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Abstract

We present new techniques for reducing a multivariate sparse poly-

nomial to a univariate polynomial. The reduction works similarly to the

classical and widely-used Kronecker substitution, except that we choose

the degrees randomly based on the number of nonzero terms in the mul-

tivariate polynomial. The resulting univariate polynomial often has a

significantly lower degree than the Kronecker substitution polynomial, at

the expense of a small number of term collisions. As an application, we

give a new algorithm for multivariate interpolation which uses these new

techniques along with any existing univariate interpolation algorithm.

1 Introduction

We consider the problem of determining the coefficients and exponents of an
unknown sparse multivariate polynomial, given a “black box” procedure that
allows for its evaluation at any chosen point.

Our new technique is a variant on the classical Kronecker substitution. Say
f is an n-variate polynomial with max degree less than D and coefficients in a
ring R. The Kronecker substitution produces a univariate polynomial g P Rrzs
by substituting powers of z in the evaluation of f :

gpzq “ f
´
z, zD, zD

2

, . . . , zD
n´1

¯
.

This map is invertible because there is a one-to-one correspondence between
terms in f and in g, but the price of such convenience is an exponential increase
in the degree.

For example, consider the following bivariate polynomial:

f “ 3x9y ´ 2x5y4 ´ y6 ` x2y9.
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The standard Kronecker substitution would be

g “ fpz, z10q “ 3z19 ´ 2z45 ´ z60 ` z92.

Every term in g comes from a single term in f , and the original exponents can
be determined by the base-D expansion of exponents in g.

Our randomized Kronecker substitution is also a map from multivariate to
univariate polynomials obtained by evaluating at powers of a single indetermi-
nate. We choose n integers ps1, . . . , snq at random and perform the substitution
gpzq “ fpzs1 , . . . , zsnq. When these integers are not too large (in particular,
if each si ă Dn´1), the degree of g will be less than in the usual Kronecker
substitution.

The price of a decreased degree is that the map is no longer invertible, for
two reasons. First, we may have two or more distinct terms in f converge to
a single term in g. This is called a collision. The second difficulty is that the
original multivariate exponents cannot be determined directly from the terms
in a single substitution g. We will show how performing Opn ` log#fq such
random substitutions can overcome both difficulties.

In the example above, choose s1 “ 5 and s2 “ 2, so that

g5,2pzq “ fpz5, z2q “ ´z12 ` z28 ´ 2z29 ` 3z47.

In this case #g “ #f , so there were no term collisions, even though their order
has changed. The advantage is that the degree is significantly less than that
from the usual Kronecker substitution.

Choosing instead s1 “ 2 and s2 “ 5, the result is

g2,5pzq “ fpz2, z5q “ 3z23 ´ 3z30 ` z49,

which again has a reduced degree, but in this case we have a collision: The
two terms ´2x5y4 ´ y6 in f collided to produce a single term ´3z30 under this
substitution.

Nonetheless, for the two terms not involved in a collision, both images can
be used to recover the original terms in f . The two terms with coefficient 3 in
the substitutions are 3z47 and 3z23. This produces the linear system

„
5 2
2 5

 „
u

v


“

„
47
23


,

which is solved to reveal exponents u “ 9 and v “ 1 of the original term 3x9y.
Crucial to our success is determining a suitable set of integers from which

to choose the si. Section 3 provides bounds to construct such sets with prov-
ably many “good” choices which will not produce many collisions. Recovering
the original terms requires a way to correlate like terms in the images g, and
Section 4 shows how a separate randomization allows the coefficients to be used
to identify like terms in separate images g. Section 5 describes a multivariate
interpolation algorithm that makes use of these randomizations.
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2 Related work

Polynomial interpolation dates from the 18th century, where the goal was to
discover a polynomial approximation to an unknown function by collecting suf-
ficiently many observations. It is often beneficial to search for a sparse model,
where only a bounded number of terms in the polynomial are nonzero (see, e.g.,
Candés, Romberg, and Tao [2006]).

Our setting is more restrictive in two senses. First, we require the ability
to choose the points at which the unknown polynomial is evaluated. In this
black-box interpolation setting, the polynomial a procedure which can be probed
with any desired input, at some cost (see, e.g., Grigoriev, Karpinski, and Singer
[1990], Mansour [1995], Giesbrecht, Labahn, and Lee [2009]).

We also require that a sparse polynomial truly exists “inside the box”, and
all evaluations — even those with numerical noise — come from the same T -
sparse polynomial. This is different from the general setting above where the
true function need not be T -sparse or indeed a polynomial at all. (Allowing for
outliers as in Comer, Kaltofen, and Pernet [2012] provides another option.)

Algorithmic progress in sparse interpolation can be divided into two cate-
gories depending on the complexity. Algorithms with polynomial dependence
on the partial degree bounds, sparsity bound, and number of variables are
called sparse algorithms [Zippel, 1979, 1990, Huang and Rao, 1999]. Those
with only logarithmic dependence on the degree are supersparse and can be
useful even in the case of univariate polynomials Ben-Or and Tiwari [1988],
Avendaño, Krick, and Pacetti [2006].

As shown in the introduction, Kronecker subtitution [Kronecker, 1882] can
turn a univariate interpolation into a multivariate one, by evaluating the multi-
variate polynomial at high powers of the univariate interpolation points. This is
especially effective in conjunction with supersparse algorithms [Kaltofen, 2010].

