers for D-finite elements.

Theorem 9. Let f1, . . . , fn be D-finite elements of an R-module. Then they
have a parallel telescoper with respect to x if and only if there exists a nonzero
operator P∈k(t)〈Dt〉 such that

P (Di(fj)−Dj(fi)) = 0 for all 1 ≤ i < j ≤ n. (7)

Proof. Assume that f1, . . . , fn have a parallel telescoper P with respect to x.
Then there exists an element g in the submodule generated by f1, . . . , fn such
that P (fi) = Di(g) for all i with 1 ≤ i ≤ n. Since DiDj(g) = DjDi(g), we
have P (Di(fj)−Dj(fi)) = 0.

Conversely, assume that there exists a nonzero operator P ∈ k(t)〈Dt〉 such
that

P (Di(fj)−Dj(fi)) = 0 for all 1 ≤ i < j ≤ n.

Then P (f1), . . . , P (fn) are compatible, because P is free of x. So there is a
parallel telescoper L for P (f1), . . . , P (fn) by Lemma 8. Therefore, LP is a
parallel telescoper for f1, . . . , fn with respect to x.

4 Hyperexponential case

Let E be a differential field extension of (K,∆). The set of extended derivations
on E is also denoted by ∆. The derivations in ∆ are assumed to commute with
each other. Furthermore, we assume the subfield of constants in E is k.

For an element h ∈ E and an operator L ∈ R of the form

L =
∑

i,j1,...,jn≥0

ai,j1,...,jnD
i
tD

j1
1 · · ·Djn

n

with ai,j1,...,jn ∈ K, we define the application of L to h as

L(h) =
∑

i,j1,...,jn≥0

ai,j1,...,jnδ
i
t ◦ δj11 ◦ · · · ◦ δjnn (h).

Then E is an R-module whose multiplication is the application of an operator
in R to an element of E.

A nonzero element h ∈ E is said to be hyperexponential over K if the
logarithmic derivative δ(h)/h belongs to K for all δ ∈ ∆. Hyperexponential
functions are D-finite elements. In fact, the submodule generated by several
hyperexponential functions over R is the linear space spanned by them. Two
hyperexponential functions are said to be similar if their ratio belongs to K.

7



4.1 Determining the existence

The next proposition allows one to determine the existence of parallel telescopers
for hyperexponential functions.

Proposition 10. Let h ∈ E be hyperexponential over K. Then ann(h) ∩
k(t)〈Dt〉 6= {0} if and only if the logarithmic derivative of h with respect to t is
of the form

δt(p)

p
+ r for some p ∈ k(x)[t] and r ∈ k(t). (8)

Proof. Assume that δt(h)/h is of the form (8). Since p is a polynomial in t
over k(x), there exists a nonzero operator L in k(t)〈Dt〉 annihilating p. It is
easy to verify that (Dt − r)(h/p) = 0. Therefore, h is annihilated by a nonzero
operator in k(t)〈Dt〉. Such an operator is the symmetric product of L andDt−r.

Conversely, assume that there exists a nonzero element L∈ ann(h)∩k(t)〈Dt〉.
Then δt(h)/h is a rational solution of the Riccati equation associated to L,
although it does not have to be in k(t). By formula (4.3) in [31, page 107],

δt(h)

h
=

δt(P )

P
+Q+

R

S
,

where P,Q,R and S are polynomials in t over the algebraic closure of k(x), the
roots of S are singular points of L, and the roots of P are nonsingular ones (see
also [5, Theorem 1]). Moreover, one can assume that degt(R) < degt(S) and
that S is monic. Since the singular points of L are in k, the coefficients of S are
in k as well. Following the algorithm for computing rational solutions of Riccati
equations described in [5, § 4.3] or [31, Exercise 4.10], we see that R belongs
to k[t]. The same conclusion holds for Q by the algorithm in [5, § 4.2], as Q is
constructed by analyzing the pole of the associated Riccati equation at infinity.
Set r = Q + R/S, which belongs to k(t), and set s = δt(h)/h − r, which is
in k(t,x) and equal to δt(P )/P . Thus, the linear differential equation δt(Y ) =
sY has a polynomial solution P . Since s belongs to k(t,x), the equation must
have a polynomial solution p in k(x)[t], which implies that δt(p)/p = s. Then,
the logarithmic derivative ∂h/∂t is of the form (8).

