
Reducing GUI Test Suites via Program Slicing

Stephan Arlt
Université du Luxembourg

Luxembourg City, Luxembourg
stephan.arlt@uni.lu

Andreas Podelski
Universität Freiburg
Freiburg, Germany

podelski@cs.uni-freiburg.de

Martin Wehrle
Universität Basel

Basel, Switzerland
martin.wehrle@unibas.ch

ABSTRACT
A crucial problem in GUI testing is the identification of
accurate event sequences that encode corresponding user in-
teractions with the GUI. Ultimately, event sequences should
be both feasible (i. e., executable on the GUI) and relevant
(i. e., cover as much of the code as possible). So far, most
work on GUI testing focused on approaches to generate feasi-
ble event sequences. In addition, based on event dependency
analyses, a recently proposed static analysis approach sys-
tematically aims at selecting both relevant and feasible event
sequences. However, statically analyzing event dependen-
cies can cause the generation of a huge number of event
sequences, leading to unmanageable GUI test suites that are
not executable within reasonable time.

In this paper we propose a refined static analysis approach
based on program slicing. On the theoretical side, our ap-
proach identifies and eliminates redundant event sequences
in GUI test suites. Redundant event sequences have the
property that they are guaranteed to not affect the test ef-
fectiveness. On the practical side, we have implemented a
slicing-based test suite reduction algorithm that approxima-
tively identifies redundant event sequences. Our experiments
on six open source GUI applications show that our reduction
algorithm significantly reduces the size of GUI test suites.
As a result, the overall execution time could significantly be
reduced without losing test effectiveness.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Experimentation

Keywords
GUI Testing, Black-box Testing, Test Automation;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’14, July 21–25, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2645-2/14/07 ...$15.00.

1. INTRODUCTION
Test case generation for graphical user interfaces (GUIs)

is an active research area [3, 8, 18, 31, 34]. Test cases are
represented as sequences of events that encode corresponding
user interactions with the GUI. Test cases should be both
feasible (i. e., the event sequence should be executable on the
GUI), and relevant in the sense that as much of the code as
possible is covered. In this context, a main challenge is the
potentially unbounded space of possible user interactions,
and hence, the potentially unbounded space of possible event
sequences.

Recent approaches to tackle this challenge can be clas-
sified as iterative and non-iterative approaches. Iterative
approaches (e. g., [18, 31]) generate test cases on-the-fly, and
test cases can be executed after their generation. In order to
keep the approach practical, the generation and execution
time is usually limited with a timeout. Complementary to
iterative approaches, non-iterative approaches (e. g., [3, 8,
34]) generate the whole suite of test cases before their actual
execution, which has the advantage that a complete set of
test cases (e.g., all event sequences of a specific length) is
generated. In this context, most of the work concentrated
on black-box approaches is to obtain feasible test cases. For
example, Belli [8] proposed the notion of Event Sequence
Graphs (ESGs), and Memon [34] proposed the notion of
Event Flow Graphs (EFGs) to approximate the (black-box)
behavior of the GUI. In addition to black-box approaches,
white-box approaches have been proposed for non-iterative
test case generation (e. g., [12, 42]) to select relevant test
cases based on, e. g., symbolic execution.

A recently proposed approach [3] aims at combining the
best of these two worlds by combining black-box and white-
box techniques to identify both feasible and relevant se-
quences. In a first step, the white-box part selects “skeletons”
of event sequences based on pairs of events that are in a
def-use relationship. Such pairs of events are represented by
an event dependency graph (EDG) that is computed stati-
cally. In a second step, the black-box part “fills” this skeleton
with events such that the overall sequence becomes feasible.
Roughly speaking, this approach combines what one “should
test” (events that depend on each other identified with the
EDG) with what one “can test” (events that are feasible
identified with the EFG). While this approach has shown
promising performance compared to pure black-box testing,
it only considers pairs of def-use events for the first (i. e., for
the “white-box”) step. However, longer event sequences are
often useful to detect more complex bugs as, e. g., demon-
strated by Xie et al. [48] and Assi et al. [5]. Furthermore, the

number of event sequences that result from pairs of def-use
events can nevertheless be huge such that resulting GUI test
suites cannot be executed in reasonable time.

In this paper we provide a generalization of this approach.
The generalization is not restricted to pairs, but can handle
an arbitrary number of dependent events while guaranteeing
that all relevant event sequences are generated based on these
events. To make this generalization scalable, we propose a
refined static analysis approach based on a variant of program
slicing [19, 45] to reduce the resulting number of test cases.
On the theoretical side, our approach identifies and eliminates
redundant event sequences in GUI test suites. Redundant
event sequences have the property that they are guaranteed
to not affect the test effectiveness. On the practical side,
we have implemented a slicing-based test suite reduction
algorithm that approximatively identifies redundant event
sequences.

Our experiments on a number of real-world open source
GUI applications confirm its practical potential. In par-
ticular, our experiments demonstrate that redundant event
sequences occur in a huge number of various GUI applica-
tions. Moreover, the reduced number of generated test cases
can strongly reduce the overall execution time of a GUI test
suite without losing test effectiveness.

The remainder of the paper is organized as follows. Next,
we motivate the applicability of our approach using an ex-
ample GUI application. Section 3 formally introduces the
concept of redundant event sequences, and Section 4 presents
its actual implementation on a technical level based on pro-
gram slicing. We evaluate the new approach in Section 5,
which is followed by a discussion of its results in Section 5.3.
Finally, we conclude the paper and sketch future work.

2. MOTIVATION
As outlined in the introduction, the recently proposed

static analysis approach for GUI testing [3] has shown its
potential on several GUI applications. However, in practice,
longer dependent event sequences than those handled by
this approach are often desired [5, 48]. Considering longer
event sequences in turn leads to an unmanageable number
of overall test cases. In the following, we provide a simple
motivating example, which is inspired by a real-world GUI
application to show these problems in more detail, and to
outline our approach to reduce the resulting number of test
cases.

Figure 1: An example GUI inspired by TerpPaint.

Consider the example GUI application in Figure 1, which is
inspired by the TerpPaint application [32] (see Section 5 for
more details). The window offers a user to modify a recently
opened image. To modify the image, the user may click the
checkbox in order to convert the image to grayscale, and may
rotate the image by choosing an angle from the slider control.

Furthermore, an existing angle can be loaded from the user
settings (using the button Load), and a new angle can be
saved as a user setting (using the button Save). The button
OK performs the modification to the image and closes the
window; the button Cancel closes the window without any
modifications to the image.

1 class ModifyImageWindow extends JFrame {
2

3 boolean convert = false;
4 int angle = 0;
5

6 void onCheckBox() {
7 int cbValue = checkBox.getValue();
8 convert = (1 == cbValue)
9 ? true : false;

10 }
11

12 void onSlider() {
13 int sliderValue = slider.getValue();
14 angle = sliderValue;
15 print(convert, angle);
16 }
17

18 void onSave() {
19 UserSettings.RotationAngle = angle;
20 }
21

22 void onOK() {
23 if (convert) {
24 image.convertToGrayscale();
25 image = null;
26 }
27 if (angle > 0) {
28 // BUG: crashes if image was
29 // converted to grayscale
30 image.rotate(angle);
31 }
32 }
33 }

Figure 2: The event handlers extracted from the example
GUI. The class ModifyImageWindow defines the event han-
dlers onCheckBox, onSlider, onSave, and onOK.

Figure 2 shows a snippet of the code that describes the
GUI application. The application contains event handlers
that define the behavior of the GUI in case a corresponding
event (i. e., interaction with the user) occurs. We will use
the terms event and event handler interchangeably when the
meaning is clear from the context. In this example, there are
the four event handlers onCheckBox, onSlider, onSave and
onOK. onCheckBox reads the current value from the checkbox
and assigns its value to the field convert. onSlider reads
the current angle from the slider control and assigns the
value to the field angle. It also prints the current values to
a log. onSave saves the current angle as a user setting. onOK
converts the image to grayscale and resets the image object;
furthermore it rotates the image by the given angle.

As indicated in Figure 2 (line 28-30), the GUI application
contains a bug that can occur if the event handler onOK is
executed after the event handlers onCheckBox and onSlider:
If onOK is executed, and the field convert is true (set by
onCheckBox), and also the field angle is greater than zero
(set by onSlider), then the image object is set to null,
causing a NullPointerException in line 30.

The recently proposed static analysis approach [3] does
not reveal this bug, because it generates test cases as follows.

For the given GUI application, an event dependency graph
(EDG) is computed that reflects the def-use dependencies
of the events. The vertices of the EDG are defined as the
events of the GUI application, and there is an edge between
two events if these events are in def-use relationship. For our
concrete example, this graph is depicted in Figure 3.

onCheckBox onSlider onSave onOK

Figure 3: Event Dependency Graph (EDG) for the example
GUI. Each edge expresses a def-use (a write/read) depen-
dency: For example, the event onCheckBox defines (writes)
the field convert, which is used (read) in the event onSlider
and in the event onOK.

Based on the EDG, for all pairs of events e and e′ such that
there is an edge between e and e′, a test case “skeleton” that
contains e and e′ is computed. This sequence is considered
relevant, because the events are dependent. In our example,
the following five event sequences are generated.

s1 = 〈 onCheckBox , onOK 〉 s4 = 〈 onSlider , onSlider 〉
s2 = 〈 onCheckBox , onSlider 〉 s5 = 〈 onSlider , onOK 〉
s3 = 〈 onSlider , onSave 〉

Since such skeleton sequences are abstract in the sense
that they are not necessarily executable on the GUI, a black-
box model of the GUI is finally applied (e. g., the approach
presented in Memon [34]) in order to transform the event
dependency sequence in an executable test sequence. (In our
example, all sequences are executable, so there is nothing
more to do). At this point, the important observation is
that the bug in line 30 is not revealed by this approach, as
three events (onOK, onCheckBox and onSlider) are needed
to reveal the bug. Hence, increasing the length from n = 2 to
n = 3 would clearly reveal the bug. However, as the potential
number of resulting abstract event sequences becomes huge,
techniques to effectively reduce the number of sequences are
required. In the following, we outline our approach to identify
redundant event sequences that can be removed while still
obtaining the same code coverage.

2.1 Examples for Redundancy
Assume one would like to test the event onOK of the exam-

ple GUI in Figure 1. Furthermore, assume that the following
two event sequences s1 and s2 have been generated in order
to achieve this.

s1 = 〈 onCheckBox , onSlider , onOK 〉
s2 = 〈 onSlider , onCheckBox , onOK 〉

Both s1 and s2 reveal the bug in line 30. In fact, we
observe that these sequences are equivalent in the sense that
the execution ordering of onCheckBox and onSlider does
not matter for the execution of onOK (even though there is
an edge in the EDG from onCheckBox to onSlider). Hence,
one of these sequences is redundant and can be ignored. This
is essentially a simple variant of partial order reduction [14,
16] applied to GUI testing. We will make this precise in the
next section.

As a further example of redundant event sequences, assume
one would like to test the event onSave of the example GUI.
Further assume that the following event sequence s3 has been
generated in order to achieve this.

s3 = 〈 onCheckBox , onSlider , onSave 〉

Although there is an edge in the EDG from onCheckBox
to onSlider, and from onSlider to onSave, there is no
“causal” data-flow from the first to the third of these events.
This is because the variable that causes the data-flow from
onCheckBox to onSlider (i. e., the variable convert is writ-
ten by onCheckBox and read by onSlider) is different from
the variable that causes the data-flow from onSlider to
onSave (i. e., the variable angle). Hence, the global effect of
s3 after executing onSave is completely independent of the
onCheckBox event, and it suffices to consider the shorter se-
quence 〈 onSlider , onSave 〉 instead of s3 to test the onSave
event. In this sense, s3 is redundant. (As a side remark, the
variables cbValue and sliderValue are local and can hence
be ignored for these considerations). Informally speaking,
this problem of “pseudo-dependency” arises because the EDG
is computed statically and syntactically, without a deeper
analysis of the actual causal data-flow [45]. In the next sec-
tions we propose approaches to systematically identify such
redundant sequences.

3. REDUNDANT EVENT SEQUENCES
In this section we first introduce a generalization of the

test case generation algorithm of Arlt et al. [3]. Afterwards,
we propose two approaches to identify sufficient criteria of
redundant test cases when applied in the context of our
generalized algorithm.

3.1 Test Case Generation Algorithm
In this section we formalize the ideas of the previous moti-

vation section, and provide an algorithm for test case gener-
ation as a result. To introduce our approach, we identify a
GUI application through its corresponding finite set of events
V . Let us start our considerations with a short rehash of the
definition of event dependency graphs [3].

Definition 1 (Event Dependency Graph (EDG)).
The event dependency graph for a finite set of events V is
defined as the directed graph EDG = (V,E) with the set of
vertices V , such that there is an edge (e, e′) ∈ E iff there is a
def-use relationship between e and e′ (i. e., there is a variable
that is defined by e and used by e′).

For a given GUI application, the event dependency graph
reflects the pairwise def-use relationships of its events. EDGs
reflect an important concept in identifying “relevant” test
cases, i. e., test cases that “should be tested” [3]. In the
following, we formalize this intuition based on the definition
of relevant EDG-sequences.

Definition 2 (Relevant Sequence). Let V be a fi-
nite set of events, and let n ∈ N be a natural number. Then
〈e1, . . . , en〉 is a relevant sequence of length n iff for all
i ∈ {1, . . . , n− 1}, there is a j ∈ {i + 1, . . . , n} and an edge
from ei to ej in the EDG. The set EDG(n) is defined as the
set that contains the relevant sequences of length n.

Informally speaking, for n ∈ N, the set EDG(n) contains
exactly those event sequences that are causally linked in the
sense that for all events e in the sequence, there is at least one
event e′ that occurs later in the sequence such that e and e′

are in def-use relationship (i. e., events occurring later in the
sequence can be influenced by events that occur earlier). This
definition of relevant sequences actually describes the heart
of the generalization of the test case generation algorithm
by Arlt et al. [3]. More precisely, for a given n ∈ N, test
cases are generated according to the following procedure
GenerateRelevantTestCases:

1. For all i ∈ {1, . . . , n}, compute the set EDG(i) that
contains all relevant EDG-sequences of length i.

2. For all sequences s ∈ EDG(i): If s is not executable,
use a black-box model of the GUI (i. e., [3, 34]) to
enhance s such that it becomes executable.

At this point, we observe that the recently proposed static
analysis approach [3] is a special case of this algorithm for
n = 2. It generates all relevant test cases of length ≤ n.
However, generating all of these test cases results in a huge
number that exceeds the number that can be handled in
reasonable resource limits even for small n. To tackle this
problem to become scalable in practice, we propose two
approaches to identify redundant event sequences.

3.2 Partial Order (PO) Redundancy
Partial order reduction [14, 16] is a well-established ap-

proach to tackle the state explosion in the area of model
checking. Most of the techniques used for partial order re-
duction are state-dependent, which means that the actual
pruning decisions depend on the currently encountered state.

In this section we apply a state-independent technique
to identify a class of redundant event sequences for GUI
testing. This technique is based on the simple observation
that two events that are independent in the sense that they
can be applied in both possible orderings with the same
global effect need not be considered in both, but only in one
of these orderings. This idea has been investigated under
the name commutativity pruning in the area of Artificial
Intelligence [23]. In the following, we formalize this intuition.

Definition 3 (Partial Order Redundancy). Let V
be a finite set of events, let < be a total ordering on V . Let
n ∈ N and s = 〈e1, . . . , en〉 ∈ EDG(n). If

1. the values of the variables that are read by en are the
same after executing e1, . . . , en−1 in all possible order-
ings, and

2. the first n − 1 events do not occur in the “correct”
ordering according to the ordering < (i. e., there are
events e and e′ with {e, e′} ⊆ {e1, . . . , en−1} such that
e′ occurs before e in s, but e < e′)

then s is Partial Order redundant (PO-redundant) with re-
spect to the ordering <.

Informally speaking, an event sequence s = 〈e1, . . . , en〉 ∈
EDG(n) can be PO-redundant if the execution ordering of
the first n− 1 does not matter for the final event en. In such
cases, it suffices to consider only one out of (n− 1)! possible
event sequences. Definition 3 formalizes this idea based on

the ordering < by implicitly declaring (n− 1)!− 1 sequences
as PO-redundant, and retaining one representative sequence
as relevant, i. e., as not PO-redundant. (We will describe
how to actually instantiate and implement this definition on
a technical level in the next section).

For now, to get a better idea of PO redundancy, consider
again the first example of the motivation section restricted
to the events V = {onCheckBox, onSlider, onOK}. Suppose
we choose the ordering onCheckBox < onSlider < onOK.
According to the ordering <, and because onCheckBox and
onSlider can be executed in both possible orderings to test
onOK, the sequence 〈 onSlider , onCheckBox , onOK 〉 is PO-
redundant. Generally, we observe that PO-redundant event
sequences have the property that the test case generation
algorithm given in the last section can ignore such sequences
without reducing code coverage. More formally, for a finite
set of events V and for a total ordering < on V , the sets of
generated test cases with algorithm GenerateRelevantTest-
Cases based on the event sequences

EDG(n) and EDG(n) \ {s | s is PO-redundant w.r.t. <}

are equivalent for all n ∈ N.

3.3 Causal Variable (CV) Redundancy
To introduce our second technique to identify redundant

event sequences (and hence, to reduce the number of test
cases), let us first re-consider the second example of the
motivation section. On a more formal level, the example
consists of the event sequence s = 〈e1, e2, e3〉 ∈ EDG(3). We
observe that s is “chain-shaped” in the sense that there is
an edge in the EDG between e1 and e2, there is an edge
between e2 and e3, and there are no further edges. Recall
that s is executable.

In this example, we observe that the variables causing
the def-use relationship of e1 and e2 are disjoint from the
variables causing the def-use relationship of e2 and e3. Hence,
despite the edge from e1 to e2, the effect of executing e3 is
independent of the effect of e1.

Therefore, s does not need to be considered, because it
suffices to consider the shorter sequences s′ = 〈e2, e3〉 and
s′′ = 〈e1, e3〉 to test e3. To formalize the idea of this reduction
technique, we need to talk about the variables that cause
def-use relationships.

Definition 4 (Labels of Edges). Let V be a finite
set of events, let e, e′ ∈ V . The set of associated labels
labels(e, e′) to e and e′ is defined as the set of variables that
are defined by e and used by e′.

Note that the above definition can be considered as the
implicit labeling of the edges in the EDG, because edges are
represented as pairs of events. Based on this definition, we
formalize the idea of redundant sequences discussed above.

Definition 5 (Causal Variable Redundancy). Let
V be a finite set of events, and let EDG = (V , E) be the event
dependency graph (with vertices V and edges E) for V . Fur-
thermore, let n ∈ N, and let s = 〈e1, . . . , en〉 ∈ EDG(n) such
that there are edges (ei, ei+1) ∈ E for i ∈ {1, . . . , n−1} in the
EDG, and there are no further edges between events in s. If
there exist events e, e′, e′′ such that {e, e′, e′′} ⊆ {e1, . . . , en}
such that

1. (e, e′) ∈ E, (e′, e′′) ∈ E, and

2. labels(e, e′) ∩ labels(e′, e′′) = ∅,

then s is Causal Variable redundant (CV-redundant), i. e.,
redundant with respect to causal variable analysis.

In the above example, the sequence s is CV-redundant,
because labels(e1, e2) ∩ labels(e2, e3) = ∅. Similarly to PO-
redundant sequences, CV-redundant sequences need not be
considered w.r.t. code coverage. More formally, for a finite
set of events V and the event dependency graph EDG =
(V , E) for V , the sets of generated test cases with algorithm
GenerateRelevantTestCases based on the event sequences

EDG(n) and EDG(n) \ {s | s is CV-redundant}

are equivalent for all n ∈ N.

4. SLICING-BASED IMPLEMENTATION
In the last section we have provided the theoretical back-

ground to identify redundant event sequences. In this section
we put these theoretical notions of redundancy into practice.
A central concept of our implementation is the concept of
program slicing in the sense of Gupta et al. [19]. In this con-
text, a program slice is based on direct and indirect def-use
associations of variables in the source code. We particu-
larly address the questions of how to compute such program
slices, and how to implement the two notions of redundancy.
The overall implementation is depicted in Figure 4 and con-
tains the three main components Body Transformer, Program
Slicer, and Sequence Generator. In the following, we provide
a more detailed description.

4.1 Soot
In a first step, the Soot component performs a source-

to-source transformation of the input GUI application to
an appropriate intermediate format. In particular, the in-
termediate format is supposed to appropriately reflect the
required information about defs (definitions) and uses for the
further analysis (e. g., the bytecode analysis tool ASM [4]
is not appropriate for our purpose since we would have to
build an interpreter, which analyzes the stack of bytecode
instructions [30]). The defs and uses are necessary in order
to compute the program slices in a later step.

To compute such an intermediate format, our implementa-
tion applies the tool Soot [28]. Soot takes the bytecode [30]
of the GUI application as input, and transforms it to Jimple
code [44]. Jimple code is three-address code, which is an
intermediate representation of bytecode that simplifies the
program analysis. Most importantly, Soot provides an API
to extract the defs (definitions) and uses of each statement
in a method. A statement is called Unit in Jimple code.

4.2 Body Transformer
The body transformer takes as input the Jimple code, and

returns the set of defs and uses of fields and (local) variables
of the GUI application. This information is later used in
the program slicer in order to create backward slices [45] of
fields. Roughly speaking, a backward slice of a def expresses
which previous uses in the Jimple code (and thus, in the
Java code) affect the definition of the field. To generate
the necessary information about defs and uses, the body
transformer analyzes the units of the Jimple code (which are
comparable to statements in Java code). For each unit u,
the defs and uses are extracted and maintained in a mapping
Defs(u) and Uses(u), respectively.