Zippel’s sparse interpolation method proceeds one variable at a time and
uses randomization to identify which portions of the unknown sparse polynomial
vanish. This is another way to turn any univariate algorithm into a multivariate
one Kaltofen and Lee [2003].

There is recent work on implementations of sparse interpolation Javadi and Monagan
[2010], van der Hoeven and Lecerf [2014] and applications to GCD and factor-
ization [Javadi and Monagan, 2009, Berthomieu and Lecerf, 2012]. The Kro-
necker substitution in particular has been applied to integer and polynomial
multiplication [Schönhage, 1982, Harvey, 2009].

Sparse interpolation has a strong connection to the important theoretical
problem of polynomial identity testing (see Shpilka and Yehudayoff [2010] for a
survey). Of particular interest is Klivans and Spielman [2001], where a similar
technique to ours is used for identity testing and interpolation. A significant
advantage of their algorithms is the very small number of random bits required
for the computation.

Our randomized Kronecker substitution provides yet another way to trans-
form any univariate interpolation algorithm into a multivariate one. Table 1
summarizes our contribution as compared to Klivans and Spielman [2001], Zip-
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pel’s method, and the normal Kronecker substitution. The table shows, for each
method, how many times a univariate interpolation algorithm must be called,
and the degree of the univariate polynomials that must be interpolated, relative
to a given bound D on the max degree of the unknown multivariate polyno-
mial, and the number of variables n. (The sparsity bound for the univariate
algorithms will always be simply T .)

Table 1: Uni-to-multivariate interpolation methods

# of reductions Degree
Kronecker substitution 1 Dn

Zippel nT D

Klivans & Spielman n Opn2T 2Dq
This paper (n “ 2 case) Oplog T q O

`?
TD logD

˘

This paper (n ě 3 case) Opn ` logT q O pTDq

The total cost of a multivariate interpolation algorithm obtained this way
depends on the choice of univariate interpolation algorithm. Writing D1 for
the univariate degree (the second column of Table 1), there are two options:

dense methods which require D1 black box probes and rO pD1q field operations,
or supersparse methods based on Ben-Or and Tiwari which require only OpT q
probes and rO

`
T log2 D1

˘
field operations. In Table 2 we compare two stan-

dard approaches against our own: Kronecker substitution with a supersparse
univariate algorithm, and Zippel’s method with a dense univariate algorithm.

Table 2: Overall multivariate interpolation

reduction univariate alg. # of probes # of field ops

Kronecker supersparse 2T rO
`
n2T log2 D

˘

Ours supersparse rO pnT q rO
`
nT log2 D

˘

Zippel dense nTD rO pnTDq
Ours (n “ 2q dense rO

`?
TD

˘ rO
`?

TD
˘

Ours (n ě 3q dense rO pnTDq rO pnTDq

3 Randomized substitutions

For an unknown polynomial f P Rrx1, . . . , xns, our main technical contribution
is a way of choosing integers s1, . . . , sn P Z such that the substitution g “
f pzs1 , . . . , zsnq results in a lower degree than the usual Kronecker substitution,
while probably not introducing too many term collisions.
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3.1 Bivariate substitutions

We begin with the case of n “ 2 variables, where our result is stronger than the
general case and we always choose the random substitution exponents s1, s2 to
be prime numbers. Bivariate polynomials naturally constitute a large portion
of multivariate polynomials of interest, and they correspond to the important
case of converting between polynomials in Zrxs and multiple-precision integers
[Schönhage, 1982, Harvey, 2009].

Throughout this subsection, we assume f P Rrx, ys is an unknown bivariate
polynomial, written as

f “ a1x
u1yv1 ` a2x

u2yv2 ` ¨ ¨ ¨ ` atx
utyvt . (3.1)

We further assume upper bounds Dx, Dy on the degx f and degy f , respectively,
and T ě t on the number of nonzero terms #f .

The general idea here is to perform the substitution

gpzq “ fpzp, zqq (3.2)

for random chosen prime numbers p and q. We want to choose p and q as small
as possible, so as to minimize deg g, but large enough so that there are not too
many collisions.

Our approach to choosing primes is based on the following technical lemma,
which shows how to guarantee a high probability success while minimizing the
degree of g.

Lemma 3.1. Let f P Rrx, ys with partial degrees less than Dx, Dy and at most
than T nonzero terms, 0 ă µ ă 1 be a chosen bound on the probability of failure,
and 1 ď i ď T be the index of a nonzero term in f . Define

B “ 25 pT ´ 1q lnDx lnDy

9µ
,

λp “ max

ˆ
20.5,

c
BDy

Dx

˙
and λq “ max

˜
20.5,

d
BDx

Dy

¸

By choosing primes p, q uniformly at random from the ranges rλp, 2λps and
rλq, 2λqs respectively, the probability that the ith term of f collides in fpzp, zqq
is less than µ.

Proof. The primes p and q constitute the random choices in this discussion.
We say a pair pp, qq is bad if the term aix

uiyvi collides with any other term in
fpzp, zqq. We will show that the number of bad pairs pp, qq is at most µ times
the total number of prime pairs that could be chosen.

We begin with a simple lower bound on the latter quantity. Applying equa-
tion (3.8) in Rosser and Schoenfeld [1962] twice shows that the total number of
ordered pairs pp, qq is at least

9λpλq

25 lnλp lnλq

. (3.3)
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Next we obtain an upper bound on the number of bad pairs by counting the
total number of times the ith term collides in every possible fpzp, zqq.

Observe that for any set S of nonzero integers, and any bound λ, the number
of times any prime p ě λ divides any of the integers in S is at most

|S| lnmaxpSq
lnλ

. (3.4)

A collision with the ith term occurs whenever uip`viq “ ujp`vjq for some
j ‰ i, 1 ď j ď T . This happens only when p � pvi ´ vjq and q � pui ´ ujq.
Since i ‰ j, these exponent differences pui ´ ujq and pvi ´ vjq cannot both
be zero. Furthermore, if one exponent difference is zero, then the collision can
never occur.

Therefore all collisions occur at indices in the set

J “ tj | 1 ď j ď T and pui ´ ujqpvi ´ vjq ‰ 0u.

The total number of times the ith term collides in any fpzp, zqq is equal to the
sum over all j P J of the number of pairs pp, qq such that p � pvi ´ vjq and
q � pui ´ ujq.

Now define, for each p, the subset of possible collision indices as Jp “ tj P
J | p divides pvi ´ vjqu.

As each pvi ´ vjq ă Dy, we have from (3.4) that

ÿ

pěλp

#Jp ď pT ´ 1q lnDy{ lnλp.

For each prime p, the total number of times the ith term collides is the
number of indices j P Jp such that q � pui ´ ujq. As each of these differences is
less than Dx, using (3.4) again this sum is at most p#Jp ¨ lnDxq{plnλqq.

Therefore the total number of times the ith term collides is at most

ÿ

pěλp

#Jp lnDx

lnλq

ď pT ´ 1q lnDx lnDy

lnλp lnλq

.

Using the definition of B and the observation that λpλq “ B, we can rewrite
this bound as

9µ

25 lnλp lnλq

B “ µ
9λpλq

25 lnλp lnλq

,

which is exactly µ times (3.3). Hence the probability of choosing a bad pair
pp, qq is at most µ.

Choosing primes p, q from such sets provides a good bound on the degree of
the resulting polynomial g.

Corollary 3.2. Let f P Rrx, ys with partial degrees less than Dx, Dy and at
most T nonzero terms.
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Then for any constant error probability 0 ă µ ă 1, and primes p, q chosen
randomly as in Lemma 3.1, the substitution polynomial gpzq “ fpzp, zqq has
degree at most

Op
?
T

a
DxDy logpDxDyqq.

The degree of a standard Kronecker substitution is DxDy. Because T is
always less than this, the randomized substitution will never have degree more
than a logarithmic factor larger than DxDy. The benefit comes when the poly-
nomial is sparse, i.e., T ! DxDy, in which case the randomized substitution has
much smaller degree, albeit at the expense of a few collisions.

3.2 Multivariate substitutions

When f has at least 3 variables, the preceding analysis no longer applies. The
new difficulty is that potentially-colliding terms could have exponents that differ
in two or more variables, meaning that the simple divisibility conditions are no
longer sufficient to identify every possible collision. Consequently, our randomly-
chosen exponents in this case will be somewhat larger, and not necessarily prime.

For this subsection, f P Rrx1, . . . , xns is an unknown n-variate polynomial,
written as

f “ a1x
e1 ` a2x

e2 ` ¨ ¨ ¨ ` atx
et , (3.5)

where x “ px1, . . . , xnq and each ei P Z
n. D and T are upper bounds on the

max degree and number of terms in f .
Our general approach here is to choose a random vector s “ ps1, s2, . . . , snq

of integers below a certain bound, and then perform the substitution gpzq “
fpzs1 , . . . , zsnq.

The following lemma, similar in purpose to Lemma 3.1, shows how large the
integers in s must be in order to guarantee a small likelihood of collisions.

Lemma 3.3. Let f P Rrx1, . . . , xns with max degree less than D and at most
T nonzero terms, 0 ă µ ă 1 be a chosen bound on the failure probability, and
1 ď i ď T be the index of a nonzero term in f . Define λ to be the least prime
number satisfying λ ě T {µ.

If integers s1, . . . , sn are chosen uniformly at random from r0, λ ´ 1s, then
the probability that the ith term of f collides in fpzs1 , . . . , zsnq is less than µ.

Proof. Adopt the notation Fλ for the finite field with λ elements, which we will
represent as Z{λZ. Write s “ ps1, . . . , snq for the randomly-chosen vector in F

n
λ.

Now let 1 ď j ď T , j ‰ i, and consider the jth term of f . Writing ei, ej
for the exponent vectors of these terms as in (3.5), define dj “ ei ´ ej , which
cannot be the zero vector as i and j are distinct terms. We see that these two
terms collide in the substitution fpzs1 , . . . , zsnq if and only if dj ¨ s “ 0.

Define ℓ ě 0 such that λℓ is the largest power of λ that divides every entry
in dj , and write d1

j “ dj{λℓ. This means that d1
j P Zn and d1

j mod λ ‰ 0.
Furthermore, dj ¨ s “ 0 if and only if d1

j ¨ s “ 0.
Now, if d1

j ¨ s “ 0, then this also holds modulo λ, so s must lie in the pn´1q-
dimension null space of d1

j mod λ, call it W , where W Ă Fn
λ. The probability
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that s P W is 1{λ, and therefore the probability that terms i and j collide is at
most 1{λ as well.

Since there are T ´ 1 terms that the ith term could collide with, i.e., T ´ 1
choices for j, the probability that the ith term collides with any other term is
at most pT ´ 1q{λ. From the definition of λ, this is less than µ.

Due to Bertrand’s postulate, we will have λ ă 2T {µ. The following corollary
shows how this bound on the size of entries in the randomly-chosen s affects
the degree of the reduced univariate polynomial. Compared to Dn, the degree
of the univariate polynomial from the usual Kronecker substitution, we see a
significant reduction when T ! Dn´1.

Corollary 3.4. Let f P Rrx1, . . . , xns with max degree less than D and at most
T nonzero terms.

For any constant error probability 0 ă µ ă 1, and integers s1, . . . , sn chosen
randomly as in Lemma 3.3, the polynomial gpzq “ f pzs1 , zs2 , . . . , zsnq has degree
at most O pTDq.

4 Multivariate diversification

Consider f P Rrx1, . . . , xns as in (3.5):

f “ a1x
e1 ` a2x

e2 ` ¨ ¨ ¨ ` atx
et .

Each choice of s “ ps1, . . . , snq for a randomized Kronecker substitution
maps f to a univariate polynomial gpzq “ fpzs1 , . . . , zsnq. In order to recover
the exponent tuples of the original polynomial f , it will be necessary in the
next section to perform multiple such substitutions and correlate terms in each
g that correspond to the same unknown term in f .

The notion of diversification, introduced by Giesbrecht and Roche [2011],
will be used to correlate terms in the substituted polynomials g. The basic
idea is that distinct terms in f will be made, through a randomization, to have
distinct coefficients.

In fact, as there will be some small number of collisions in each substituted
polynomial g, we require the notion of generalized diversity from Arnold, Giesbrecht, and Roche
[2014]. The idea is that not only must the terms in f have distinct coefficients,
but some small number of sums of terms in f must additionally be distinct.

This problem of diversification is to choose α from a suitable set so that,
with high probability, α is not a root of any in a set H of polynomials. In

the original notion of diversity, H simply consists of the set of T pT´1q
2

pairwise
term differences from f . To achieve generalized diversity, we must also consider
polynomials h of the form

h “
ÿ

iPS

aix
ei ´

ÿ

jPS1

ajx
ej ,

where S and S1 each either comprise a single term or a set of terms appearing
in a collision.
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Definition 4.1 (Diversifying set). Let n ě 1 and bounds D, m, and µ be
given, and let H Ď Rrx1, . . . , xns be an unknown subset of nonzero polynomials
satisfying #H ď m and with each h P H having max degree less than D.

We say A Ď R is a pn,D,m, µq-diversifying set if the probability is less than
µ that any evaluation point α, with entries chosen at random from A, is a root
of any of the h P H. That is,

Pr
αPAn

rhpαq ‰ 0 @h P Hs ě 1 ´ µ.

From the discussion above, we see that the set H the differences between
any of the t ď T single terms and any of the r sets of collisions, which is at most
#H ă 1

2
pT ` rq2.

Lemma 4.2. Let f P Rrx1, . . . , xns with degree less than D and at most T

nonzero terms, and 0 ă µ ă 1. If there are at most r collisions in some set of
evaluations of f , and α P R

n is chosen at random from a set A Ď R that is a
pn,D, 1

2
pT ` rq2, µq-diversifying set, then, with probability at least 1 ´ µ, every

coefficient of fpα1x1, . . . , αnxnq is distinct from every other coefficient and from
the coefficients of all r collisions.

Proof. Follows from the discussion above and the definition of a diversifying
set.

From the definition of diversifying set, a simple application of the Schwartz-
Zippel lemma could be used to generate diversifying sets as long as the field R is
sufficiently large. Theorems 3.1 and 4.6 in Giesbrecht and Roche [2011] define
diversifying sets for large finite fields and fixed-precision complex numbers, re-
spectively, in the univariate case n “ 1. Our more recent work in Arnold et al.
[2014] constructs smaller diversifying sets by choosing vectors of substitutions,
again for the univariate case. We restate these results in our current notation
and refer the reader to the aforementioned results for further details.

Corollary 4.3 (Giesbrecht and Roche [2011], Theorem 3.1). Let bounds D, m,
and µ be given. If q is a prime power satisfying q ě mD{µ, then the set F˚

q of
all nonzero elements in the finite field of size q is a p1, D,m, µq-diversifying set.

Giesbrecht and Roche [2011] also considers the case when f P Crxs, f is given
by a numerical black box. Their proof does not apply here as the polynomials
in H for us are not always binomials. We hope that a similar result would hold
for multivariate diversification, but do not consider the question here.

Corollary 4.4 (Arnold et al. [2014], Lemma 4.1). Let bounds D, m, and µ be
given as above, q a prime power, and set

s “
P
logqp2D ` 1q

T
and k “

Q
log 2

µ
` 2 logm

U
.

Then the set Fk
qs of k-tuples from a size-s extension of the finite field with q

elements is a p1, D,m, µq-diversifying set˚.