One can decide if the logarithmic derivative δt(h)/h in Proposition 10 is of
the form (8) by computing its squarefree partial fraction decomposition with
respect to t. A more efficient way is to apply Algorithm WeakNormalizer in [6,
§ 6.1] to δt(h)/h, which delivers a polynomial p in k(x)[t] such that the difference
of δt(h)/h and δt(p)/p belongs to k(t) if and only if δt(h)/h is of the form (8).

Let h1, . . . , hn be hyperexponential functions. Then h1, . . . , hn have a par-
allel telescoper with respect to x if and only if, for every pair i, j with 1 ≤ i <
j ≤ n, there exists a nonzero operator Pi,j ∈ k(t)〈Dt〉 such that

Pi,j (Di(hj)−Dj(hi)) = 0. (9)

This is because the least common left multiple of the Pi,j can be taken as
the operator P in (7) of Theorem 9. For each pair (hi, hj), there are three

8



cases to be considered: (i) If Di(hj) = Dj(hi), then set Pi,j = 1. (ii) If hi is
similar to hj , then the difference Di(hj) − Dj(hi) is hyperexponential. So we
can find Pi,j by Proposition 10. (iii) If hi is not similar to hj , then (9) implies
that both Pi,j(Di(hj)) and Pi,j(Dj(hi)) are equal to zero. Proposition 10 is also
applicable to the last case.

Example 11. Consider the hyperexponential functions

h1 =
t(x1+t+t2u)

u(t+ x1)
√
t
, h2 =

((t+1)2+x1x2+t(x1−1))u−tx1

u(t+ x2)
√
t

,

where u := t+ x1 + x2. A direct calculation yields

h := D2(h1)−D1(h2) = − 1√
t

The logarithmic derivative of h in t belongs to k(t). Then P := 2tDt + 1 is the
operator in k〈Dt〉 such that P (h) = 0. So h1 and h2 have a parallel telescoper
with respect to x1 and x2 by Proposition 10.

4.2 Computing minimal parallel telescopers

This subsection is devoted to computing minimal parallel telescopers. First, we
present a recursive algorithm, named ParaTele, for hyperexponential functions
that are both compatible and similar. Next, we show that the algorithm can be
easily adapted to compute minimal parallel telescopers for merely compatible
hyperexponential functions.

Algorithm ParaTele: Given compatible functions r1h, . . . , rnh, where h is hy-
perexponential over K and r1, . . . , rn are rational functions in K, compute a
minimal parallel telescoper L(t,Dt) for r1h, . . . , rnh with respect to x and a
certificate g of L.

1. Compute a minimal telescoper Ln for rnh with certificate gn by the algo-
rithms in [1, 4].

2. If n = 1, then return (Ln, gn); otherwise, set

f̃i := Di(gn)− Ln(rih) for i = 1, . . . , n− 1.

3. Run ParaTele for functions f̃1, . . . , f̃n−1 to get (L̃, g̃), where L̃ is of min-
imal order and g̃ is in the submodule generated by f̃i’s over the ring
k(t, x1, . . ., xn−1)〈D1, . . ., Dn−1〉.

4. Return L := L̃Ln and g := L̃(gn)− g̃.

Note that some of the rational functions r1, . . . , rn in Algorithm ParaTele

may be equal to zero. So the input consists of either zero or similar hyperexpo-
nential functions. This guarantees that the recursion in step 3 can be executed.
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It follows from the proof of Lemma 8 that Algorithm ParaTele always com-
putes a parallel telescoper. To show its minimality, we need a lemma that plays
a similar role for hyperexponential functions as Lemma 4 for D-finite ones.

