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Abstract

In previous work, we have introduced several fast algo-
rithms for relaxed power series multiplication (also known
under the name on-line multiplication) up to a given
order n. The fastest currently known algorithm works
over an effective base field K with sufficiently many
2P-th roots of unity and has algebraic time complexity
O(n log n eQ*/@”“’glog"). In this paper, we will gen-
eralize this algorithm to the cases when K is replaced by
an effective ring of positive characteristic or by an effec-
tive ring of characteristic zero, which is also torsion-free
as a Z-module and comes with an additional algorithm for
partial division by integers. In particular, we may take K
to be any effective field. We will also present an asymptot-
ically faster algorithm for relaxed multiplication of p-adic
numbers.

Keywords: power series, multiplication, on-line algo-
rithm, FFT, computer algebra

A.M.S. subject classification: 68W30, 30B10, 68W25,
33F05, 11Y55, 42-04

1 Introduction

1.1 Relaxed resolution of recursive equations

Let A be an effective (possibly non-commutative) ring;
i.e., we assume data structures for representing the ele-
ments of A and algorithms for performing the ring opera-
tions 4+, — and X. The aim of algebraic complexity theory
is to study the cost of basic or more complex algebraic
operations over A (such as the multiplication of polyno-
mials or matrices) in terms of the number of operations
in A.

The algebraic complexity usually does not coincide
with the bit complexity, which also takes into account
the potential growth of the actual coefficients in A. Nev-
ertheless, understanding the algebraic complexity usually
constitutes a first useful step towards understanding the
bit complexity. Of course, in the special case when A is
a finite field, both complexities coincide up to a constant
factor.

+. This work has been partly supported by the French ANR-
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One of the most central operations is polynomial mul-
tiplication. We will denote by M (n) the number of opera-
tions required to multiply two polynomials of degrees <n
in Afz]. If A admits primitive 2P-th roots of unity for
all p, then we have M (n) = O(nlogn) using FFT multi-
plication, which is based on the fast Fourier transform [12].
In general, it has been shown [28, 10| that Ma(n) =
O(n log n log log m). The complexities of most other
operations (division, Taylor shift, extended g.c.d., mul-
tipoint evaluation, interpolation, etc.) can be expressed
in terms of Ma(n). Often, the cost of such other oper-
ations is simply O(Ma (n)) =O(n), where O(T'(n)) stands
for O(T(n) (log T(n))°M); see [2, 6, 15| for some clas-
sical results along these lines.

The complexity of polynomial multiplication is funda-
mental for studying the cost of operations on formal power
series in A[[z]] up to a given truncation order n. Clearly,
it is possible to perform the multiplication up to order n in
time O(Ma(n)): it suffices to multiply the truncated power
series at order n and truncate the result. Using Newton’s
method, and assuming that @ C A, it is also possible to
compute exp, sin, etc. up to order n in time O(Ma(n)).
More generally, it has been shown in [9, 17, 29, 23] that the
power series solutions of algebraic differential equations
with coefficients in A[[z]] can be computed up to order n in
time O(Ma(n)). However, in this case, the “O” hides a non-
trivial constant factor which depends on the expression
size of the equation that one wants to solve.

The relazed approach for computations with formal
power series makes it possible to solve equations in quasi-
optimal time with respect to the sparse expression size
of the equations. The idea is to consider power series f &€
A[[z]] as streams of coefficients fo, fi, ... and to require
that all operations are performed “without delay” on these
streams. For instance, for a multiplication h = fg of two
power series f, g € A[[z]], we require that h, is com-
puted as soon as fo, 9o, ---, fn, gn are known. Any algorithm
which has this property will be called a relazed or on-
line algorithm for multiplication.

Given a relaxed algorithm for multiplication, it is pos-
sible to let the later coefficients frn11, gn+1, frnt2, Gnta, .-
of the input depend on the known coefficients hq, ..., h,
of the output. For instance, given a power series f € A[z]
with fo=0, we may compute g =exp f using the formula

g = /f’fh (1)



provided that @Q C A. Indeed, extraction of the coefficient
of z"in g and [ f’g yields

LY
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and (f’ g)n—1 only depends on go, ..., gn—1. More gener-
ally, we define an equation of the form

f=2() (2)

to be recursive, if ®(f), only depends on fo, ..., fn_1.
Replacing A by A", we notice that the same terminology
applies to systems of r equations. In the case of an implicit
equation, special rewriting techniques can be implied in
order to transform the input equation into a recursive
equation [24, 22, 5].

Let Ra(n) denote the cost of performing a relaxed mul-
tiplication up to order n. If ® is an expression which
involves s multiplications and t other “linear time” opera-
tions (additions, integrations, etc.), then it follows that (2)
can be solved up to order n in time O(s Ra(n) + t n).
If we had Ra(n) = O(Ma(n)), then this would yield an
optimal algorithm for solving (2) in the sense that the
computation of the solution would essentially require the
same time as its verification.