˚In this case we make the abuse of notation that each evaluation fpαxq is actually a k-tuple

of evaluations, and the coefficients in fpαxq are actually k-tuples in Fqs .
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We show, more generally, that vectorization may be applied to any diversi-
fying set.

Lemma 4.5. Let n,D,m, µ be given and H an unknown set of polynomials as
in Definition 4.1. If A Ă R is a pn,D,m, µq-diversifying set, then Aℓ Ă R

ℓ

is a pn,D,m, µℓq-diversifying set, where addition and multiplication in R
ℓ are

component-wise.

Proof. As A is a p1, D,m, µq-diversifying set, then by definition, a randomly
selected row vector α P An satisfies hpαq ‰ 0 for all h P H with probability
at least 1 ´ µ. Suppose β “ pα1, . . . ,αℓq is chosen randomly from Aℓˆn, and
note that hpβq “

`
hpα1q, . . . , hpαℓq

˘
. Thus the probability that hpβq “ 0 is the

probability that hpαiq “ 0 for every i “ 1, . . . , ℓ, which is at most µℓ.

Rather than rehash the univariate diversification procedures, we refer the
reader to the aforementioned results and provide the following connection which
shows that univariate diversifying sets, with success probability scaled by a
factor of n, become multivariate diversifying sets.

Theorem 4.6. Let R be an integral domain and n,D,m, µ be given and H an
unknown set of polynomials as in Definition 4.1. If A Ă R is a p1, D,m, µ{nq-
diversifying set, then A is also a pn,D,m, µq-diversifying set.

Proof. The proof is by induction on n. When n “ 1, the statement holds
trivially. So assume n ě 2 and also that any p1, d,m, µ{pn´ 1qq-diversifying set
is also a pn ´ 1, d,m, µq-diversifying set.

We know that H is a set of n-variate polynomials, each with max degree less
than D. Rewrite each h as a polynomial in x1 with coefficients in Rrx2, . . . , xns,
and define lcphq to be the leading coefficient of h in terms of x1. Each lcphq is
an pn´1q-variate polynomial with max degree less than D. Furthermore, every
lcphq must be nonzero since h ‰ 0.

Now define H1 “ tlcphq | h P Hu. This is a set of pn´1q-variate polynomials
with degrees less than D. Therefore, by the induction hypothesis, a random
evaluation point pα2, . . . , αnq with elements chosen from A is a zero for any
polynomial in H1 with probability less than pn ´ 1qµ{n.

Now consider the set H2 “ thpx1, α2, . . . , αnq | h P Hu, whose leading
coefficients are all nonzero with probability at least 1´µ{pn´ 1q. H1 is a set of
at most m univariate polynomials with degrees less than D. From the original
definition of A, choosing α1 at random from A makes every hpα1, α2, . . . , αnq
nonzero with probability at least 1 ´ µ{n.

Therefore a randomly-chosen point pα1, . . . , αnq P An is a root of any h P H

only if pα2 . . . , αnq is a root of some polynomial in H1, or α1 is a root of some
polynomial in H2. As the probability of each of these is less than pn ´ 1qµ{n
and µ{n, respectively, the probability either occurs must be less than µ, as
required.
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5 Multivariate interpolation

In this section we show how one can interpolate f using randomized substitu-
tions and a univariate interpolation algorithm. As in (3.5), write

f “ a1x
e1 ` ¨ ¨ ¨ ` atx

et P Rrx1, . . . , xns.

with known bound T ě t. If T “ 1, then we simply perform n substitutions
fpz, 1, . . . , 1q, . . . , fp1, . . . , 1, zq, each of which reveals the single term and its
exponent in one of the variables. No randomization is necessary in this case and
the solution is trivial. Therefore for the remainder of this section we assume
that T ě 2.

5.1 Choosing multiple substitutions

The first step in interpolating f is to select ν randomized Kronecker substitu-
tions, s1, . . . , sν P R

n, where each si “ psi1, . . . , sinq. We require the si to be
chosen in such a way that, with high probability, every term of f avoids collision
for at least half of the substitutions si.

To achieve this we first randomly select Kronecker substitutions such that
any fixed term of f avoids collision for the substitution s with probability ex-
ceeding 3{4.

For the bivariate case, we would choose primes si1 P rλp, 2λps, and si2 P
rλq, 2λqs, for 1 ď i ď ν, where λp and λq are determined by setting µ “ 1{4 in
Lemma 3.3.

Applying Lemma 3.3 for the general multivariate case, we would select each
integer sij P r0, λ ´ 1s, where λ is the least prime greater than 4T {3.

Given such choices of si, the following lemma shows how many substitutions
ν are required so that every term of f appears without collisions in at least half
of them.

Lemma 5.1. Let f P Rrx1, . . . , xns with max degree less than D and at most T
nonzero terms. Set

ν “ max p4n, 8 ln p10T qq ,
and choose ν vectors s P Zn such that, for any single s and any particular term
in f , the probability that the term collides with another is less than 1{4.

Then, with probability at least 9{10, every term of f collides with no others
for at least 2n of the substitutions.

Proof. By Hoeffding’s inequality Hoeffding [1963] the probability that any fixed
term of f collides in a proportion of at least 1{2 of the substitutions is at most
expp´ν{8q ď 1{p10T q. Thus the probability is at most 1{10 that any term of f
collides in more than ν{2 ě 2n of the substitutions s.
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5.2 Choosing a diversifying set

The next step is to find an appropriate diversifying set for the interpolation
problem. Note the images

g1
i “ fpzsi1 , . . . , zsinq, 1 ď i ď ν,

contain at most Tν nonzero terms in total. Every term czd from one of the
images g1

i, 1 ď i ď ν, is the image of the (possibly empty) sum of terms of f of
degree e satisfying e¨si “ d. We take H to be the set of nonzero differences of all
such sums. Thus, in order to obtain the appropriate diversity with some desired
probability 1 ´ ǫ, we require a pn,D,#H, ǫq-diversifying set. Per Theorem 4.6,
it suffices that we find a p1, D,#H, ǫ{nq-diversifying set A.

We randomly select α “ pα1, . . . , αnq from An and then use a univariate
interpolation algorithm of our choosing in order to construct the set of images

gi “ fpα1z
si1 , . . . , αnz

sinq, 1 ď i ď ν

having the property that, with high probability, every pair of terms czd of gi
and cze of gj (1 ď i, j ď ν), sharing a coefficient c, are images of the same sum
of terms of f .

Lemma 5.2. Let f P Rrx1, . . . , xns with max degree less than D and at most T
nonzero terms. Assume ν substitution vectors are chosen according to Lemma 5.1.

Set m “ T 2pν ` 2q2{8 and choose a pn,D,m, 1{10q-diversifying set A Ď R.
Then, with probability at least 4{5, any nonzero coefficient c that appears in at
least ν{2 of the substitution polynomials gi is the image of a single term in f .

Proof. From the proof of Lemma 5.1, the probability is at least 9{10 that every
term in f appears without collision in at least ν{2 of the substitutions.

Assuming this is the case, there can be at most Tν{4 sums of terms that
collide in any image gi, since each collision involves at least two terms, there
are at least Tν{2 terms that do not collide, and the total number of terms in
all images is Tν.

Hence the set of term differences H will consist of the differences of any pair
in a set of T `Tν{4 polynomials. The number of such pairs is less than m given
in the statement of the lemma.

From the definition of A, the probability that any of these polynomials in H

vanish on α P An is less than 1{10, so the total probability that each term in f

is uninvolved in collisions in at least ν{2 of the images, and all distinct terms
and collisions in the image polynomials gi have distinct coefficients, is at least
p9{10q2 ą 4{5.

A direct consequence is that any fixed subset of terms of f must collide in
fewer than half of the gi. For every nonzero coefficient that occurs in at least
ν{2 of the images gi, we know those terms with coefficient c are probably images
of the same fixed term of f .

An alternate method might be to allow the OpTνq sums of terms that ap-
pear in collisions to sometimes share the same coefficient, as long as these

12



coefficients are not the same as any of the T coefficients of actual terms in
fpα1x1, . . . , αnxnq. This would reduce the m in determining the diversifying
set to T 2pν ` 2q{4, a factor of n improvement from the bound above. The cost
of such weakened diversifying sets would be that some number ď T {4 of terms
in the final recovered polynomial h are not actually terms in f . By iterating
Oplog T q times, such “garbage terms” could be eradicated.

5.3 Recovering the multivariate exponents

For each coefficient c that appears in at least ν{2 of the images gi, we at-
tempt to find n linearly independent substitution vectors, call them r1, . . . , rn P
ts1, . . . , sνu, such that every substitution polynomial gj with substitution vector
rj “ prj1, . . . , rjnq, for 1 ď j ď n, contains the coefficient c in a nonzero term.

In the bivariate case this is straightforward. Any 2ˆ 2 linear system formed
by two substitution vectors „

s11 s12
s21 s22



must have nonzero determinant since in the bivariate case the entries are all
distinct prime numbers.

The general multivariate case is more involved, as n substitution vectors
may not always be linearly independent. For this case we will randomly select
2n vectors r1, . . . , r2n P r0, λ ´ 1sn, from which we will search for n linearly
independent vectors. To that end we require a bound on the probability that
such n independent vectors do not exist.

Lemma 5.3. Let λ be a prime number and f P Rrx1, . . . , xns, and suppose that a
term of f avoids collision in an image fpxsq for a randomly chosen s P r0, λ´1sn
with probability at least 3{4. Let r1, . . . , r2n be row vectors, chosen uniformly
from r0, λ ´ 1sn. Given that a term of f avoids collision in the images fpxriq
for 1 ď i ď 2n, then

Q “

»
—–
r1
...

r2n

fi
ffifl

has rank less than n with probability at most p9λ{16q´n.

Proof. Since all entries in each s, and thereby everything in each r and every
element in Q, is less than λ, we can consider all these objects over the finite
field Fλ.

If Q has rank less than n, then r1, . . . r2n all lie in some dimension-pn ´ 1q
subspace W Ă Fn

λ. The number of distinct substitution vectors that could lie
in the same subspace W is λn´1.

Each dimension-pn ´ 1q subspace W Ă Fn
λ may be specified by a nonzero

vector spanning its orthogonal space, unique up to a scalar multiple. Thus

13



the number of such subspaces is less than λn, and so the number of possible
2n-tuples comprised of substitution vectors that do not span Fn

λ is at most

λnpλn´1q2n “ λ2n2´n.

Meanwhile, there are λ2n2

possible 2n-tuples of substitution vectors, and so
the probability that such a tuple does span V is at most λ´n. Furthermore,
by the hypothesis, the probability that a term of f avoids collision for each
substitution ri is p3{4q2n, and thus the conditional probability that Q is not
full rank given that a fixed term of f avoids collision for each ri is at most
λ´n{p3{4q2n “ p9λ{16q´n.

Given such a high probability of each term producing a rank-n system of
substitution vectors, it is a simple matter to show that with high probability
every term of f admits some such rank-n linear system of substitutions without
collisions.

Corollary 5.4. Let f P Rrx1, . . . , xns as above, and set ν according to Lemma 5.1,
α according to Lemma 5.2, and λ ě 3 according to Lemma 3.3. With proba-
bility at least 2{3, for every term in f , there exists a rank-n set of substitution
vectors r1, . . . , rn, such that the given term of f does not collide in any of the
substitutions g “ fpα1z

ri1 , . . . αnz
rinq, for 1 ď i ď n.

Proof. As we have discussed, the case T “ 1 is trivial and when n “ 2 we choose
primes for the vectors s and the 2 ˆ 2 linear systems always have full rank.

So assume T ě 2 and n ě 3. We know from Lemma 5.3 that the probability
of a single term not admitting a rank-n system of substitution vectors is less
than p9λ{16q´n, so the probability that any term does not have a rank-n system
of non-colliding substitution vectors is less than T {p9λ{16qn.

Since λ is chosen as the least odd prime greater than 4T {3, we see that
T {p9λ{16qn ě 4

3
p9λ{16q´n`1. And because λ ě 3 and n ě 3, 4

3
p9λ{16q´n`1 ď

4

3
p27{16q´2 ă 1{6.
Combining this with the probability bound from Lemma 5.2, the overall

success probability is at least 5

6
¨ 4

5
“ 2

3
.

From the set of 2n vectors r1, . . . , r2n we can find n linearly independent
vectors by inspection of the LU factorization of the matrix whose 2n rows are
the rj . By Bunch and Hopcroft [1974], we can do this in rO pnωq operations

in Fλ, for a bit cost of rO pnω logT q. We suppose by reordering of the rj that
r1, . . . , rn are our n linearly independent vectors.

Then, if dj is the exponent of the term with coefficient c appearing in
fpα1z

rj1 , . . . , αnz
rjnq, we may find the degree e of the term with coefficient

c in the diversified multivariate polynomial fpα1x1, . . . , αnxnq by way of the
linear system »

—–
r1
...
rn

fi
ffifl

»
—–
e1
...
en

fi
ffifl “

»
—–
d1
...
dn

fi
ffifl .
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We construct and solve such a linear system for every term of f , giving us
the polynomial

g “ fpα1x1, . . . , αnxnq,
from which we easily obtain f as f “ gpα´1

1
x1, . . . , α

´n
n xnq. Procedure Interpolate

describes the approach laid out in sections 5.1-5.3.

Procedure Interpolate(f, n, T,D)

Input: Bounds D,T and a black box for evaluating f P Rrx1, . . . , xns, an
unknown polynomial with partial degrees less than D and at
most T nonzero terms.

Result: We construct f with probability at least 2{3.
// Choose substitution vectors

ν Ð maxp4n, 8 lnp10T qq
if n “ 2 then

s1, . . . , sν Ð prime vectors chosen by Lemma 3.1

else

s1 . . . , sν Ð integer vectors chosen by Lemma 3.3

// Diversify

m Ð T 2pν ` 2q2{8
A Ð a pn,D,m, 1{10q-diversifying subset of R
α Ð an element of An chosen uniformly at random

// Build images of f

for i “ 1, . . . , ν do
gi Ð fpα1z

si1 , . . . , αnz
sinq via univariate

interpolation

// Reconstruct f from its images

g Ð 0
foreach coefficient c ‰ 0 appearing in any gi do

S Ð tsi | c is a coefficient in giu
if #S ă ν{2 then continue

r1, . . . , rn Ð linearly independent vectors chosen
from the first 2n vectors in S

d1, . . . , dn Ð degrees of terms with coefficient c
under substitutions r1, . . . , rn

R Ð pr1 . . . rnqJ

d Ð pd1 . . . dnqJ

e Ð R´1d

g Ð g ` cxe

return gpα´1

1
x1, . . . , α

´1

n xnq
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5.4 Cost analysis

We can now state the tangible benefit of our new Kronecker substitution tech-
nique. The diversifying sets are included in these theorems even though we do
not actually count the cost of possibly extending the ring R to include such sets.

Theorem 5.5. For given bounds Dx, Dy, T and an unknown polynomial f P
Rrx, ys with degx f ă Dx, degy f ă Dy, and #f ď T , Procedure Interpolate
succeeds in finding f with probability at least 2{3 and requires

• Oplog T q calls to univariate interpolation with T nonzero terms and degree
O

`?
T

a
DxDy logpDxDyq

˘
,

• A p2, D,O
`
T 2 log2 T q, 1{10

˘
-diversifying set in R, and

• rO
`
T logD ` log2 D

˘
additional bit operations, where D “ maxpDx, Dyq.

Proof. Since n “ 2, we have ν P O plogT q. This is the number of calls to the uni-
variate interpolation algorithm, and the degree bound comes from Corollary 3.2.
The size of H in the diversifying set comes from the fact that m P O

`
T 2 log2 T

˘
.

