skip to main content
10.1145/2608628.2608667acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Factoring linear differential operators in n variables

Published:23 July 2014Publication History

ABSTRACT

In this paper, we present a new algorithm and an experimental implementation for factoring elements in the polynomial nth Weyl algebra, the polynomial nth shift algebra, and Zn-graded polynomials in the nth <u>q</u>-Weyl algebra.

The most unexpected result is that this noncommutative problem of factoring partial differential operators can be approached effectively by reducing it to the problem of solving systems of polynomial equations over a commutative ring. In the case where a given polynomial is Zn-graded, we can reduce the problem completely to factoring an element in a commutative multivariate polynomial ring.

The implementation in Singular is effective on a broad range of polynomials and increases the ability of computer algebra systems to address this important problem. We compare the performance and output of our algorithm with other implementations in major computer algebra systems on nontrivial examples.

References

  1. S. Abramov. Problems of computer algebra involved in the search for polynomial solutions of linear differential and difference equations. Mosc. Univ. Comput. Math. Cybern., 1989(3):63--68, 1989.Google ScholarGoogle Scholar
  2. S. Abramov and M. Petkovšek. On polynomial solutions of linear partial differential and (q-)difference equations. In Proc. CASC 2012, pages 1--11. Berlin: Springer, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. A. Abramov, M. Bronstein, and M. Petkovšek. On polynomial solutions of linear operator equations. In Proc. ISSAC 1995, pages 290--296. ACM Press, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. D. Andres. Noncommutative Computer Algebra with Applications in in Algebraic Analysis. PhD thesis, RWTH Aachen University, 2013.Google ScholarGoogle Scholar
  5. O. Bachmann and H.-G. Gräbe. The symbolicdata project. In Reports on Computer Algebra, volume 27. 2000.Google ScholarGoogle Scholar
  6. R. Beals and E. A. Kartashova. Constructively factoring linear partial differential operators in two variables. Theor. Math. Phys., 145(2):1511--1524, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  7. B. Buchberger. Introduction to Groebner bases. Berlin: Springer, 1997.Google ScholarGoogle Scholar
  8. J. Bueso, J. Gómez-Torrecillas, and A. Verschoren. Algorithmic methods in non-commutative algebra. Applications to quantum groups. Dordrecht: Kluwer Academic Publishers, 2003.Google ScholarGoogle Scholar
  9. W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3-1-6 --- A computer algebra system for polynomial computations. 2012. http://www.singular.uni-kl.de.Google ScholarGoogle Scholar
  10. M. Foupouagnigni, W. Koepf, and A. Ronveaux. Factorization of fourth-order differential equations for perturbed classical orthogonal polynomials. J. Comp. Appl. Math., 162(2):299--326, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. I. M. Gel'fand and A. A. Kirillov. Sur les corps Liés aux algèbres enveloppantes des algèbres de Lie. Publications Mathématiques de l'IHÉS, 31:5--19, 1966.Google ScholarGoogle Scholar
  12. D. Grigor'ev. Complexity of factoring and calculating the GCD of linear ordinary differential operators. J. Symb. Comput., 10(1):7--37, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D. Grigoriev and F. Schwarz. Factoring and solving linear partial differential equations. Computing, 73(2):179--197, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Heinle and V. Levandovskyy. Factorization of polynomials in Z-graded skew polynomial rings. ACM Commun. Comput. Algebra, 44(3/4):113--114, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Heinle and V. Levandovskyy. Factorization of Z-homogeneous polynomials in the first (q)--Weyl algebra. arXiv preprint arXiv:1302.5674, 2013.Google ScholarGoogle Scholar
  16. A. Heinle, V. Levandovskyy, and A. Nareike. Symbolicdata: SDeval --- benchmarking for everyone. arXiv preprint arXiv:1310.5551, 2013.Google ScholarGoogle Scholar
  17. M. Kashiwara. Vanishing cycle sheaves and holonomic systems of differential equations. In Algebraic Geometry, pages 134--142. Springer, 1983.Google ScholarGoogle Scholar
  18. W. Koepf. Hypergeometric summation. An algorithmic approach to summation and special function identities. Wiesbaden: Vieweg, 1998.Google ScholarGoogle Scholar
  19. E. Landau. Ein Satz über die Zerlegung homogener linearer Differentialausdrücke in irreductible Factoren. Journal für die reine und angewandte Mathematik, 124:115--120, 1902.Google ScholarGoogle Scholar
  20. A. Loewy. Über reduzible lineare homogene Differentialgleichungen. Math. Ann., 56:549--584, 1903.Google ScholarGoogle ScholarCross RefCross Ref
  21. A. Loewy. Über vollständig reduzible lineare homogene Differentialgleichungen. Math. Ann., 62:89--117, 1906.Google ScholarGoogle ScholarCross RefCross Ref
  22. B. Malgrange. Polynômes de Bernstein-Sato et cohomologie evanescente. Astérisque, 101-102:243--267, 1983.Google ScholarGoogle Scholar
  23. H. Melenk and J. Apel. REDUCE package NCPOLY: Computation in non-commutative polynomial ideals. Konrad-Zuse-Zentrum Berlin (ZIB), 1994.Google ScholarGoogle Scholar
  24. M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. McCarron, and P. DeMarco. Maple Introductory Programming Guide. Maplesoft, 2008.Google ScholarGoogle Scholar
  25. M. Saito, B. Sturmfels, and N. Takayama. Gröbner deformations of hypergeometric differential equations. Berlin: Springer, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. F. Schwarz. A factorization algorithm for linear ordinary differential equations. In Proceedings of the ACM-SIGSAM 1989 international symposium on Symbolic and algebraic computation, pages 17--25. ACM, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. F. Schwarz. Alltypes in the web. ACM Commun. Comput. Algebra, 42(3):185--187, Feb. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. E. Shemyakova. Parametric factorizations of second-, third- and fourth-order linear partial differential operators with a completely factorable symbol on the plane. Mathematics in Computer Science, 1(2):225--237, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  29. E. Shemyakova. Multiple factorizations of bivariate linear partial differential operators. In Proc. CASC 2009, pages 299--309. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. E. Shemyakova. Refinement of two-factor factorizations of a linear partial differential operator of arbitrary order and dimension. Mathematics in Computer Science, 4:223--230, 2010. 10.1007/s11786-010-0052-3.Google ScholarGoogle ScholarCross RefCross Ref
  31. S. Tsarev. Problems that appear during factorization of ordinary linear differential operators. Program. Comput. Softw., 20(1):27--29, 1994.Google ScholarGoogle Scholar
  32. S. Tsarev. An algorithm for complete enumeration of all factorizations of a linear ordinary differential operator. In Proc. ISSAC 1996. New York, NY: ACM Press, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. M. van Hoeij. Factorization of linear differential operators. PhD thesis, University of Nijmegen, 1996.Google ScholarGoogle Scholar
  34. M. van Hoeij. Factorization of differential operators with rational functions coefficients. J. Symb. Comput., 24(5):537--561, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. M. van Hoeij. Formal solutions and factorization of differential operators with power series coefficients. J. Symb. Comput., 24(1):1--30, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. M. van Hoeij and Q. Yuan. Finding all Bessel type solutions for linear differential equations with rational function coefficients. In Proc. ISSAC 2010, pages 37--44. ACM Press, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Factoring linear differential operators in n variables

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        ISSAC '14: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation
        July 2014
        444 pages
        ISBN:9781450325011
        DOI:10.1145/2608628

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 23 July 2014

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        ISSAC '14 Paper Acceptance Rate51of96submissions,53%Overall Acceptance Rate395of838submissions,47%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader