
A Versatile Navigation Interface for Virtual Humans in Collaborative 
Virtual Environments 

Igor Pandzicl, Tolga Capin2,Nadia Magnenat-Thalmannl, Daniel Thalmann2 

%lIRALAB-CUT 
* {Igor.Pandzic Nadia.Thalmuj @cui.unige.ch 

http:kGralabwww.uge.ch/ 

2Computer Graphics Laboratory 
Swiss Federal Institute of Technolo PFL) 

{capin, thalqu}@li .di.e .c 
http://hgwww.ep .c %hp 

fiT 

Abstract 
Navigation within the scope of a Networked Collaborative 
Virtual Environment (NCVE) using an articulated body 
representation is mores complex then just moving the 
viewpoint based on user input. In such context, navigation 
englobes problems such as mapping of user’s actions on the 
embodiment and body constraints in addition to the usual ones 
such as universal support for different devices and global 
motion constraints. We take a broader look at the problems, 
clasify them and present a solution for navigation in NCVEs. 

1. Introduction 
In its basic form, navigation is a fairly simple problem: using 
some hardware device, ranging from a mouse to a data glove to 
all sorts of alternative devices, the user “flies” or “walks” 
through the environment. We consider the problem within the- 
scope of Collaborative Virtual Environments using animated 
Virtual Humans as embodiments for users and autonomous 
actors. The notion of navigation is first extended to include 
basic manipulation of objects - picking up, carrying, 
dropping, the basic tasks one would want to perform in a 
virtual environment. Further, the problem is extended to the 
mapping of user’s actions to the movement of his/her virtual 
body. We also analyze the problem of implementing 
constraints on navigation. Finally, support should be 
possible, and straightforward, for a wide variety of hardware 
devices that might be used for navigation. Within the 
framework of our Virtual Life Network (VLNET) system, we 
present a versatile navigation interface that covers the above 
problems, while at the same time allowing easy development 
of support for various devices and navigation paradigms. 
In the next section we analyze the problems involved with 
navigation in the context of a Collaborative Virtual 
Environment with Virtual Humans used for user representation. 
After that we briefly describe the VLNET system in order to put 
into context the following section which discusses the 
solutions for navigation in VLNET. Finally we present 
conclusions and ideas for future work. 

2. Navigation in Collaborative Virtual 
Environments 
Basic navigation involves using some input device to control 
walk-through or fly-through motion. In the context 

Permission to make digit&hard copies of all or part of this material for 
personal or classroom use is granted without fee provided that the copies 
ore not made or distributed for profit or commercial advantage, the copy- 
right notice, the title ofthe publication nnd its dote appear, and notice is 
given that copyright is by permission of the ACM, Inc. To copy otherwise, 
to republish, to post on servers or to redistribute to lists, requires specific 
permission and/or fee 
ACM K%YT ‘97 Lausanne Switzerland 
Copyright I997 ACM 0-89791-953-x/97/9.,%3.50 

of Collaborative Virtual Environments [Barrus96, Carlsson93, 
Macedonia94, Ohya95, Singh95, Capin97, Pandzic971, this 
notion is vastly extended, especially when they involve 
human-like embodiments for the users. In such context, 
navigation involves (at least) the following problems: 
l walking or flying 
l basic object manipulation 
l mapping of actions on embodiments 
; general input device support 
‘0 implementing constraints 
Walking and flying represent navigation in its basic sense, 
allowing the user to explore the environment from any point of 
view. 
Basic object manipulation capabilities allow the user to pick 
up and displace objects in the scene. This may be extended by 
object behaviors that can make objects react in some other way 
to being picked up. 
Mapping of actions on the embodiment is important for two 
reasons. First, it allows the local user to see what he/she is 
doing, e.g. by seeing his hand grab an object. Second, in a 
multi-user session it allows users to intuitively understand what 
the others are doing. Mapping of actions on the embodiment 
involves generation of walking motion while moving, as well 
as generation of natural arm motion while manipulating 
objects. 
General device support means that it should be straightforward 
to connect any device to the system. This implies general 
solutions that will accommodate different kinds of devices, e.g. 
incremental devices like Spaceball vs. absolute devices like 
magnetic trackers, devices that generate events like a button 
generating a “grab” event vs. devices generating stares like a 
data glove generating a “grab” state while the fist is tightened. 
Constraints are an extremely important component of any 
navigation. They avoid user getting lost, turning upside-down 
or coming into all sorts of impossible situations. They allow 
to tailor the navigation paradigm in a precise manner. We 
divide them in two groups: 
l .global motion constraints 
l body posture constraints 
The global motion constraints involve some global 
knowledge of the virtual world (e.g. up direction) and/or 
collision detection. They determine if the user can walk or fly, 
where it is possible to go, what are the possible orientations. 
A typical set of constraints for walking might include an 
inclination constraint keeping the user upright, a vertical 
collision constraint keeping him/her on the floor (and at the 
same time making it easy to climb/descend stairs or ramps) and 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F261135.261145&domain=pdf&date_stamp=1997-09-01