Two steps dominate the bit complexity. First, we must choose 2ν primes in
rλ, 2λs. This can be accomplished via Opνq applications of the Miller-Rabin
primality test, performing Oplog logT q trials each time to ensure a negligi-

ble probability of error. The cost of these tests is rO
`
logT log2 λ

˘
, which is

rO
`
logT log2 D

˘
.

The other dominating step in bit complexity is simply the cost of computing
with the Tν exponents in images gi and T exponent vectors in the final result.
There are rO pT q such exponents, each with OplogDq bits, for a total bit cost of
rO pT logDq.

Theorem 5.6. For given bounds D,T and an unknown polynomial f P Rrx1, . . . , xns
with maxdeg g ă D and #f ď T , Procedure Interpolate succeeds in finding f

with probability at least 2{3 and requires
• Opn ` logT q calls to univariate interpolation with T nonzero terms and
degree O pTDq,

• A p2, D, rO
`
T 2n2

˘
, 1{10q-diversifying set in R, and

• rO pnωT ` nT logDq additional bit operations, where 2 ă ω ă 3 is the
exponent of matrix multiplication.

Proof. The analysis of the first two parts is the same as in the bivariate case.
For the bit complexity, we do not have to worry about primality testing here.

However, the size of all exponents in the polynomials becomes rO pnT logDq,
and the cost of performing each LU factorization on a p2nq ˆn matrix is Opnωq
operations on integers with Oplog T q bits. As T such LU factorizations are

required, the total bit cost of the linear algebra is rO pnωT q.

5.5 Interpolating f with arbitrarily high probability

Interpolating f entails the probabilistic steps of (1) selecting a set of randomized
substitutions that produce few collisions and (2) selecting α from a diversifying
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set A such that all term sums in all images have distinct coefficients in those
images. The n ě 3 case has in addition the probabilistic step (3) of guaranteeing
that we can construct a full-rank linear system in order to solve for every expo-
nent of f . The probability of failure in each of these steps has been controlled
above so that the overall success probability is at least 2{3.

If a higher success probability, say 1 ´ ǫ, is desired, we simply run the
interpolation algorithm described in sections 5.1–5.3 with some ℓ times. Again
using Hoeffding’s inequality, the probability that the algorithm fails at least ℓ{2
times is at most expp´2ℓp1{6q2q “ expp´ℓ{18q. Thus, if we wish to discover
f with probability 1 ´ ǫ, we merely run the algorithm as suggested some ℓ “
r18 ln 1

ǫ
s times, and select the the polynomial f that is returned a majority of

the time. With probability at least 1 ´ ǫ, such an f exists and is in fact the
correct answer.

6 Perspective

We have presented a new randomization that maps a multivariate polynomial
to a univariate polynomial with (mostly) the same terms. This improves on the
usual Kronecker map by reducing the degree of the univariate image when the
polynomial is known to be sparse. We have also shown how a small number
of such images can be combined to recover the original terms of the unknown
multivariate polynomial.

There are numerous questions raised by this result. Perhaps foremost is
whether there is any practical gain in any particular application by using this
approach. We know that the randomized Kronecker substitution will result in
smaller degrees than the usual Kronecker substitution whenever the polynomial
is sufficiently large and sufficiently sparse, so in principle the applications should
include any of the numerous results on sparse polynomials that use a Kronecker
substitution to accommodate multivariate polynomials.

Unfortunately, in practice, the situation is not so clear. Many of the afore-
mentioned results that rely on a Kronecker substitution either do not have a
widely-available implementation, or do not usually involve sparse polynomials.
However, for the particular applications of sparse GCD and sparse multivariate
multiplication, there is considerable promise particularly in the case of bivariate
polynomials with degree greater than 1000 or so and sparsity between D and
D2. An efficient implementation comparison in these situations would be useful
and interesting, and we are working in that direction.

There are also questions of theoretical interest. For one, we would like to
know how far off the bounds on the size of primes from Lemmata 3.1 and 3.3
are compared to what is really necessary to avoid collisions.

An important question is whether our current results are optimal in any
sense. In the bivariate case, when Dx “ Dy our result gives p, q P rO

`?
T

˘
,

which is optimal in terms of T . That is because T could be as large as ΘpDnq,
and therefore any monomial substitution exponent less than ΩpT pn´1q{nq would
by necessity have more than a constant fraction of collisions. However our result
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for n ě 2 gives each pi P rO
`
T ` n2 ` log2 D

˘
, which in terms of T is off by a

factor of T 1{n from the optimal. It may be possible to improve these bounds
simply with a better analysis, or with a different kind of randomized monomial
substitution. In either case, it is clear that, at least for n ě 3 and in particular
for n “ 3, it should be possible to improve on the results here and achieve
univariate reduced polynomials with even lower degree.

Another interesting question would be whether some of this randomization
can be avoided. Here we have two randomizations, the diversification and the
(multiple) randomized Kronecker substitutions. And this is besides any ran-
domization that might occur in the underlying univariate algorithm! It seems
plausible that, for example in the application of multivariate multiplication, the
known aspects of the monomial structure might be used to make some choices
less random and more “intelligent”. However, we do not yet know any reason-
able way to accomplish this.
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