1.2 Known algorithms for relaxed multiplication

The naive O(n?
on the formula

) algorithm for computing h = f g, based

hn = fogn+ fign-1+-+ fugo,

is clearly relaxed. Unfortunately, FFT multiplication is
not relaxed, since hy, ..., h, are computed simultaneously
as a function of fo, go, .., fn, gn, in this case.
In [16, 17] it was remarked that
O(n'o#3/1022) algorithm [25] for multiplying polynomials
can be rewritten in a relaxed manner. Karatsuba mul-
tiplication and its relaxed version thus require exactly the
same number of operations. In [16, 17], an additional fast
relaxed algorithm was presented with time complexity

Ra(n) = O(Ma(n)logn). (3)

We were recently made aware of the fact that a sim-
ilar algorithm was first published in [13]. However, this
early paper was presented in a different context of on-
line (relaxed) multiplication of integers (instead of power
series), and without the application to the resolution of
recursive equations (which is quite crucial from our per-
spective).

An interesting question remained: can the bound (3)
be lowered further, be it by a constant factor? In [18], it
was first noticed that an approximate factor of two can be
gained if one of the multiplicands is known beforehand.
For instance, if we want to compute g=exp f for a known
series f with fo=0, then the coefficients of f’ are already
known in the product f’ ¢ in (1), so only one of the inputs
depends on the output. An algorithm for the computation
of h = fg is said to be semi-relazed, if h, is written to
the output as soon as fo, ..., fn are known, but all coeffi-
cients of g are known beforehand. We will denote by Sa(n)
the complexity of semi-relaxed multiplication. We recall
from [21] (see also Section 3) that relaxed multiplication
reduces to semi-relaxed multiplication:

Ra(n) = O(Sa(n)).

Karatsuba’s

It has recently been pointed out [26] that the factor 2 that
was gained in the case of semi-relaxed multiplication can
also be gained in the general case.

The first reduction of (3) by a non-constant factor was
published in [21], and uses the technique of FFT blocking
(which has also been used for the multiplication of multi-
variate polynomials and power series in [17, Section 6.3],
and for speeding up Newton iterations in [3, 23]). Under
the assumption that A admits primitive 2*-th roots of
unity for all k (or at least for all k with 2% <n), we showed
that

Ra(n) = O(nlogne?Vice2vicglogn) (4)

The function e?v°&2vIoaTogn Yag glower growth than any
strictly positive power of log n. It is convenient to write
F(n)=0°(T(n)) whenever F(n)=0O(T(n) (logT(n))®) for
all @ > 0. In particular, it follows that

Ra(n) = O°(nlogn).

In Section 3, we will recall the main ideas from [21] which
lead to the complexity bound (4).

In fact, in Section 4, we will see that the complexity
bound from [21] can be further reduced to

Ra(n) = O(nlognev?ee2viceloen  /osTogn).

Since such complexity bounds involve rather complex
expressions, it will be convenient to use the following
abbreviations:

R.(n) = nlognev?le2viceloen /loologn
R.x(n) = R.(n)loglogn
«(n) = Ru(n) (loglogn)?logloglog n.

Clearly, R.(n) = O(R.x(n)) = O(Russ(n)) = O°(nlog n).

1.3 Improved complexity bounds

We recall that the characteristic of a ring A is the integer
k € N such that the canonical ring homomorphism Z — A
has kernel k Z. If A is torsion-free as a Z-module (i.e.
kx=0=x=0 for any k€ Z\ {0} and x € A), then we will
say that A admits an effective partial division by integers
if there exists an algorithm which takes k € Z \ {0} and
z € k A on input and which returns the unique y€ A
with  =Fkvy on output. We will count a unit cost for such
divisions. The main result of this paper is:

Theorem 1. Assume that one of the following two holds:

e A is an effective ring of characteristic zero, which
is torsion-free as a Z-module, and which admits an
effective partial division by integers.

e A is an effective ring of positive characteristic.

Then we have

Ra(n) = O°(nlogn). (5)

We notice that the theorem holds in particular if A is
an effective field. In Section 8, we will also consider the
relaxed multiplication of p-adic numbers, with p € N and
p > 2. If we denote by I(k) the bit complexity of multi-
plying two k-bit integers, then [13] essentially provided an



algorithm of bit complexity O(l(n) log n) for the relaxed
multiplication of 2-adic numbers at order O(2"). Various
algorithms and benchmarks for more general p were pre-
sented in [4]. It is also well known [33, 11, 28, 14] that
I(n) = 0"(nlogn). Let R,(n) denote the bit complexity of
the relaxed multiplication of two p-adic numbers modulo
p™. In Section 8, we will prove the following new result:

Theorem 2. Let p e N with p>2. Then we have
R,(n) = 0°(nlognlog ploglog p),
uniformly in n and p.

For comparison, the best previously known bound for
relaxed multiplication in Z, was

Rp(n) = O(I(n (log p+logn))logn)
O (nlog®n) if p=0(n)
O’(nlog?nlog p) if n=0(p)

We thus improved the previous bound by a factor log n/
loglog p at least, up to sublogarithmic terms.

The main idea which allows for the present generaliza-
tions is quite straightforward. In our original algorithm
from [21], the presence of sufficiently many primitive 2*-th
roots of unity in A gives rise to a quasi-optimal evaluation-
interpolation strategy for the multiplication of polyno-
mials. More precisely, given two polynomials of degrees
<n, their FFT-multiplication only requires O(n) evalua-
tion and interpolation points, and both the evaluation and
interpolation steps can be performed efficiently, using only
O(nlogn) operations. Now it has recently been shown [§]
that quasi-optimal evaluation-interpolation strategies still
exist if we evaluate and interpolate at points in geometric
progressions instead of roots of unity. This result is the
key to our new complexity bounds, although further tech-
nical details have to be dealt with in order to make things
work for various types of effective rings A. We also notice
that the main novelty of [8] concerns the interpolation
step. Fast evaluation at geometric progressions was pos-
sible before using the so called chirp transform [27, 7].
For effective rings A of positive characteristic, this would
actually have been sufficient for the proving the bound (5).

Our paper is structured as follows. Since the algo-
rithms of [8] were presented in the case when A is an
effective field, Section 2 starts with their generalization
to more general effective rings A. These generalizations
are purely formal and contain no essentially new ideas. In
Section 3, we give a short survey of the algorithm from [21],
but we recommend reading the original paper for full tech-
nical details. In Section 4, we sharpen the complexity
analysis for the algorithm from [21]. In Section 5, we prove
Theorem 1 in the case when A has characteristic zero.
In Section 6, we turn our attention to the case when A
has prime characteristic p. If the characteristic is suffi-
ciently large, then we may find sufficiently large geometric
progressions in A N Z in order to generalize the results
from Section 5. Otherwise, we have to work over A ®
IF ,« for some sufficiently large k. In Section 7, we complete
the proof of Theorem 1; the case when the characteristic is
a prime power is a refinement of the result from Section 6.
The remaining case is done via Chinese remaindering. In
Section 8, we will prove Theorem 2.

Acknowledgments. I am grateful to the referees for
their detailed comments and suggestions. A special thanks
goes to the referee who made a crucial suggestion for the
improved complexity analysis in Section 4.

2 Multipoint evaluation and interpolation

Let D be a (commutative) effective integral domain and let
K be its quotient field. Assume that K has characteristic
zero. Let M be an effective torsion-free D-module and
V=K ®p M. Elements of K and V are fractions x/s with
z €D (resp. z €M) and s€ D\ {0}, and the operations —,
+, X on such fractions are as usual:

_r _
s_ts
T,y _ tztsy
s+t_ st
ry _ *Y
st st

For z/s € K*, we also have (z/s)™! = s/z. It follows
that K is an effetive field and V an effective K-vector
space. Moreover, all field operations in K (and all vector
space operations in V) can be performed using only O(1)
operations in D (resp. D or M).

We will say that M admits an effective partial division,
if for every s € D\ {0} and x € s M, we can compute the
unique y € M with z =sy. In that case, and we will count
any division of the above kind as one operation in M.
Similarly, given a fixed s € D \ {0}, we say that M admits
an effective partial division by sz € s M, we can compute
the unique y € M with z=sy. Given n € N, we define

M[z], = {P€Mz]:deg P<n}.

Given P € D[z], and Q € M[z],, we will denote by My(n)
the number of operations in D and M which are needed
in order to compute the product PQ € M|z].

Lemma 3. Let D be an effective integral domain and
M an effective torsion-free D-module. There exists a con-
stant K, such that the following holds: for any m > 0,
P eM|z], and q€D\ {0} such that 1,q,..., "~ are pair-
wise distinct, and such that D admits effective divisions
by qand g—1,¢*>—1,...,¢" "' — 1, we have:

a) We may compute P(1), ..., P(q"~1) from P using
K Mp(n) operations in D and M.

b) We may reconstruct P from P(1),..., P(¢" ™) using
K My (n) operations in D and M.

Proof. In the case when D = K is a field and M =
V = K, this result was first proven in [8]. More pre-
cisely, the conversions can be done using the algorithms
NewtonEvalGeom, NewtonInterpGeom, Newton-
ToMonomialGeom and MonomialToNewtonGeom
in that paper. Examining these algorithms, we observe
that general elements in D are only multiplied with ele-
ments in Z[g] and divided by elements of the set {q, g —
1,¢°—1, ..., "~ — 1}. In particular, the algorithms can
still be applied in the more general case when D = K
is a field and M =V a vector space.



If D is only an effective integral domain and M an
effective torsion-free ID-module with an effective partial
division, then we define the effective field KK and the effec-
tive vector space V as above, and we may still apply the
generalized algorithms for multipoint evaluation and inter-
polation in V. In particular, both multipoint evaluation
and interpolation can still be done using O(My(n)) opera-
tions in K and V, whence O(Mp(n)) operations in D and
M. If we know that the end-results of these algorithms
are really in the subspace M™ of V™ (or in the submodule
M|z],, of V[z],,), then we use the partial division in M to
replace their representations in V™ (or V[z],,) by represen-
tations in M™ (or M[z],,). O

3 Survey of blockwise relaxed multiplication

Let A be an effective (possibly non-commutative) ring and
recall that

Alz], = {P€A[z]:deg P <n}.

Given a power series f € A[[z]] and i < j, we will also use
the notations

Jij = fizt -+ fjo1277!
fii Jot 4 fioazi ™t
fio = fiz' + fiqa 2" T4

The fast relaxed algorithms from [21] are all based on two
main changes of representation: “blocking” and the fast
Fourier transform. Let us briefly recall these transforma-
tions and how to use them for the design of fast algorithms
for relaxed multiplication.

Blocking and unblocking. Given a block size b> 0, the
first operation of blocking rewrites a power series f € A[[z]]
as a series in y = 2® with coefficients in Al[z],,

Bo(f) = > > fwsizlyt € A/
i 0<j<b

Given f, g€ A[[z]], we may then compute fg using

fg = By'(Bu(f)Bu(9)),
where By(f) By(g) € Alz]2s[[y]] and

By Alz]as[[y]] — A[l]

Z Pi(2) yt — Z Pi(z) 2%
Discrete Fourier transforms. Assume now that A >
1/2, that b€ {1,2,4,8,...}, and that A admits a primitive

(2 b)-th root of unity w = wgp. Then the discrete Fourier
transform provides us with an isomorphism

FFT,:A[z]s, — A2

P — (P(1),Pw),.., P(w?*~1)),

and it is classical [12] that both FFT,, and FFT." can be
computed using O(b log b) operations in A. The operations
FFT, and FFT! extend naturally to A[z]s[[y]] via

FFTUJ(Z: fiyi) = Z FFT,,(f) v

Given f, g€ A[[z]], this allows us to compute fg using the
formula

fg=By {(FFT ' (FFT,(By(f)) FFT.(Bu(9)))), (6)

where FFT,(By(f)) FFT,(By(g)) is a pointwise product
in A2®. The first m b coefficients of fg can be computed
using at most 2bMpa (m) + O(mblogb) operations in A.

Relaxed multiplication. In formula (6) the m-th coef-
ficient of the right hand side may depend on the (m +
b — 1)-th coefficients of f and g. In order to make (6) suit-
able for relaxed multiplication, we have to treat the first b
coefficients of f and g separately. Indeed, the formula

fg = f:,bg;b+ f;bgb;+ fb; g:,b+
B, (FFT, (FFTw(By(f)) FFTw(By(gr:))))

allows for the relaxed computation of f g at order m b
using at most

RA(m b) < RA(b) +2mSA(b) +2bRA(m) +
O(mblogb)

operations in A. Similarly, the formula

fg = fog+By(FFTS'(x) (7)
* = FFT,(Bo(fi;)) FFTw(Bi(9))

allows for the semi-relaxed computation of fg at order mb
using at most

Sa(mb) < mSa(b)+2bSa(m)+ O(mblogb) (8)

operations in A. For a given expansion order n, one may
take b &~ y/n, and use the above formula in a recursive
manner. This yields [21, Theorem 11]

Ra(n) = O(n(logn)oe3/os2),

Remark 4. Since the block size b is chosen as a func-
tion of m, the above method really describes a relaxed
algorithm for computing the product up to an order n.
which is specified in advance. In fact, such an algorithm
automatically yields a genuine relaxed algorithm with the
same complexity (up to a constant factor), by doubling the
order n, each time when needed.

Reduction to semi-relaxed multiplication. In the
above discussion, we both provided bounds for Ra(n) and
Sa(n). In fact, there exists a straightforward reduction
of relaxed multiplication to semi-relaxed multiplication.
First of all, the relaxed multiplication of two power series
f, g € A[[Z]] up to order O(z") clearly reduces to the
relaxed multiplication of the two polynomials f,, and ¢,
up to order O(z?"). Now the formula

f;2n 92n = f:,ng;n + fn;2n 9in + f;n 9n;2n + fn;2n 9n;2n

shows that a relaxed product of two polynomials f2y,
and g2, of degrees <(2 n) reduces to a relaxed product
fin g;n of half the size, two semi-relaxed products fy;2n g;n,
fin  gn;2n, and one non-relaxed product fpi2n gni2n-
Under the assumptions that Mpa(n)/n and Sa(n)/n are
increasing, a routine calculation thus yields

Ra(n) = O(Sa(n)).

Multiple block sizes. Instead of using a single block
size b, one may use several block sizes. Applying this tech-
nique, we proved in [21, Theorem 12] that

Ra(n) = O(Sa(n))
= O(nlogne?Vie2Vicglogn), 9)



4 Improved complexity analysis

One of the referees suggested to take b~ n?/? instead of
ba/n in (8). As a matter of fact, it is even better to take

baexp (logn/exp (v/2log 2 y/loglog n)). In this section, we

will show that this leads to the bound
Ra(n) = O(R.(n)),

which further improves on (9). We will prove a slightly
more general result, which is useful for the analysis of algo-
rithms which satisfy complexity bounds similar to (8).

Lemma 5. Let:R>—1IR> be an increasing function with
(k) =0(log k) and let

d(k) = ke VPEF /logk (k)

where a=+/2log 2. Then there exist constants A>0 and kg
such that for all k> ko, e1,e2€ (—1,1), and § =k/e*VIo8F
we have

Dk —0+e)+20(0+e2) < Blk)— Akw(k).

Proof. Notice that k — § + ¢ < k and 6 + g5 < k for
sufficiently large k. We have

ea\/log(kféﬂrs]) —

ea\/log k—e @VEE (14 0(1))
a+o(1)
2/log k eaVicsk .

For a suitable constant A > 0 and all sufficiently large k,
it follows that

B(k—6+e1)<((k—0)e*VEF Jlogk — A k) ¢(k).  (10)

_ ewm<1

We also have
a+/log (0 +¢e2) < ar/logk—a+/logk +O(1/log k)

a? a® 1
= ayiogh-L o ,
aviog 2 +8w/logk+ (logk‘)

whence

ea«/log(é-ﬁ—sa) /log (5+82)
a+/log k 3
e 4a—a 1
= Viegk | 1— o
2 o8 ( svlogk (logk»

For all sufficiently large k, it follows that

alogk
eaVlog (0+e2) /log(6+52) < e - ﬁogk.
Consequently,
28(54¢e2) < derVIoeF Jlogk (k). (11)

Adding up (10) and (11), we obtain

Bk —04e)+2P(0+e2) < (e2VP2Flogk — A) ky(k)
= (k) - Aky(k),

for all sufficiently large k. (|

Theorem 6. Let T,¢:N*— 1R~ be an increasing function
with ¢(n) = O(loglog n). Assume that

T(n) < mT(b)+2bT(m)+mblogbe(b), (12)
for all sufficiently large n, where

m = [exp (log /et VERET)]
b = [n/m].

Then

Proof. We define functions U, : R~ — R~ by

T([exp (k)1)

k) = ———~2~

VEE) exp (k)

P(k) = ¢([exp (k)])

and let ®, A and kg be as in Lemma 5. Without loss of
generality, we may pick ko sufficiently large such that ko>
exp (9) and such that (12) holds for n > ng:= [exp (ko)].
Let n € IN* be such that n > no and denote k = log n
and § = k/e*V°8* TFor certain ¢1, €2 € (—1, 1), we have
log m = log [exp (log n/e*VI°eloen)] = § 4 ¢, and log b =
log [n/m] =k —0+¢e;. Now (12) implies

U(k) < U(k—b+e1)+2U(6 +e2) + 2k (k).

Let K =log N* and C = max {suprex, k<i, U(k)/P(k),
2/A}. Let us prove by induction that U(k) < C ®(k) for
all ke IC. This is clear for k <ky. Assume now that k> kg
and U(k’) < C ®(k') for all k' < k. Then, with the above
notations, ko >exp (9) implies k —d+¢e; <k and d+e2<k,
whence

U(k)

Uk —6+e1) +2U(0 +e2) + 2k (k)
C(®(k—0+e1)+20(0 +e2)) + 2kb(k)
C (k) +(2— CA) kv(k)

C ®(k),

NN NN

as desired. For all n € N*, we have thus shown that T(n) <
Cn®(logn)=CR.(n) ¢(n). d

5 Relaxed multiplication in characteristic zero

Let us now consider the less favourable case when A is an
effective ring which does not necessarily contain primitive
2k_th roots of unity for arbitrarily high k. In this section,
we will first consider the case when A is torsion-free as
a Z-module and also admits a partial algorithm for divi-
sion by integers.

Given a block size b € N and ¢ € Z \ {-1, 0, 1}
(say g=2), we will replace the discrete Fourier transform
FFT, at a (2 b)-th primitive root of unity by multipoint
evaluation at 1, ..., ¢?*~!. More precisely, we define

Eq,gbl A[Z]gb — AQb

P (P(1),P(q),.., P(¢**"1))

and the inverse transform E 5, im Eq 2, — A[z]2. By
Lemma 3, these transforms can both be computed using
O(Ma (b)) operations in A. In a similar way as for FFT,,
and FFT !, we extend Eg, 26 and E;IQI, to power series in y.

Theorem 7. Let A both be an effective ring and an effec-
tive torsion-free Z-module with an effective partial division
by elements in Z\ {0}. Then

Ra(n) = O(R..(n)).

Proof. It suffices to prove the complexity bound for semi-
relaxed multiplication. Instead of (7), we now compute fg
using

f9 = Faog+By(E (), (13)
Eq,20(Bo(fr;)) Eq,20(Bu(9))-

*



The bound (8) then has to be replaced by
Sa(mb) < mSa(b)+2bSa(m)+O(mMgp(d)). (14)

Plugging in the bound My (b) = O(blogbloglog b) from [10]
and applying Theorem 6, the result follows. O

6 Relaxed multiplication in prime characteristic

Let A now be an effective ring of prime characteristic p.
For expansion orders n > p, the ring A does not necessarily
contain n distinct points in geometric progression. There-
fore, in order to apply Lemma 3, we will first replace A
by a suitable extension, in which we can find sufficiently
large geometric progressions.

Given n, let k=2 [10257141)" be even with p*>n. Let
og p

P €T ,[z] be such that the finite field IF p« is isomorphic to
F,[z]/(P). Then the ring

B = A[]/(P)

has dimension k£ over A as a vector space, so we have
a natural A-linear bijection

A:Alzly, — B
A — AmodP.

The ring B is an effective ring and one addition or sub-
traction in B corresponds to k additions or subtractions
in A. Similarly, one multiplication in B can be done using
O(Mp(k)) operations in A.

In order to multiply two series f, g € A[[z]] up to order
O(z™), the idea is now to rewrite f and g as series in B[[u]]
with w=2"/2. If we want to compute the relaxed product,
then we also have to treat the first k/2 coeflicients apart,
as we did before for the blocking strategy. More precisely,
we will compute the semi-relaxed product f g using the
formula

fg = farpg+Brh(A71(x),
* = A(Brs2(fr/2;)) ABrs2(9)),

where we extended A to A[z]g[[u]] in the natural way:

A<Z fiu"> = > A(f)ul,

i>0 i>0

From the complexity point of view, we get

Sa(n) < %SA@)HB(%”)OM(W (15)

Since B contains a copy of Fy, it also contains at least
p* —1>n points in geometric progression. For the multi-
plication up to order 2n/k of two series with coefficients
in B, we may thus use the blocking strategy combined with
multipoint evaluation and interpolation.

Theorem 8. Let A be an effective ring of prime charac-
teristic p. Then

Ra(n) = O(R...(n)).

Proof. With the notations from above, we may find
a primitive (p* — 1)-th root of unity ¢ in F,r C B. We
may thus use formula (13) for the semi-relaxed multipli-
cation of two series in B[[z]] up to order 2 n/k < n. In
a similar way as in the proof of Theorem 7, we thus get

o (2)=om(32)) -o{ ).

Using classical fast relaxed multiplication [16, 17, 13], we
also have

SA<§> = O(klogZkloglog k),

whence (15) simplifies to

Sa(n) = O<R**(n)MAT(k)). (16)
Since Ma(k)/k = O(log klog log k) and k= O(log n), the
result follows. O

Remark 9. As long as logn=O(log p), then Mp(k)/k=
O(1) in (16), so the bound further reduces into

Ra(n) = O(R..(n)).

Remark 10. In our complexity analysis, we have not
taken into account the computation of the polynomial
P € Fplz] with Fpe = Fplz]/(P). Using a randomized
algorithm, such a polynomial can be computed in time
O(k? log p); see [15, Corollary 14.44]. If k = O(log n),
then this is really a precomputation of negligible cost
O (log%nlog p).

If we insist on computing P in a deterministic way,
then one may use [30, Theorem 3.2], which provides us
with an algorithm of time complexity (j(\/ﬁ k4te).

Similarly, there both exist randomized and determin-
istic algorithms [32, 31] for the efficient computation of
primitive (p* — 1)-th roots of unity in F,:. In partic-
ular, thanks to [31, Theorem 1] such a primitive root of
unity can always be computed in time O~(pk/ 2), when using
a naive algorithm for factoring p* — 1.

7 Relaxed multiplication in positive characteristic

Let us now show that the technique from the previous
section actually extends to the case when A is an arbitrary
effective ring of positive characteristic. We first show that
the algorithm still applies when the characteristic of A is
a prime power. We then conclude by showing how to apply
Chinese remaindering in our setting.

Theorem 11. Let A be an effective ring of prime power
characteristic s=p". Then

Ra(n) = O(R..u(n)).

Proof. Taking k=2 [M-‘, let P of degree k be as

2logp
in the previous section and pick a monic polynomial P of

degree k in (Z/sZ)|z] such that the reduction 7(P) of P
modulo p yields P. Then we get a natural commutative
diagram

(Z/SZ)[Z]/(? — f[d/(ﬁ)
Fyl2]/(P) — (A/pA)[=]/(P),

where 7 stands for reduction modulo p. In particular, we
have an epimorphism

7 (Z)s D)E/(P) — Fylz)/(P)2Fypn,

with ker m = (p).



Now let g be an element in IFp« of order p* — 1. Then
any lift § € (Z/s Z)[z]/(P) of ¢ with 7(§) = q has order
at least p¥ — 1. Moreover, ¢ — 1, ..., ¢°" "2 — 1 and q are
all invertible. Consequently, § —1, ..., g?*~2—1 and ¢ do
not lie in ker 7 = (p), whence they are invertible as well. It
follows that we may still apply multipoint evaluation and
interpolation in A[z]/(ﬁ) at the sequence 1, q, ..., P2,
whence Theorem 8 generalizes to the present case. O

Remark 12. For a fixed prime number p, we notice
that the complexity bound is uniform in the following
sense: there exists a constant K such that for all effec-
tive rings of characteristic p” with r € {1, 2, ...}, we have
Ra(n) < K Rux(n). Indeed, the choice of k only depends
on n and p, and any operation in F,+ or Afz]/(P) in the
case r = 1 corresponds to exactly one lifted operation
in (Z/s7)[z]/(P) or Alz]/(P) in the general case.

Remark 13. Similarly as in Remark 9, the hypothesis
log n=0O(log p) leads to the improved bound

Ra(n) = O(R..(n)).
This bound is uniform in a similar way as in Remark 12.

Theorem 14. Let A be an effective ring of non-zero char-
acteristic s. Then

Ra(n) = O(Ru.i(n)).

Proof. We will prove the theorem by induction on the
number of prime divisors of s. If s is a prime power, then
we are done. So assume that s=s; sa, where s; and s; are
relatively prime, and let k1, ko € Z be such that

k181+k282 = 1.
Then we may consider the rings

Al = A/SlA
Ag == A/SQA.

These rings are effective, when representing their elements
by elements of A and transporting the operations from A.
Of course, the representation of an element z of A; (or
A,) is not unique, since we may replace it by x + y for
any y € s1 A (or y € sz A). But this is not a problem,
since our definition of effective ring did not require unique
representability or the existence of an equality test.

Now let f,ge A[[z]] and let m;(f),m;(g) be their projec-
tions in A;[[z]], for i=1,2. Consider the relaxed products
mi(f) mi(g), for i = 1, 2. These products are represented
by relaxed series h', h? € A[[z]] via m;(h®) =m;(f) m:(g), for
i=1,2. By the induction hypotheses, we may compute h'
and h? at order n using O(R,.«(n)) operations in A. The
linear combination h = kg sg h! + ki 51 h2 € A[[2]] can still
be expanded up to order n with the same complexity. We
claim that h= fg. Indeed,

k282h17k282fg S kQSQSlA:{O}
k181h2—k‘181fg (S k‘lslsgé’\:{O}A

Summing both relations, our claim follows. O

Remark 15. A uniform bound interms of s can be given
along similar lines as in Remark 12. This time, such
a bound depends linearly on the number of prime fac-
tors of s.

8 Relaxed multiplication of p-adic numbers

Let p > 1 be an integer, not necessarily a prime number,
and denote N, = {0, ..., p — 1}. We will regard p-adic
numbers a € Z,, as series ap+ a1 p+az p?+ - with a; €Ny,
and such that the basic ring operations 4+, — and X require
an additional carry treatment.

In order to multiply two relaxed p-adic numbers a,
b € Z,, we may rewrite them as series @, b € Z[[z]], mul-
tiply these series ¢ = a b , and recover the product c € Z,,
from the result. Of course, the coefficients of ¢ may exceed
p, so some relaxed carry handling is required in order to
recover ¢ from é. We refer to [4, Section 2.7] for details.
In particular, we prove there that ¢ can be computed up
to order O(p") using O(Rz(n)) ring operations in Z of bit
size O(log p+logn).

Given k > 0, let 25, = {i € Z: |i] < 21}, and con-
sider two power series f, g € Z[[2]]. We will denote by
Rz(n, k) (resp. Sz(n, k)) the bit complexity of multiplying
f and g up to order O(z™) using a relaxed (resp. semi-
relaxed) algorithm.

Lemma 16. We have
Rz(n, k) = O(R.x(n) I(k +log n)).

Proof. Let m be a prime number with log 7 <logn. Such
a prime 7 can be computed in time O(n) using the poly-
nomial time polynomial primality test from [1], together
with the Bertrand-Chebychev theorem.

Let f, g€ Zi[[z]] and consider r =[2 klog (2n)/log 7|
such that n 22% < (2 1) < 7" Let f,§ € (Z/7" Z)[[2]]
be the reductions of f, g modulo 7. Then f g may be
reconstructed up to order O(z") from the product f g. We
thus get

Rz(n, k) = O(I(logz (7)) Rz /xrz(n))-

By Theorem 11 and Remarks 12 and 13, while using the
fact that logn =0O(log ), we have

Rz/mrz(n) = O(Rux(n)),

and this bound is uniform in r. Since 77~ n 22%, the result
follows. U

For the above strategy to be efficient, it is important
that log n = O(k). This can be achieved by combining
it with the technique of p-adic blocking. More precisely,
given a p-adic block size b> 1, then any p-adic number in
7., can naturally be considered as a p®-adic number in Z,
and wvice versa. Assuming that numbers in N, are written
in base 2, the conversion is trivial if p is a power of two.
Otherwise, the conversion involves base conversions and
we refer to [4, Section 4] for more details. In particular,
the conversions in both directions up to order O(p™) can
be done in time O(% I(blog p) log (blog p)).

Let R,(n) (resp. Sp(n)) the complexity of relaxed (resp.
semi-relaxed) multiplication in Z, up to order O(p").