a horizontal collision constraint keeping the user from going 
through the walls. 
Body posture constraints keep the user’s embodiment in 
natural-looking postures, e.g. the head can’t wander from its 
position on the shoulders, the arm can reach only that far. 
In the following sections we will describe how we solved the 
mentioned problems within the Virtual Life Network system. 

3. Virtual Life Network (VLNET) 
This section provides a brief overview of the VLNET system 
[Capin97, Pandzlc971 in order to put into proper context the 
discussion on navigation in VLNET following in the next 
section. 

t 

I 

VLNET CORE : 
If any of the drivers runs on 

a remote host! the network interface 
. -LEGEND: - _ _ _ - - - - - - - - - - - - - - - - - - - - - is automatically installed here 

El Internal VL.NET processes; can be changed only by recompiling VLNET 

0 Logical entities within VLNET main procek, called engines 

Q 
Internal shared memory segments for data exchange within internal processes; not 
accessable to users 

0 Externaj shared memory interfaces, accessable to the users through defined APIs 
’ 

cl 
Externa&ocesses (called drivers); can be programed by the user using the defined MIS; 
they are replacable and sometimes optional 

\ External devices; sometimes optional or replacable 

Figure 1: Virtual Life Network system overview 

46 



Virtual Life Network is a Networked Collaborative Virtual 
Environment system using highly realistic Virtual Humans for 
the participant representation. From the networking point of 
view. VLNET is a based on a fairly simple client/server 
architecture. The server is mostly responsible for session 
management and message distribution. The design of the 
VLNET client is highly modular, with functionalities split into 
several processes. Figure I presents an overview of the 
modules and their connections. K.w has an open 
architecture, with a set of interfaces allowing a user with some 
programming knowledge to access the system core and change 
or extend the system by plugging custom-made modules, called 
drivers, into the VLNET interfaces. The VLNET core consists of 
a number of processes performing the basic functions like 
object updating, rendering, networking. These processes 
communicate through shared memory. The VLhJET main 
process consists of four logical units, called engines, each with 
a particular task and an interface to external applications 
(drivers). 
The Object Behnvior Engine takes care of the predefined object 
behaviors, like rotation or falling, and has an interface 
allowing to program different behaviors using external drivers. 
The Navigation and Object Manipulation Engine takes care of 
the basic user input: navigation, picking and displacement of 
objects. The Body Representation Engine is responsible for 
the deformation of the body. In any given body posture 
(defined by a set of joint angles) this engine will provide a 
deformed body ready to be rendered. The Facial Representation 

Engine provides the synthetic faces with a possibility to 
change expressions or the facial texture. The Video Engine 
allows to stream the video textures to any object(s) in the 
environment. 
The VLNEX drivers provide the simple and flexible means to 
access and control all the complex functionalities of VLNET. 
Using various combinations of drivers it is possible to support 
all sorts of input devices ranging from the mouse to the camera 
with complex gesture recognition software. Furthermore, it is 
possible to control all the movements of the body and face 
using those devices, to control objects in the environment and 
to build any amount of artificial intelligence in order to produce 
autonomous or semi-autonomous agents in the networked 
virtual environment. 
The Drivers are directly tied to the Engines in the VLNET Main 
Process, each engine providing a shared memory interface to 
which a driver can connect. 
For more details on the VLNHT system the reader is directed to 
[Capin97, Pandzic971. 

4. Navigation in VLNET 
We will now isolate from the big picture (figure 1) the parts of 
VLNET involved in navigation in order to analyze the 
solutions offered in VLNET to the problems posed in the 
beginning of the paper. Figure 2 shows the modules involved 
with navigation, indicating their functions and the logical data 
flow between them. 

NAVIGATION 
DRIVER 

- read input device 
- set body, hand, IA 

head matrices 
- set pick info 

f BODY POSTURE 
*fl DRIVER ) 

- generate walking 
- generate natural 

arm motion 
- correct head and 

hand matrices 
based on posture 
(body posture 
constraints) 

NAVIGATION & 
OBJECT 

MANIPULATION 
ENGINE 

’ correct body matrix 
(global motion 
constraints) 
update view 

. update objects 
based on hand 
matrix and pick info / / 

BODY - 
REPPESENTATION 

ENGINE 
- deform body into 
given posture 

Figure 2: VLNET modules involved in navigation and corresponding data flow 

47 

-- _- . - - 11,. ,a. *.. _,. . 



It can be observed how the problems involved with navigation 
are split between modules of VLNET. The device support is 
handled by the Navigation Driver. The Body Posture Driver 
handles the mapping of actions on the embodiment and the 
body posture constraints. The basic navigation and object 
manipulation, as well as global motion constraints, are 
handled by the Navigation and Object Manipulation Engine. 
This specialization of modules results in higher flexibility and 
efficiency. 

4.1 The navigation data 
The data involved in navigation includes the following: 
. the body matrix 
l the hand matrix 
l the head matrix 
l pick info 
The body matrix determines the global position of the user’s 
body origin in world coordinates. The hand matrix is relative to 
the body origin and defines the position of the end effector used 
for grabbing objects, usually the hand. The head matrix is also 
defined with respect to the body origin and determines the 
position and orientation of the user’s head, i.e. the user’s view 
into the world. The pick info contains the pick and unpick 
flags used to control the grabbing of objects. 

4.2 The roles of modules 
The basic role of the Navigation Driver is to support a 
particular input device and navigation paradigm. New input 
devices/paradigms can be added by programming new drivers - a 
simple interface API is provided for that purpose. 
The general function of the Body Posture Driver in VLNET is to 
determine the body postures and pass them to the Body 
Representation Engine in order to put the body in the correct 
posture. The body postures are generated by walking and arm 
motors, generating appropriate motions [Boulic 90, Pandzic 
961. In the context of navigation, the function of this driver is 
to implement body posture constraints. It can be replaced by a 
user designed driver but within this paper we will base the 
discussion on the standard driver provided in VLNET. 
The Navigation and Object Manipulation Engine is the part of 
VLNET Core responsible for updating the view based on the 
incoming data, and for implementing basic object 
manipulation. It also implements the global motion 
constraints. 

4.3 The data flow 
The Navigation Driver reads from the input device and sets the 
matrices and pick info accordingly. In case of an incremental 
device, it uses the feedback of constraint-corrected matrices 
from the previous frame in order to prevent accumulation of 
error (at the beginning of a session the initial matrices are set 
by the Navigation Engine). 
The Navigation Engine implements the global motion 
constraints using world global orientation and collision 
detection and corrects the body matrix to keep the body in 
correct uprigt orientation and keep it from colliding with 
obstacles. 
Based on the corrected global motion expressed by the 
corrected body matrix, as well as hand and head positions, the 
Body Posture Driver generates the body posture reflecting the 
walking motion and arm movement. The resulting posture is 
proceeded in terms of joints to the Body Representation Engine 
for body deformation. At the same time, the resulting posture 
determines the constraints on the head and hand matrices based 

48 

on which the new, corrected matrices are generated passed to 
the Navigation Engine. 
The Navigation Engine updates the view matrix used by the 
rendering pipeline based on the body and head matrices. If 
object grabbing is requested by the pick info, it tries to grab an 
object in the vicinity of the user’s hand and then moves the 
object accordingly. 

5. Implementation 
The VLNET system is implemented on Silicon Graphics 
platforms using SGI Performer [Rohlf94] library. All 
interprocess communication passes through shared memory 
segments. The logical data flow between the Navigation 
Driver, Body Posture Driver and The Navigation Engine 
illustrated in figure 2 actually passes through a single shnrcd 
memoy segment, shared by all three processes. that holds the 
complete navigation data. 

6. Results 
We have implemented several navigation drivers for diffcrcnt 
devices and paradigms. The more classical examples mcludc a 
GUI-based mouse driver, the SpaceBall driver and the driver 
supporting head and head trackers with a data glove. 
A full body tracking driver suppers control of the whole body 
using a larger number of magnetic trackers (12 trackers in 
current implementation) [Molet96] as illustrated in figure 3. 
A more original experimental driver exists, using imngc 
processing techniques to track facial features of the user in 
front of the camera, letting the user navigate using his face 
[Pandzic 941. 
The possibility to use the driver mechanism to implement 
autonomous Virtual Actors is particularly interesting. lnstcdad 
of supporting hardware devices to get input from a real human, 
in this kind of applications the drivers use Al algorithms to 
make Virtual Humans navigate and interact autonomously, An 
example of this approach is our experimental tenms game 
[Noser96] where the user plays against an autonomous virtual 
player while the game is refereed by another autonomous 
Virtual Human (figure 4). 

Figure 3: Navigation and posture control using magnetic 
trackers 



Figure 4: Tennis with autonomous Virtual Humans 

To implement support for any of these navigation devices and 
paradigms it was only necessary to program new drivers, 
without changing the system itself. The navigation interface 
consisting of a simple API enabled coleagues and students 
without the knowledge of the complete system to implement 
new navigation paradigms quickly. 

7. Conclusions and future work 
We have analyzed the problems involved with navigation in a 
broader sense within the context of Collaborative Virtual 
Environments involving human-like embodiments. We have 
presented solutions to the analyzed problems within the 
framework of the Virtual Life Network system, showing how 
the functionalities are split between different modules of 
VLNET, achieving great flexibility, which is also confirmed by 
different navigation modes implemented and presented in the 
results section. 
We intend to explore new and more convenient paradigms for 
navigation in Virtual Environments, e.g. the hand-centered 
paradigm with gaze, posture and finally the whole body motion 
follow the movement of the hand controlled by the user. 

8. Acknowledgments 
This research is financed by “Le Programme Prioritaire en 
Telecommunications de Fonds National Suisse de la Recherche 
Scientifique” and the TEN-IBC project VISINET. 
Numerous colleagues at LIG and MIRALab have directly or 
indirectly helped this research by providing libraries, body and 
environment models, scenarios for applications, in particular 
Elwin Lee, Eric Chauvineau, Hansrudi Noser, Marlene Poizat, 
Laurence Suhner and Jean-Claude Moussaly. 

9. References 
[Barrus Banus J. W., Waters R. C., Anderson D. B., 
“Locales and Beacons: Efftcient and Precise Support For Large 
Multi-User Virtual Environments”, Proceedings of IEEE 
VRALS, 1996. 
[Boulic 901 Boulic R., Magnenat-Thalmann N. M.,Thalmann 
D. “A Global Human Walking Model with Real Time Kinematic 
Personification”, The Visual Computer, Vo1.6(6),1990. 
[Capin97] Capin TX., Pandzic I.S., Noser H., Magnenat 
Thalmann N., Thalmann D., “Virtual Human Representation 
and Communication in VLNET Networked Virtual 
Environments”, IEEE Computer Graphics and Applications, 
Special Issue on Multimedia Highways, March-April 1997. 

[Carlsson93] Carlsson C., Hagsand O., “DIVE - a Multi-User 
Virtual Reality System”, Proceedings of IEEE VRAIS ‘93, 
Seattle, Washington, 1993. 
wacedonia 941 Macedonia M-R., Zyda M.J., Pratt D-R., 
Barham P.T., Zestwitz, “NPSNE’T: A Network Software 
Architecture for Large-Scale Virtual Environments”, Presence: 
Teleoperators and Virtual Environments, Vol. 3, No. 4, 1994. 
[Molet96] Molet T., Boulic R., Thalmann D., “A Real Time 
Anatomical Converter for Human Motion Capture”, Proc. of 
Eurographics Workshop on Computer Animation and 
Simulation, 1996. 
[Noser96] Noser H., Pandzic IS., Capin T.K., Magnenat 

Thalmann N., Thalmann D., “Playing Games through the 
Virtual Life Network”, Proceedings of Artificial Life V, Nara, 
Japan, 1996. 
[Ohya95] Ohya J., Kitamura Y., Kishino F., Terashima N., 
“Virtual Space Teleconferencing: Real-Time Reproduction of 
3D Human Images”, Journal of Visual Communication and 
Image Representation, Vol. 6, No. 1, pp. I-25, 1995. 
[Pandzic 941 Pandzic LS., Kalra P., Magnenat-Thalmann N., 
Thalmann D., “Real-Time Facial Interaction”, Displays, Vol. 
15, No 3. 1994. 
[Pandzic96] I.S. Pandzic, T.K. Capin, N. Magnenat Thalmann, 
D. Thalmann, “Motor functions in the VLNEf Body-Centered 
Networked Virtual Environment”, Proc. of 3rd Eurographics 
Workshop on Virtual Environments, Monte Carlo, 1996. 
[Pandzic97] Pandzic I.S., Capin T.K., Lee E., Magnenat 
Thalmann N., Thalmann D., “A flexible architecture for Virtual 
Humans in Networked Collaborative Virtual Environments”, 
Proceedings Eurographics 97 (to appear) 
[Rohlt94] Rohlf J., Helman J., “IRIS Performer: A High 
Performance Multiprocessing Toolkit for Real-Time 3D 
Graphics”, Proc. SIGGRAPH’94, 1994. 
[Singh95] Singh. G., Serra L., Png W., Wong A., Ng H., 
“BrickNet: Sharing Object Behaviors on the Net”, Proceedings 
of IEEE VRAIS ‘95, 1995. 

49 

--- .-_ ~.. .~.I -__~-- 