Program'Slicer'

Sequence'Generator'

Body'Transformer'

GUI'Ripper'

Event'Handler'Extractor'

GU
I'A

pp
lic
aA

on
'

EDG$

EFG$

Bytecode$

GUI$

Test$Sequences$

$Bytecode,$GUI$

Event$Handler$

Test$Cases$
pass$ fail$

Soot'

Jimple$Code$

Defs,$Uses$

Replayer'GUI$

Slices$

r0$=$@this;$

defs$=${x}$
uses$=${y}$$$

Figure 4: Our implementation is based on three main compo-
nents: (1) The Body Transformer collects all defs and all uses
from each (method) body. (2) The Program Slicer constructs
the EDG data structure and creates a def-use chain (i. e., a
program slice) for each field definition (field-def). (3) The
Sequence Generator generates a set of event sequences from
the EDG and uses the slices to eliminate redundant event
sequences.

As an example, Figure 5 shows the Jimple code for the
event handler onSlider presented in the motivating exam-
ple (see Figure 1). Here, the body transformer collects
the following defs (in the following depicted in red boxes):
r0 (line 6), $r1 (line 7), i0 (line 8), r0.angle (line 9),
$i1 (line 10), and $i2 (line 11). Furthermore, the body

transformer collects the following uses (depicted in green
boxes): @this (line 6), r0.slider (line 7), $r1 (line 8),
i0 (line 9), r0.convert (line 10), r0.angle (line 11), $i1

and $i2 (both line 12).

4.3 Program Slicer
The program slicer takes as input the event handlers (that

come from an additional component that extracts them ac-
cordingly), and the set of defs and uses from the body trans-
former. Then, the slicer both constructs the EDG (according
to the technique presented in Arlt et al. [3]) and computes
the set of field slices of the GUI application. For the com-
putation of the slices, we have to take into account that an
edge in the EDG reflects a def-use dependency between two

1 void onSlider() {
2 ModifyImageWindow r0;
3 int i0, $i1, $i2;
4 Slider $r1;
5

6 r0 := @this;
7 $r1 = r0.slider;
8 i0 = $r1.getValue();
9 r0.angle = i0;

10 $i1 = r0.convert;
11 $i2 = r0.angle;
12 r0.print($i1, $i2);
13 }

Figure 5: Jimple code of the event handler onSlider of the
example GUI. The code snippet consists of 10 units (i. e.,
line 2-4 and line 6-12) used to extract defs and uses, and to
compute backward slices.

events, rather than between two fields in the events. Unlike
a (local) variable, the scope of a field is not restricted to only
one method. In order to provide the dependency information
of fields, we apply backward slicing, i. e., we compute the
backward slice for each field definition (field-def).

For example, for the Jimple code depicted in Figure 5, the
slicer computes the backward slice for the field-def r0.angle

in line 9. By looking up the uses of this field-def in Uses(u),
the slicer detects that this field-def depends on the use of
the variable i0 . Hence, i0 is added to the backward
slice. Afterwards, the slicer continues to look up a possible
definition of the variable i0 by iterating over all units in the
set Defs(u). It finds the definition in line 8 and detects, again
by looking up the set Uses(u), that this definition depends
on the use of the variable $r1 . Hence, $r1 is added to
the backward slice as well. The slicer continues to look for
further dependencies and only stops if a certain definition is
not found, or the scope of the analysis is reached (i. e., the
classpath of the application). In our example, the backward
slice for the field-def r0.angle consists of i0 , $r1 , and
r0.slider .

4.3.1 Interprocedural Slicing
Our implementation supports interprocedural slicing. In

particular, we recursively follow all methods called in an
event handler method. For example, if a variable is defined
by the return value of a called method, then the slicer follows
the method and performs a backward slice of the return
statement of the called method. However, following method
calls is difficult in particular when class inheritance is used.
For example, if a method call is polymorphic (that is, virtual
in Java), the slicer has to identify the actual object that calls
the method. In order to overcome this technical hurdle, we
apply SPARK [29], the interprocedural points-to-analysis
of Soot. SPARK returns a set of possible objects that may
have called a particular method. In our implementation, we
first analyze only those methods that belong to the possible
objects retrieved by SPARK. Afterwards, we aggregate the
slices of each analyzed method to the slice of the correspond-
ing event handler method.

4.4 Sequence Generator
In the previous section we have discussed how the body

transformer and the program slicer compute slices of events.
In this section we will discuss how the slices are applied

by the sequence generator component in order to eliminate
redundant event sequences.

The sequence generator takes as input the EDG and the
slices from the program slicer (as well the Event Flow Graph
from the GUI Ripper, see the section Auxiliary Steps below).
It returns the set of test sequences that can be executed
by the replayer component. In a first step, the sequence
generator uses the EDG in order to generate all sequences
of a specific length n as defined in Section 3. In a second
step, the sequence generator uses the slices and performs the
computation and elimination of redundant event sequences.
In a future version of the implementation, we will investigate
the feasibility of combining these two steps into one single
step.

4.4.1 Computation of PO-redundant Sequences
In order to detect whether the ordering of two events e

and e′ does not matter to test an event e′′ in a sequence,
the sequence generator analyzes if the intersection of all
backward slices of field-defs from e and from e′ is empty. If
this is the case, then e and e′ are independent, and thus, the
sequence 〈e, e′, e′′〉 is equivalent to the sequence 〈e′, e, e′′〉.

For example, in order to test the event onOK of the ex-
ample GUI, the sequence generator may first select the two
sequences s1 = 〈 onCheckBox , onSlider , onOK 〉 and s2 =
〈 onSlider , onCheckBox , onOK 〉. These two event sequences
are generated because the event onCheckBox writes the field
convert and the event onSlider writes the field angle,
which are both read in the event onOK. Afterwards, the back-
ward slice of the field convert in the event onCheckBox and
the backward slice of the field angle in the event onSlider
are analyzed. In this example, we get the following result
(for brevity, we use the Java code instead of the Jimple code
for presentation).

convert = { cbValue , checkBox }
angle = { sliderValue , slider }

We observe that the intersection of convert and angle

is empty, which accurately reflects the independence of the
corresponding fields convert and angle. Based on this in-
formation, we eliminate one of these sequences. In particular,
we observe once again that although the EDG expresses
a def-use dependency between onCheckBox and onSlider,
there exists no causal data-flow between these events.

4.4.2 Computation of CV-redundant Sequences
In order to detect whether there exists no causal data-

flow between three events in a sequence, say 〈e, e′, e′′〉, the
sequence generator analyzes if all backward slices of fields
in e′ do not contain any field-def of e. If this is the case,
then e and e′ are not dependent, and thus, the effect of e
does not affect e′′. Hence, the sequence is considered as
redundant, because it is sufficient to test the sequences 〈e, e′〉
and 〈e′, e′′〉.

For example, in order to test the event onSave of the ex-
ample GUI, the sequence generator selects the sequence s3 =
〈 onCheckBox , onSlider , onSave 〉. This event sequence is
generated because the event onCheckBox writes the field
convert which is read in onSlider, and the event onSlider
writes the field angle which is read by onSave. Analyzing
the backward slice of the field angle in onSlider provides
the following information.

angle = { sliderValue , slider }

We observe that the field angle written in onSlider does
not depend on the field convert written in onCheckBox.
Hence, the sequence is CV-redundant and thus eliminated.
In particular, we observe again that it suffices to test the
sequences 〈 onCheckBox , onSave 〉 and 〈 onSlider , onSave 〉
instead.