Theorem 17. Setting £=1log (logn +log p), we have
Ry(n) = O((Ru(n)log p) log )
= 0°(nlognlog ploglog p).
Proof. Let r=[logn/log p], so that

rlogp < logn+logp
I(rlogp) = O((rlogp)Llogt)
I(r logp+logr)) = O(r(log p+logn)llog¥t).



Using the strategy of p-adic blocking, a semi-relaxed pro-
duct in Z, may then be reduced to one semi-relaxed
product in Z,- and one relaxed multiplication with an
integer in {0, ..., p" — 1}. In other words,

Sp(n) < 28,()+Sp ([ ]) + O(nlog p),

where S,(n) stands for the cost of semi-relaxed multipli-
cation of two p-adic numbers in Z,, up to order O(p™). By
[4, Proposition 4], we have

Sy(r) = O(l(r (log p+1logr))logr)
= O(rlogn (logn+log p) Llog¥).
By Lemma 16, we also have
Sp([+1) O(Rz(2,10g2(p")))
= O(I(rlogp—&—logn)%logn
eV2log2yloglogn (log log n)3/2)

O(I(rlog p) = Ruu(n))

= O((log p) £1og L R...(n))
Notice that
n n
750 = o(s([7])).
which completes the proof of the theorem. (|

9 Final remarks

For the moment, we have not implemented any of the new
algorithms in practice. Nevertheless, our old implemen-
tation of the algorithm from [21] allowed us to gain some
insight on the practical usefulness of blockwise relaxed
multiplication. Let us briefly discuss the potential impact
of the new results for practical purposes.

Characteristic zero. In characteristic zero, our focus
on algebraic complexity makes the complexity bounds
more or less irrelevant from a practical point of view. In
practice, two cases are of particular interest: floating point
coeflicients (which were already considered in [21]) and
integer coefficients (rational coefficients can be dealt with
similarly after multiplying by the common denominator).

In the case of integer coefficients, it is best to re-encode
the integers as polynomials in IFp[z] for a prime number
which fits into a machine word and such that F, admits
many 2*-th roots of unity (it is also possible to take several
primes p and use Chinese remaindering). After that, one
may again use the old algorithm from [21]. Also, integer
coefficients usually grow in size with n, so one really should
see the power series as a bivariate power series in IFp[[z,
z]] with a triangular support. One may then want to use
TFT-style multiplication [19, 20] in order to gain another
constant factor.

Finite fields. For large finite fields, it is easy to find large
geometric progressions, so the algorithms of this paper
can be applied without the need to consider field exten-
sions. Moreover, for finite fields of the form IF,.» with p
sufficiently large and k > 1, it is possible to choose ¢ €
IF,, thereby speeding up evaluation and interpolation. For
small finite fields of the form IF,, it is generally necessary
to make the initial investment of working in a larger ring
with sufficiently large geometric progressions. Of course,
instead of the ring extensions considered in Section 6, we
may directly use field extensions of the form FF, with k|1.

Semi-relaxed multiplication. In principle, a factor 2
can be gained in the semi-relaxed (resp. general) case using
the technique from [18] (resp. [26]). Unfortunately, the
middle product (resp. the FFT-trick used in [26]) is not
always easy to implement. For instance, if we rely on Kro-
necker substitution for multiplications in Z[z], then we
will need to implement an ad hoc analogue for the middle
product. Since we did not use a fast algorithm for middle
products for our benchmarks in [21, Section 5], the tim-
ings for the semi-relaxed product in were only about 25%
instead of 50% better than the timings for the fully relaxed
product. Nevertheless, modulo increased implementation
efforts, we stress that a 50% gain should be achievable.

Cache friendliness. So far, we have not investigated the
cache friendliness of blockwise relaxed multiplication, and
it can be feared that a lot of additional work is required
in order to make our algorithms really efficient from this
point of view.

Bilinear maps. In order to keep the presentation rea-
sonably simple, we have focussed on the case when A is an
effective ring. In fact, a more general setting for relaxed
multiplication is to consider a bilinear mapping pu: M; X
My — M3z, where M, My and M3 are effective A-modules,
and extend it into a mapping /i: M;[[2]] x Mz[[z]] = Ms][[z]]

by Aa(f,9) =3, ; w(fi, 95) 23, Under suitable hypoth-
esis, the algorithms in this paper generalize to this setting.

Skew series. The relaxed approach can also be general-
ized to the case when the coefficients of the power series
are operators which commute with monomials z* in a non-
trivial way. More precisely, assume that we have an effec-
tive ring homomorphism ¢: A — A such that za = (¢a) z
for all a € K. For instance, one may take A =Q[d] with =
20/0z, so that P(8) z=2zP(6+1). Given a commutation
rule of this kind, we define a skew multiplication on A[[z]]
by

120 j=0 4,520

[Z fHZ W} = D fildlg)

If Ma(n) denotes the cost of multiplying two polyno-
mials P 2% and @ 27 in A[z] with deg P, deg Q < n,
then the classical fast relaxed multiplication algorithm
from [17, 13] generalizes and still admits the time com-
plexity O(Ma(n) logn). However, the blockwise algorithm
from this paper does not generalize to this setting, at least
not in a straightforward way.
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