Recall that xm = (x1, . . . , xm) and Rm denotes k(t,xm)〈Dt, D1, . . . , Dm〉,
where m = 1, . . . , n.

Lemma 12. Let h1, . . . , hm be hyperexponential elements of E. Assume that,
for all i with 1 ≤ i ≤ m,

Dm+1(hi) = · · · = Dn(hi) = 0. (10)

Let N and Nm be the submodule generated by h1, . . . , hm over R and Rm,
respectively. If there exists a nonzero operator T ∈ k(t)〈Dt〉 and a ∈ N such
that

T (hi) = Di(a) for all i with 1 ≤ i ≤ m,

then there exists b ∈ Nm such that

T (hi) = Di(b) for all i with 1 ≤ i ≤ m.

In other words, T is a parallel telescoper for h1, . . . , hm with respect to xm.

Proof. Without loss of generality, assume that {h1, . . . , hℓ} is a maximal linearly

independent subset of {h1, . . . , hm} over K. Then a =
∑ℓ

j=1 ajhj for some aj ∈
K, because N is the linear space spanned by h1, . . . , hℓ over K. Hence,

T (hi) =

ℓ
∑

j=1

Di(ajhj) =

ℓ
∑

j=1

(δi(aj) + ajri,j)hj , (11)

where ri,j stands for the logarithmic derivative δj(hi)/hi and i ranges from 1
to m. Then there exist si ∈ {1, . . . , ℓ} and wi,si ∈ k(t,xm) such that

T (hi) = wi,sihsi for all i ∈ {1, . . . ,m}.

In fact, si can be any integer between 1 and ℓ and wi,si must be zero if T (hi) = 0;
and si is unique if T (hi) is nonzero by Proposition 4.1 in [18]. Thus, (11) can
be rewritten as

wi,shs =

ℓ
∑

j=1

(δi(aj) + ajri,j)hj .

By the linear independence of h1, . . . , hℓ, T (hi) = Di(a) is equivalent to







δi(asi) + asri,si = wi,si ,

δi(aj) + ajri,j = 0 for j∈{1, . . . ,m} with j 6=si.
(12)

Let ξm+1, . . . , ξn ∈ k be such that bi = ai(xm, ξm+1, . . . ξn) is well-defined
for all i with 1 ≤ i ≤ ℓ. Then (12) still holds if we replace ai by bi for i = 1, . . . ,
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m. This is because the substitution of ξm+1, . . . , ξn for xm+1, . . . , xn commutes
with δi for all i with 1 ≤ i ≤ m; and because both wi,si and the ri,j ’s are free
of xm+1, . . . , xn by (10).

Set b =
∑ℓ

j=1 bjhj , which is in Nm. It follows from (12) that T (hi) = Di(b)
for all i with 1 ≤ i ≤ m.

We now prove the correctness of Algorithm ParaTele.

Proposition 13. Let h ∈ E be hyperexponential over K and r1, . . . , rn ∈ K.
If r1h, . . . , rnh are compatible, then Algorithm ParaTele computes a minimal
parallel telescoper for r1h, . . . , rnh with respect to x.

Proof. Set fi = rih for i = 1, . . . , n. Note that Ln and gn obtained from
step 1 can be identified with the telescoper and certificate in (3), respectively,
because the R-submodule generated by f1, . . . , fn is equal to that generated
by h. Consequently, Algorithm ParaTele is just an algorithmic formulation of
the proof of Lemma 8 with an additional assumption that L̃ is a minimal parallel
telescoper for f̃1, . . . , f̃n−1 with respect to xn−1. The conclusions made in the
proof of Lemma 8 remain valid. In particular, L̃Ln is a parallel telescoper for f1,
. . . , fn with respect to x.

It remains to prove that L̃Ln is of minimal order. Assume that P ∈ k(t)〈Dt〉
is a parallel telescoper for f1, . . . , fn with respect to x. Then P (fi) = Di(w)
for all i with 1 ≤ i ≤ n and for some w in the submodule generated by f1,
. . . , fn over R. In particular, P is a telescoper for fn with respect to xn.
Thus, P = QLn for some Q ∈ k(t)〈Dt〉. Applying Q to f̃1, . . . , f̃n−1 yields

Q(f̃i) = QDi(gn)− P (fi) = Di(Q(gn)− w) (13)

for all i with 1 ≤ i ≤ n − 1. By (5) in the proof of Lemma 8, Dn(f̃i) = 0 for
all i with 1 ≤ i ≤ n − 1. So Lemma 12 implies that Q is a parallel telescoper
for f̃1, . . . , f̃n−1 with respect to xn−1. Thus, Q is a left multiple of L̃ obtained
in step 3, because L̃ is a minimal parallel telescoper for f̃1, . . . , f̃n−1. So P is
a left multiple of the product L̃Ln. Thus, L̃Ln is of minimal order.

Example 14. Let h1, h2 and P be the same as in Example 11. Then H1 :=
P (h1) and H2 := P (h2) are compatible hyperexponential functions. Applying
any telescoping algorithm in [1, 4] to H1 yields a minimal telescoper

L1 := 4t2D2
t − 8tDt + 5

for H1 satisfying L1(H1) = D1(G1) for some hyperexponential function G1

over k(t, x1, x2). Set

H̃2 := L1(H2)−D2(G1) = −16t2(4tx2
2 + 4t+ x3

2 + x2)

(x2 + t)4
√
t

A minimal telescoper for H̃2 is L2 := 2tDt − 3. Then

L = L2L1 := 8t3D3
t − 12t2D2

t + 18tDt − 15

is a minimal parallel telescoper for H1 and H2 with respect to x1 and x2.
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Let us consider how to compute a minimal telescoper for compatible hy-
perexponential functions f1, . . . , fn. For simplicity, we assume that f1, . . . ,
fm and fm+1, . . . , fn form two distinct equivalence classes modulo similar-
ity. The same idea applies to the case, in which there are more than two
equivalence classes. Since fi and fj are not similar for all i with 1 ≤ i ≤ m
and j with m + 1 ≤ j ≤ n, the compatibility condition Di(fj) = Dj(fi) im-
plies that Di(fj)=Dj(fi)=0. Let P be a minimal telescoper for f1, . . . , fm
over xm, and Q a minimal one for fm+1, . . . , fn with respect to xm+1, . . . , xn.
Then P (fi) = Di(g) for all i with 1 ≤ i ≤ m and for some g in the submodule
generated by f1, . . . , fm over Rm, and Q(fj) = Dj(h) for all j with m+1≤j≤n
and for some h in the submodule generated by fm+1, . . . , fn over k(t, xm+1, . . . , xn)〈Dt, Dm+1, . . . , Dn〉.
In particular, we have Di(h) = Dj(g) = 0 for all i with 1 ≤ i ≤ m and j
with m+ 1 ≤ j ≤ n.

Set L to be the least common left multiple of P and Q. Then there ex-
ist U, V ∈ k(t)〈Dt〉 such that L = UP = V Q. A straightforward calculation
implies that L is a parallel telescoper for f1, . . . , fn with respect to x. A cer-
tificate of L is U(g) + V (h). Let L′ be a parallel telescoper for f1, . . . , fn with
respect to x. By Lemma 12, L′ is a parallel telescoper for both f1, . . . , fm
with respect to xm and fm+1, . . . , fn with respect to xm+1, . . . , xn. So it is a
common left multiple of P and Q. Consequently, it is a left multiple of L. We
conclude that L is a minimal telescoper for f1, . . . , fn with respect to x.