Auxiliary Steps
The event handler extractor takes as input both the bytecode
and the GUI of the application. It executes the GUI appli-
cation and enumerates all found widgets. For each found
widget, reflection [39] is applied to obtain the corresponding
Java object and its assigned event handlers.

The GUI ripper takes as input the GUI of the application
and constructs an Event Flow Graph [35]. The replayer takes
as input a set of test sequences, embeds each sequence into
a test case, executes the test case, and finally reports its
results [37].

We have implemented our technique into the tool Gazoo.
The source code is publicly available [13]. Furthermore, our
implementation uses an adaptation of the GUI ripper and
the replayer of GUITAR [37].

5. EXPERIMENTS
In this section we experimentally evaluate our approach.

We first present the setup of the experiments. Afterwards,
we address a set of research questions and discuss them with
the help of the results of the experiments.

5.1 Setup of the Experiments
We evaluate our approach using stable versions of six

Java-based open source applications: JabRef 2.7 [24] man-
ages bibliographic references, FreeMind 0.9 [11] generates
mind maps, and Rachota 2.3 [38] is a time recording system.
Furthermore, the applications TerpWord, TerpSpreadSheet
and TerpPaint form a suite of office applications developed
by undergraduate students. For Rachota, TerpWord, Terp-
SpreadSheet, and TerpPaint, we use the artifacts available
from Community Event-based Testing (COMET) [9]. In par-
ticular, we choose these applications to consider both small
(TerpWord: 6,842 LOC) and large applications (JabRef:
77,745 LOC). Figure 6 shows some relevant statistics of each
Application Under Test (AUT).

AUT Events Methods Units Defs Uses
JabRef 776 7,930 123,760 5,980 18,206
FreeMind 959 8,111 75,547 3,392 8,459
Rachota 154 1,838 24,635 1,399 3,189
TerpPaint 317 1,759 34,323 2,524 8,474
TerpSpread. 312 1,295 15,206 722 2,013
TerpWord 159 965 10,821 368 1,538

Figure 6: Statistical information about the applications under
test (AUTs) used in the evaluation of our approach.

In our experiments, we compare the performance of our
slicing-based approach for n = 3 (in the following called
EDG-3-Sliced) to the baseline EDG-approach without slic-
ing (i. e., to the algorithm GenerateRelevantTestCases as
described in Section 3 without slicing, called EDG-3 in the
following). Moreover, we compare to the approach proposed
by Memon [34] (called EFG-3 in the following)1.

1Internally, we use an optimized version of the EFG [51]
called Event Interaction Graph (EIG).

In all three configurations, we set the parameter to n = 3.
This choice is motivated by the fact that the number of
event sequences generated by a black-box approach already
becomes unmanageable for sequences of length greater than
3 [51]. For example, generating all sequences of length 4 for
the application JabRef would already result in more than
175 million sequences to be executed, which is clearly too
large to be handled with reasonable resource limits. Still, by
setting the parameter to n = 3, the total number of executed
test cases in our experiments amounts to 49,378,177.

Each event sequence is embedded into one test case as
described in Section 4. The replayer generates random input
data, e. g., random strings for text boxes. The computation
of suitable input data, which can possibly achieve higher code
coverage (see [2, 12, 18]) represents an orthogonal problem
and is not in the scope of this paper. The replayer employs
a crash monitor as an oracle, which is simple but reasonable.
In particular, we record any exception occurred during test
case execution. For a discussion of alternative oracles, we
refer to Memon et al. [36].

The test cases are executed on a cluster with 50 virtual
machines, which represents a rather common experimental
setup both in the research community [33] as well as in
industry.2 Each virtual machine utilizes one physical CPU-
core with 2.0 GHz, 1 GB RAM, and 20 GB HDD. In order
to mitigate the effect of randomness, all configurations are
executed three times.

5.2 Results of the Experiments
We evaluate our approach with respect to the following

research questions.

Is our approach able to eliminate a non-trivial
number of redundant event sequences?

To answer this question, we refer to Figure 7, which pro-
vides an overview of our results. Apparently, for all AUTs,
the configuration EDG-3-Sliced is able to eliminate a rela-
tively high number of redundant sequences. In particular,
for JabRef, the configuration EDG-3-Sliced eliminates 69%
of the sequences generated by the configuration EDG-3. Sim-
ilarly, EDG-3-Sliced eliminates 74% for FreeMind, 72% for
Rachota and TerpPaint, 46% for TerpSpreadSheet and 41%
for TerpWord. Overall, in all of these GUI applications, the
number of sequences is reduced to less than a half, in 4 out
of 6 applications even to roughly a quarter of the original
sequences with EDG-3.

Does our approach scale to realistic GUI applica-
tions, particularly w.r.t. the overhead for computing
the slices?

To answer this question, we again refer to Figure 7, which
particularly shows the number of generated event sequences,
the overall generation time (i. e., the time needed for gener-
ating the whole set of event sequences), and the execution
time (i. e., the overall time needed to execute (“replay”) the
generated event sequences, measured on a cluster with 50
virtual machines).

First, comparing EDG-3-Sliced to EFG-3, we observe that
the number of generated sequences for EDG-3-Sliced is sig-
nificantly lower for JabRef, FreeMind and TerpPaint. For
Rachota, TerpSpreadSheet and TerpWord, the configuration
EDG-3-Sliced generates more sequences than EFG-3, because

2Personal communication (mid-sized software company and
industrial partner)

AUT EFG-3 EDG-3 EDG-3
Sliced

JabRef
sequences 19,859,369 821,993 255,132
generation time (m) 2,648 151 164
gen. time per seq. (ms) 8 11 12
execution time (d) 133.30 5.50 1.70
line coverage (%) 56 58 58

detected bugs
FreeMind
sequences 17,830,612 6,093,201 1,600,638
generation time (m) 2,377 1,016 1,219
gen. time per seq. (ms) 8 10 12
execution time (d) 123.82 42.30 11.10
line coverage (%) 54 54 54
detected bugs – – –
Rachota
sequences 22,588 123,256 34,981
generation time (m) 3 16 18
gen. time per seq. (ms) 8 8 9
execution time (d) 0.08 0.44 0.12
line coverage (%) 62 64 64

detected bugs –
TerpPaint
sequences 1,098,639 495,467 138,603
generation time (m) 146 83 91
gen. time per seq. (ms) 8 10 11
execution time (d) 4.06 1.82 0.50
line coverage (%) 49 54 54

detected bugs –
TerpSpreadSheet
sequences 40,299 117,938 63,184
generation time (m) 5 16 18
gen. time per seq. (ms) 8 8 9
execution time (d) 0.12 0.34 0.18
line coverage (%) 45 48 48

detected bugs
TerpWord
sequences 122,991 415,888 243,398
generation time (m) 16 62 69
gen. time per seq. (ms) 8 9 10
execution time (d) 0.36 1.24 0.72
line coverage (%) 56 56 56
detected bugs – – –

Figure 7: Results overview of the experiments. Abbrevia-
tions: #sequences: number of generated event sequences.
Generation time: overall time (in minutes) needed to gener-
ate all sequences (including the time needed for our slicing
technique in EDG-3-Sliced). Execution time: overall time
(in days) needed to execute (“replay”) all sequences (on a
cluster with 50 virtual machines).

these applications apparently contain more depending events
than consecutive (executable) events for sequences of length
n = 3. However, the execution time of EDG-3-Sliced com-
pared to EFG-3 is still acceptable, and significantly lower
than EDG-3 without slicing in all these applications. In
particular, compared to EDG-3, the reduced number of se-
quences with EDG-3-Sliced leads to a significant reduction of
execution time. For example, the execution time for the large
AUTs JabRef and FreeMind is reduced by several days (3.8
days for JabRef and 31.2 days for FreeMind). Considering
the overall resulting execution time, FreeMind (where 11.1
days are needed to execute the 1,600,638 test cases) is an
outlier. Furthermore, with EDG-3-Sliced, we obtain the same
code coverage as with EDG-3. We will discuss both execution
time and code coverage in more detail in Section 5.3.

Second, considering the overhead to compute program
slices, let us have a closer look at the generation time. We
observe that the generation time per sequence of EDG-3-
Sliced compared to EDG-3 and EFG-3 incurred by program

slicing is not an issue in practice: For all AUTs, the occurred
overhead consists of 2–4 milliseconds. This is probably best
explained by Figure 8, which depicts the lengths of the
backward slices occurred in the analysis: While there are
some outliers (up to length 304 for TerpPaint), the mean
length of the slices is short (i. e., in a range of 5 to 7) and
can be computed efficiently.

AUT Min Median Mean Max
JabRef 1 3 7 191
FreeMind 1 3 6 217
Rachota 2 4 6 206
TerpPaint 1 3 7 304
TerpSpreadSheet 2 3 5 58
TerpWord 2 3 6 31

Figure 8: Statistical information about the lengths (number
of statements) of the backward slices computed for the AUTs
in our experiments.

What is the proportion of PO-redundant and CV-
redundant sequences compared to the overall num-
ber of redundant sequences?

To answer this question, we refer to Figure 9, which shows
the corresponding proportions graphically for all AUTs. In
this figure, sequences that are neither PO-redundant nor
CV-redundant are called relevant. We observe that CV-
redundant sequences occur in 36%-55% of the cases, whereas
PO-redundant sequences range from 18%-25%. That is,
causal event sequences of length 3 do not appear frequently
in the GUI applications of our experiments. A potential
explanation is that most of the event handlers are coherent
and not strongly coupled to other events. For example, it
is likely that the events in a search-and-replace window do
not affect the events in the preference window, and vice
versa. Overall, in the considered applications under test,
CV-redundant sequences occur slightly more often than PO-
redundant ones.

How do the lengths of generated event sequences
with EDG-3-Sliced compare to those with EDG-2?

To answer this question in more detail, we refer to Fig-
ure 10, which shows the length of the sequences (x-axis)
and the number of generated event sequences (y-axis, in log
scale). We present detailed data for the small application
TerpWord and for the two large applications JabRef and
FreeMind (the results for the other three applications are
similar). The black points indicate the number of sequences
generated by EDG-3-Sliced ; the gray points indicate the
number of sequences generated by EDG-2 [3]. We observe
that for most n, EDG-3-Sliced produces significantly more
sequences of length n. Furthermore, we observe that EDG-
3-Sliced handles significantly longer sequences than EDG-2.
For example, in FreeMind, the length of the longest generated
sequences increases from 10 (EDG-2) to 17 (EDG-3-Sliced).
Note that, in order to capture all these sequences with a
black-box approach, the parameter n for EFG-n would have
to be increased even more, causing a much larger number of
overall test cases.

Is our approach effective in detecting bugs?
To answer this question, we again refer to Figure 7. Overall,

we detected four bugs in JabRef with the configuration EDG-
3 and EDG-3-Sliced, respectively, compared to one detected
bug with EFG-3. In Rachota, we detected one bug only with
EDG-3 and EDG-3-Sliced. Furthermore, we detected two

(a) JabRef (b) FreeMind (c) Rachota

(d) TerpPaint (e) TerpSpreadSheet (f) TerpWord

Figure 9: The proportions of redundant sequences eliminated
by the techniques PO redundancy and CV redundancy, as
well as the proportion of remaining relevant sequences.

bugs in TerpPaint. In TerpSpreadSheet we detected one bug
with EFG-3 , EDG-3 and EDG-3-Sliced. Note that these
results testify our theoretical results from the last section:
We detect the same set of bugs given we use the same oracle
in all configurations. We remark that all detected bugs
are confirmed bugs and are reported to the corresponding
developers (and have been fixed in the meanwhile).

5.3 Discussion
We discuss the results considering the execution time and

the code coverage in more detail.

5.3.1 Execution Time
The execution time of test cases generally is a resource

critical factor in software testing. In particular, the execution
time is critical for GUI testing, because replaying the test
cases is particularly expensive in this context. For example,
the replayer must pause roughly 500 milliseconds after an
event is triggered in order to wait until the GUI toolkit
has “painted” the (possibly new) set of widgets. Hence, the
detection and elimination of unnecessary event sequences
becomes particularly important in this setting.

From the experiments, we have observed that the number
of event sequences with EDG-3-Sliced could be significantly
reduced, and the reduced number of test cases also translated
to a reduction of overall execution time. In particular, we
have seen that EDG-3-Sliced needs less time than EDG-3 for
all AUTs, and EDG-3 often occupies less time than EFG-3
for JabRef, FreeMind, and TerpPaint. For Rachota, Terp-
SpreadSheet, and TerpWord, EDG-3 occupies more time
than EFG-3, but is able to generate longer sequences at
the same time (see Figure 10). Apparently, FreeMind is an
outlier, because it occupies more than 10 days of overall
execution time even for EDG-3-Sliced. However, FreeMind
is a rather large real-world application, and our reduction
techniques considerably reduce the number of 6,093,201 se-
quences obtained with EDG-3 – the execution time with
EDG-3-Sliced for the resulting 1,600,638 test cases is still
considerably lower (i.e., reduced by 31.2 days) compared to
EDG-3.

1
10

100
1,000

10,000
100,000

3 4 5 6 7 8 9 10 11

(a) JabRef

1
10

100
1,000

10,000
100,000

3 4 5 6 7 8 9

(b) TerpWord

1
10

100
1,000

10,000
100,000

1,000,000

3 5 7 9 11 13 15 17

(c) FreeMind

Figure 10: The distribution of sequence lengths. The x-axis
stands for the length of the sequences. The y-axis (in log
scale) represents the number of generated sequences. The
black points indicate the sequences generated by EDG-3-
Sliced ; the gray points indicate the sequences generated by
EDG-2.

5.3.2 Code Coverage
In Figure 7 we particularly report the line coverage, which

apparently is relatively low for all AUTs. The main reason
for this is the selection of input data: In our experiments,
we use a random input selection strategy (e. g., by randomly
selecting strings for text boxes) in order to avoid the com-
putational overhead induced by more informed strategies
like symbolic execution [15]. Although the selection of more
suitable input data improves the code coverage [2, 12, 15, 18]
(since GUI applications typically evaluate widgets that accept
input data), we argue that this is an orthogonal research
problem to the problem addressed in this work. Generally,
our approach can be combined with arbitrary (and particu-
larly, with more informed) strategies for selecting the input
data, and still can retain the resulting (potentially higher)
code coverage.