To construct a parallel telescoper for hyperexponential functions f1, . . . , fn
that are not necessarily compatible with respect to x, we compute a nonzero
operator P ∈ k(t)〈Dt〉 such that (7) holds. Then P (f1), . . . , P (fn) are com-
patible with respect to x. Let L be a parallel telescoper for P (f1), . . . , P (fn).
Then LP is a parallel telescoper for f1, . . . , fn. But LP is not necessarily of
minimal order.

5 Parameterized Picard–Vessiot Theory

A generalized differential Galois theory having differential algebraic groups (as in
[15]) as Galois groups was initiated in [17]. The parameterized Picard–Vessiot
theory considered in [8] is a special case of the above generalized differential
Galois theory and studies symmetry groups of the solutions of linear differential
equations whose coefficients contain parameters. In this section, we show the
connection of parallel telescoping with this parameterized theory.

Let F , containing k(t) as a subfield, be a differentially closed field of char-
acteristic zero, i.e., any consistent differential system with coefficients in F has
solutions in F . Let F (x) be the field of rational functions in x. As before, ∆
stands for the set {δt, δ1, . . . , δn} of derivations, and E is an R-module as de-
scribed at the beginning of Section 4.

Let E be a differential field extension of F (x). For a subset Λ ⊂ ∆, an
element c ∈ E is called a Λ-constant if λ(c) = 0 for all λ ∈ Λ. The set of
all Λ-constants forms a subfield of E, which is denoted by CΛ

E . Consider the

12



differential system

D1(Y ) = A1Y, . . . , Dn(Y ) = AnY, (14)

where Ai ∈ gln(F (x)), the set of n× n matrices with entries in F (x), such that

Di(Aj)−Dj(Ai) = AiAj −AjAi.

As in the classical Galois theory, we now define the “splitting field” for the
system (14).

Definition 15. A parameterized Picard–Vessiot extension of F (x) (abbreviated
as PPV-extension of F (x)) for the system (14) is a ∆-field extension E of F (x)
satisfying

(a) There exists a matrix Z ∈ GLn(E) such that Di(Z) = AiZ for all i =
1, . . . , n and E is generated as a ∆-field over F (x) by the entries of Z.

(b) CΛ
E = CΛ

F (x) = F for Λ = {δ1, . . . , δn}.

The parameterized Picard–Vessiot group (abbreviated as PPV-group) associated
with the PPV-extension E of F (x) is the group

Gal∆(E/F (x)) = {σ ∈ AutF (x)(E) | σδ = δσ for δ ∈ ∆}.

The existence of PPV-extensions for parameterized differential systems has
been established in [8, Theorem 9.5 (1)] under the assumption that F is differ-
entially closed. Recently, this existence result has been improved so that one
only needs F to be algebraically closed [32] and under weaker closure conditions
in [11]. In the classical Galois theory, the Galois group of an algebraic equation
is a subgroup of the permutation group. In the non-parameterized differential
case, the Galois group of a linear differential system is a linear algebraic group,
i.e., a group of n × n matrices whose entries are elements in the field of con-
stants satisfying certain polynomial equations. The PPV-group associated with
a PPV-extension of F (x) is a linear differential algebraic group, i.e., a group
of n× n matrices whose entries are elements in F satisfying certain differential
equations [8, Theorem 9.5 (2)].

Example 16 (Example 3.1 in [8]). Consider the equation

Dx(Y ) =
t

x
Y.

The PPV-extension for this equation is the {δt, δx}-field, generated by the ele-
ment z = xt, i.e.,

E , F (x)(z, δx(z), δt(z), . . .) = F (x, xt, log(x)).

The corresponding PPV-group is as follows:

Gal∆(E/F (x)) = {a ∈ F | a 6= 0 and δt

(

δt(a)

a

)

= 0}.
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As a corollary of the general Galois correspondence [8, Theorem 9.5], the
following lemma will be used frequently in the rest of this section.

Lemma 17. Let E be a PPV-extension of F (x) for some parameterized dif-
ferential system and let Gal∆(E/F (x)) be the associated PPV-group. Then the
set

{f ∈ E | σ(f) = f for all σ ∈ Gal∆(E/F (x))}
coincides with the field F (x).

5.1 Galois groups of first-order systems

Unlike the usual Picard–Vessiot theory where we have a complete algorithm to
compute the Galois group of a given linear differential equation over the field
of rational functions [13], we have only partial algorithmic results for the PPV-
theory. Algorithms for first and second order parameterized equations over
F (x), where n = 1, appear in [2, 9]. An algorithm to determine if a parame-
terized equation of arbitrary order has a unipotent PPV-group (or even certain
kinds of extensions of such a group) as well as an algorithm to compute the
group appears in [24]. An algorithm to determine if a parameterized equation
has a reductive PPV-group and compute it if it does appears in [23].

We now show how one determines the PPV-group of a first-order differential
system of the form

D1(Y ) = f1, . . . , Dn(Y ) = fn, (15)

where f1, . . . , fn ∈ F (x) are compatible rational functions with respect to x.
Let E be the PPV-extension of F (x) and let z ∈ E be a solution of the sys-
tem (15). For every σ ∈ Gal∆(E/F (x)), σ(z) is still a solution of the sys-
tem (15). Then σ(z)=z+cσ for some cσ ∈ CΛ

E = F with Λ = {δ1, . . . , δn}. By
fixing a solution z, we get a representation of the PPV-group Gal∆(E/F (x))
as a subgroup of the additive group (F,+). The subgroups of (F,+) have been
classified by Cassidy [7, Lemma 11] and Sit [29, Theorem 1.3, p.647]. That is,
any subgroup G of (F,+) is of the form {a ∈ F | L(t,Dt)(a) = 0}, where L is a
linear differential operator in F 〈Dt〉. We call L the defining operator for G.

Lemma 18. If the coefficients f1, . . . , fn of the system (15) are in k(t)(x), then
the defining operator L for its corresponding PPV-group is in k(t)〈Dt〉.

Proof. As noted above PPV-group G can be identified with the set of solutions
of an equation of the form L(y)=0 where L ∈ F 〈Dt〉. To see that this group is
actually defined over k(t), note that k(t,x) is a purely transcendental extension
of k(t) and so k(t) is algebraically closed in k(t,x). Furthermore, ∆ consists
of independent derivations over k(t,x). Remark 2.9.2 and Theorem 2.8 of [11]
imply that a parameterized Picard-Vessiot extension exists for our equations
and Lemma 8.2 of [11] implies that the parameterized Picard-Vessiot group is
defined over k(t). Finally [29, Theorem 1.3, p.647] implies that this group is
defined as claimed above.
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Now we present the main result of this section that the problem of determin-
ing the PPV-group of the system (15) with coefficients in k(t,x) is equivalent
to that of computing a minimal parallel telescoper for its coefficients.

Theorem 19. Let f1, . . . , fn be the coefficients of the system (15) such that
they are in k(t,x) and compatible with respect to x. Then L ∈ k(t)〈Dt〉 is the
defining operator for the PPV-group of the system (15) if and only if L is a
minimal parallel telescoper for f1, . . . , fn with respect to x.

Proof. Let L̃ be the defining operator for the PPV-group G of the system (15).
By Lemma 18, L̃ is in k(t)〈Dt〉. We claim that L̃ is a parallel telescoper for
f1, . . . , fn with respect to x. Let z ∈ E be a solution of (15). Then, for
any σ ∈ G, σ(z) = z+ cσ, where cσ ∈ F is such that L̃(cσ) = 0. For any σ ∈ G,
σ(L̃(z)) = L̃(σ(z)) = L̃(z + cσ) = L̃(z) + L̃(cσ) = L̃(z). Then g̃ := L̃(z) ∈ F (x)
by Lemma 17. Since L̃ commutes with Di for all i = 1, . . . , n,