5.4 Threats to Validity
The first threat to internal validity is the creation of the

model of the GUI application, namely the Event Flow Graph
(EFG). Since the EFG is created using a GUI ripper, it is
not guaranteed that all events of the application are found.
Hence, the used EFG represents an approximation of the
actual event-flow of the GUI application. That is, a path
in the EFG (an event sequence) might not be executable,
since its events are pair-wise executable. However, there is
empirical evidence that even long event sequences can run
without failures [50]. We remark that the evaluation of non-
executable event sequences is not in the scope of this paper,
and refer to Bae et al. [6] for a discussion on the strengths
of different approaches to the creation of GUI models.

A further threat to internal validity is the replication of the
experiments, because the applications under test depend on
influences from“outside”: For example, if the GUI application
stores user settings (e. g., recently opened files) after the
execution of a test case, then these user settings have to be

deleted before running the next test case. Otherwise the
test case may mistakenly fail (e. g., the GUI differs from the
previous test case). Moreover, some applications strongly
depend on the date and time in the moment of their execution
(e. g., calendar widgets). In order to decrease these threats
to internal validity, each virtual machine is assigned to the
same date and time, and is reset to a common state before
running a new test case.

A threat to external validity is the approximation used in
our implementation, which does currently not support all
features of Java. For example, we currently do not support
reflection [39], which allows the modification of the program’s
behavior at run-time. As a consequence, our implementation
might wrongly keep redundant sequences. Furthermore, in
our implementation, we perform static slicing [45] (rather
than dynamic slicing [1, 27]). The choice is motivated by the
efficiency/precision tradeoff between static and dynamic slic-
ing. That is, while static slicing does not require to execute
a corresponding program, it loses precision comparing to dy-
namic slicing. For example, when computing backward slices,
our implementation ignores the dedicated @this statement
in the Jimple code, whereas this statement would be mapped
to the actual (owner) object of the method when performing
dynamic slicing. Hence, although our theoretical framework
guarantees to not wrongly exclude non-redundant sequences,
our approximative implementation does not provide such a
guarantee. However, as our experimental results have shown,
this appears to be not an issue in practice, where we have
been able to effectively reduce large test suites on the one
hand, and did neither lose coverage nor test effectiveness on
the other hand.

6. RELATED WORK
GUI testing is an active research area, and various test

case generation approaches have been proposed [3, 8, 10, 12,
18, 31, 34, 42, 46]. These approaches can be classified in
many different ways, including iterative [18, 31] and non-
iterative [3, 8, 12, 34, 42, 46] as well as white-box [12, 42]
and black-box approaches [8, 18, 31, 34, 46]. The proposed
approach of this paper is orthogonal to both iterative and
non-iterative test case generation: Although used in a non-
iterative setting in this work, our techniques to reduce the
number of test cases can be applied in iterative settings as
well; we leave a more detailed investigation for future work.
Furthermore, our overall approach both contains white-box
and black-box components and is an effective generalization
of a recent static analysis approach [3].

As already discussed, a particular bottleneck in GUI test-
ing is the execution time of the generated test cases. Hence,
suitable techniques to minimize the resulting suite are de-
sired. The minimization technique proposed in this paper
specifically exploits the information gained from graphs that
reflect the dependencies of GUI events – to the best of our
knowledge, there are no further minimization approaches in
this setting. In contrast, for classical testing, there has been
major efforts on the minimization of existing test suites (e. g.,
[22, 26, 40, 41, 47, 49]).

For these minimization approaches, however, fewer test
cases cause a lower bug detection rate: For example, Jeffrey
and Gupta [26] explicitly keep some “redundant” test cases
in a test suite in order to be more effective in fault detection.
In contrast, our slicing-based implementation indicates to
obtain the same code coverage and to find the same bugs

(using the same oracle) with the reduced test suite, as we
use informed strategies of partial order reduction and causal
variable analysis to eliminate redundant event sequences.

Program slicing was first introduced by Weiser [45]. Slic-
ing based approaches can be classified in static slicing [45]
and dynamic slicing [1, 27]. Both static and dynamic slicing
inherit their own pros and cons [21, 43] in terms of precision
and efficiency. In our setting, static slicing is the suitable
choice as our current framework is non-iterative (as discussed
above) and does not make assumptions on the program’s
input. In general, the range of program input (e. g., char-
acters for a text box) is prohibitively large in GUI testing.
We remark that an integration of our approach into iterative
test case generation algorithms will possibly require dynamic
slicing as well; again, we leave a more detailed discussion for
future work. Overall, program slicing is a well-established
technique and has been successfully applied in various ar-
eas of computer science like program debugging, software
maintenance, reverse engineering, compiler optimization, and
software testing [7, 19, 20, 27]. In the context of software
testing, program slicing has mainly been used for regression
testing, e. g., to detect obsolete test cases in an existing test
suite. To the best of our knowledge, slicing-based approaches
have not been investigated for GUI testing so far.

We remark that tool support for program slicing is avail-
able. For example, Indus [25] is a slicer for concurrent Java
programs. However, Indus is limited to Java 1.4-compatible
bytecode. Since today’s applications (e. g., the AUTs, the
ripper, and the replayer) require newer Java versions, we
have implemented a new program slicing tool in order to
handle Java-7-compatible bytecode. The new tool repre-
sents a lightweight implementation of static program slicing,
and is tailored to the specific requirement of event sequence
generation.

7. CONCLUSION
We have presented an approach to identify and to eliminate

redundant event sequences in GUI test suites via program
slicing. Our experimental evaluation shows that redundant
event sequences can be computed efficiently and often occur
in real-world GUI applications. Considering performance,
we have demonstrated that eliminating redundant event se-
quences can greatly speed-up the overall execution time of
the resulting GUI test suite.

Clearly, GUI test suite reduction is a challenge not only for
non-iterative GUI testing. Hence, for the future, a promising
direction for research is to investigate our techniques for iter-
ative approaches, e.g., EXSYST [18] and AutoBlackTest [31].
A further direction will be to investigate whether our tech-
niques can help in the context of regression testing, e. g.,
when a set of existing test cases needs to be maintained [10,
17, 32].

8. ACKNOWLEDGMENTS
We kindly thank the Horst Klaes GmbH & Co. KG for

providing resources that allowed us to evaluate our approach.
This work is supported by the Fonds National de la Recherche,
Luxembourg (FNR/P10/03 - Verification and Validation
Laboratory), and by the Swiss National Science Foundation
(SNSF) as part of the project “Safe Pruning in Optimal
State-Space Search (SPOSSS)”.

9. REFERENCES
[1] H. Agrawal and J. R. Horgan. Dynamic Program

Slicing. In PLDI, pages 246–256, 1990.

[2] S. Arlt, P. Borromeo, M. Schäf, and A. Podelski.
Parameterized GUI Tests. In ICTSS, pages 247–262,
2012.

[3] S. Arlt, A. Podelski, C. Bertolini, M. Schäf, I. Banerjee,
and A. M. Memon. Lightweight Static Analysis for GUI
Testing. In ISSRE, pages 301–310, 2012.

[4] ASM. A Java bytecode manipulation and analysis
framework. http://asm.ow2.org, Sept. 2013.

[5] R. A. Assi and W. Masri. Identifying
Failure-Correlated Dependence Chains. In ICST
Workshops, pages 607–616, 2011.

[6] G. Bae, G. Rothermel, and D.-H. Bae. On the relative
strengths of model-based and dynamic event
extraction-based gui testing techniques: An empirical
study. In ISSRE, pages 181–190, 2012.

[7] S. Bates and S. Horwitz. Incremental Program Testing
Using Program Dependence Graphs. In POPL, pages
384–396, 1993.

[8] F. Belli. Finite-State Testing and Analysis of Graphical
User Interfaces. In ISSRE, pages 34–43, 2001.

[9] COMET. Community Event-based Testing.
http://comet.unl.edu, Sept. 2013.

[10] P. Devaki, S. Thummalapenta, N. Singhania, and
S. Sinha. Efficient and flexible gui test execution via
test merging. In ISSTA, pages 34–44, 2013.

[11] FreeMind. A mind mapping software.
http://freemind.sourceforge.net, Sept. 2013.

[12] S. R. Ganov, C. Killmar, S. Khurshid, and D. E. Perry.
Event Listener Analysis and Symbolic Execution for
Testing GUI Applications. In ICFEM, pages 69–87,
2009.

[13] Gazoo. A tool that generates relevant event sequences
for GUI test cases.
http://gazoo.informatik.uni-freiburg.de, Sept.
2013.

[14] P. Godefroid. Partial-Order Methods for the
Verification of Concurrent Systems - An Approach to
the State-Explosion Problem, volume 1032 of Lecture
Notes in Computer Science. Springer, 1996.

[15] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In PLDI, pages 213–223,
2005.

[16] P. Godefroid, D. Peled, and M. G. Staskauskas. Using
Partial-Order Methods in the Formal Validation of
Industrial Concurrent Programs. In ISSTA, pages
261–269, 1996.

[17] M. Grechanik, Q. Xie, and C. Fu. Maintaining and
evolving GUI-directed test scripts. In ICSE, pages
408–418, 2009.

[18] F. Gross, G. Fraser, and A. Zeller. Search-based system
testing: high coverage, no false alarms. In ISSTA, pages
67–77, 2012.

[19] R. Gupta, M. J. Harrold, and M. L. Soffa. Program
Slicing-Based Regression Testing Techniques. Softw.
Test., Verif. Reliab., 6(2):83–111, 1996.

[20] M. Harman and S. Danicic. Using Program Slicing to
Simplify Testing. Softw. Test., Verif. Reliab.,
5(3):143–162, 1995.

[21] M. Harman and R. M. Hierons. An overview of
program slicing. Software Focus, 2(3):85–92, 2001.

[22] M. J. Harrold, R. Gupta, and M. L. Soffa. A
Methodology for Controlling the Size of a Test Suite.
ACM Trans. Softw. Eng. Methodol., 2(3):270–285, 1993.

[23] P. Haslum and H. Geffner. Admissible Heuristics for
Optimal Planning. In AIPS, pages 140–149, 2000.

[24] JabRef. A bibliography reference manager.
http://jabref.sourceforge.net, Sept. 2013.

[25] G. Jayaraman, V. P. Ranganath, and J. Hatcliff.
Kaveri: Delivering the Indus Java Program Slicer to
Eclipse. In FASE, pages 269–272, 2005.

[26] D. Jeffrey and N. Gupta. Test Suite Reduction with
Selective Redundancy. In ICSM, pages 549–558, 2005.

[27] M. Kamkar, P. Fritzson, and N. Shahmehri.
Interprocedural Dynamic Slicing Applied to
Interprocedural Data Flow Testing. In ICSM, pages
386–395, 1993.

[28] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The
Soot framework for Java program analysis: a
retrospective. In Cetus Users and Compiler
Infrastructure Workshop, Galveston Island, TX,
October 2011.

[29] O. Lhoták and L. J. Hendren. Scaling java points-to
analysis using spark. In CC, pages 153–169, 2003.

[30] T. Lindholm and F. Yellin. Java Virtual Machine
Specification. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2nd edition, 1999.

[31] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro.
AutoBlackTest: Automatic Black-Box Testing of
Interactive Applications. In ICST, pages 81–90, 2012.

[32] S. McMaster and A. M. Memon. Call stack coverage for
gui test-suite reduction. In ISSRE, pages 33–44, 2006.

[33] A. Memon. Large scale test suites running live with
GUITAR. http://samwise.cs.umd.edu:8080/, Sept.
2013.

[34] A. M. Memon. An event-flow model of GUI-based
applications for testing. Softw. Test., Verif. Reliab.,
17(3):137–157, 2007.

[35] A. M. Memon, I. Banerjee, and A. Nagarajan. GUI
Ripping: Reverse Engineering of Graphical User
Interfaces for Testing. In WCRE, pages 260–269, 2003.

[36] A. M. Memon, I. Banerjee, and A. Nagarajan. What
Test Oracle Should I Use for Effective GUI Testing? In
ASE, pages 164–173, 2003.

[37] A. M. Memon and M. B. Cohen. Automated testing of
gui applications: models, tools, and controlling
flakiness. In ICSE, pages 1479–1480, 2013.

[38] Rachota. An application for timetracking projects.
http://rachota.sourceforge.net, Sept. 2013.

[39] Reflection. The Reflection API. http:
//docs.oracle.com/javase/tutorial/reflect/,
Sept. 2013.

[40] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong.
An Empirical Study of the Effects of Minimization on
the Fault Detection Capabilities of Test Suites. In
ICSM, pages 34–43, 1998.

[41] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold.
Prioritizing Test Cases For Regression Testing. IEEE
Trans. Software Eng., 27(10):929–948, 2001.

[42] J. C. Silva, C. E. Silva, R. D. Gonçalo, J. Saraiva, and

http://asm.ow2.org
http://comet.unl.edu
http://freemind.sourceforge.net
http://gazoo.informatik.uni-freiburg.de
http://jabref.sourceforge.net
http://samwise.cs.umd.edu:8080/
http://rachota.sourceforge.net
http://docs.oracle.com/javase/tutorial/reflect/
http://docs.oracle.com/javase/tutorial/reflect/

J. C. Campos. The GUISurfer tool: towards a language
independent approach to reverse engineering GUI code.
In EICS, pages 181–186, 2010.

[43] F. Tip. A survey of program slicing techniques. J. Prog.
Lang., 3(3), 1995.

[44] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren,
P. Lam, and V. Sundaresan. Soot - a Java bytecode
optimization framework. In CASCON, page 13, 1999.

[45] M. Weiser. Program Slicing. In ICSE, pages 439–449,
1981.

[46] L. J. White and H. Almezen. Generating Test Cases for
GUI Responsibilities Using Complete Interaction
Sequences. In ISSRE, pages 110–123, 2000.

[47] W. E. Wong, J. R. Horgan, S. London, and A. P.
Mathur. Effect of Test Set Minimization on Fault

Detection Effectiveness. In ICSE, pages 41–50, 1995.

[48] Q. Xie and A. M. Memon. Studying the characteristics
of a ”good” gui test suite. In ISSRE, pages 159–168,
2006.

[49] T. Xie, D. Marinov, and D. Notkin. Rostra: A
Framework for Detecting Redundant Object-Oriented
Unit Tests. In ASE, pages 196–205, 2004.

[50] X. Yuan, M. B. Cohen, and A. M. Memon. Covering
array sampling of input event sequences for automated
gui testing. In ASE, pages 405–408, 2007.

[51] X. Yuan and A. M. Memon. Using GUI Run-Time
State as Feedback to Generate Test Cases. In ICSE,
pages 396–405, 2007.