L̃(Di(z)) = L̃(fi) = Di(g̃). (16)

We now show that we can choose g̃ ∈ k(t,x) (and so L̃ will be a parallel
telescoper with g̃ ∈ k(t,x)). Since the fi are in k(t,x), equations (16) imply
thatDi(g̃) belongs to k(t,x). Expanding g̃ in partial fractions with respect to xn

and using induction, one sees that there is an element c ∈ F such that g̃ − c ∈
k(t,x). Now let L ∈ k(t)〈Dt〉 be a minimal parallel telescoper for f1, . . . , fn
with respect to x. Then, we have that L divides L̃. To complete the proof,
it remains to show that L̃ divides L. It suffices to prove that L(cσ) = 0 for
any σ ∈ G. Since L(fi) = Di(g) for some g ∈ k(t,x) ⊂ F (x),

Di(L(z)− g) = L(Di(z))−Di(g) = L(fi)−Di(g) = 0.

Therefore L(z)− g ∈ F and so L(z) ∈ F (x). For any σ ∈ G, L(z) = σ(L(z)) =
L(σ(z)) = L(z + cσ) = L(z) + L(cσ). Then L(cσ) = 0.

Example 20. Consider the differential system

D1(Y ) = f1, D2(Y ) = f2, (17)

where f1, f2 ∈ k(t, x1, x2) are of the form

f1 =
t

x1 + x2 + t
, f2 =

tx2 + t2 + x1 + x2 + t

(x1 + x2 + t)(x2 + t)
.

It is easy to check that D2(f1) = D1(f2). Applying any telescoping algorithm
in [1, 3] to f1 yields a minimal telescoper L1 for f1 with certificate g1 as follows

L1 = tDt − 1 and g1 =
t2

x1 + x2 + t
.

Set f̃2 := L1(f2)−D2(g1) = −(2t+ x2)/(x2 + t)2. A minimal telescoper for f̃2
and its certificate are

L2 = Dt and g2 =
−t

(x2 + t)2
.
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Then L = L2L1 = tD2
t is a minimal parallel telescoper for f1 and f2. Then the

corresponding PPV-group of system (17) is as follows:

Gal∆(E/F (x)) =
{

a ∈ F | δ2t (a) = 0
}

.

5.2 An inverse problem

As in the classical Galois theory, a natural question that arises is the inverse
problem: Which groups occur as Galois groups over a given field? In [8, Example
7.1], the authors consider a ∆-field F (x), where ∆ = {δt, δx} and F is a {δt}-
differentially closed field. They show that the additive group (F,+) cannot be
the Galois group of a parameterized Picard–Vessiot extension of this field. In
rest of this section, we show a similar result for fields of rational functions in
several variables (for other results concerning the inverse problem, see [10, 23,
24, 25, 28]). The key tool will be the fact that parallel telescopers always exist
for compatible rational functions. Let us first recall a lemma, which is an easy
corollary of Theorem 4 of Chapter VII.3 in [15].

Lemma 21. If G is the PPV-group of a PPV-extension E of F (x), then E =
F (x)〈z〉∆, satisfying for any σ ∈ G

σ(z) = z + cσ with cσ ∈ F .

Theorem 22. The additive group G = (F,+) is not the PPV-group of a PPV-
extension of F (x).

Proof. We argue by contradiction. Assume that G is the PPV-group of some
PPV-extension E of F (x). Then Lemma 21 implies that Di(z) = fi with fi ∈
F (x) for all i = 1, . . . , n. Since Di and Dj commute in F (x), f1, . . . , fn are
compatible. By Theorem 9, there exists L in F 〈Dt〉 such that L(fi) = Di(g) for
some g ∈ F (x). By the same argument in the proof of Theorem 19, L(cσ) = 0
for all σ ∈ G. This implies that G ⊂ {c ∈ F | L(c) = 0}  F , which is a
contradiction with G = F .
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