
Output-Sensitive Rendering and Communication 
in Dynamic Virtual Environments 

Odcd Sudarsky and Craig Gotsman 
Computer Science Department 

Technion-Israel Institute of Technology 
32 000 Haifa, Israel 

ABSTRACT 
The efficient rendering of large dynamic scenes is an important 
open problem. Optimization techniques for static scenes, such as 
output-sensitive visibility calculation, must be carefully adapted to 
dynamic models in order to remain effective. Distributed virtual 
environments pose a particular difficulty, because communication 
between the users must be minimized in addition to each user’s 
rendering time, We show how output-sensitive visibility calcu- 
lation algorithms can be adapted to dynamic scenes, and used to 
reduce the communication requirements between workstations in a 
distributed virtual environment. The solution is based on temporal 
bounding volumes, guaranteed to contain the dynamic objects for 
some period of time. These volumes are inserted into a visibility 
algorithm’s main data structure instead of hidden dynamic objects. 
Subsequently a dynamic object is ignored until its bounding volume 
becomes visible or is no longer guaranteed to contain the object. In 
a distributed virtual environment, this saves not only the render- 
ing of the object, but its update through a communication network 
too. We show an algorithm which combines this method with BSP 
tree based output-sensitive visibility calculation, and report on the 
implementation of our system. 

1 Introduction 
Typical virtual reality (VR) applications feature large dynamicmod- 
els, i.e. scenes containing moving objects. This trend manifests in 
VRML 2.0 browsers and authoring tools, such as Silicon Graphics’ 
Cosmo software [18] and Sony’s Community Place [19]. While 
such systems are highly desired by the user community, their fu- 
ture success largely depends on their performance. Currently used 
software and hardware architectures are only capable of displaying 
models of limited complexity at reasonable screen refresh rates. De- 
veloping techniques to improve graphics performance will provide 
better response times and allow more complex, realistic models to 
be displayed. 

The issue of rendering optimization is quite well understood for 
static scenes. Among the techniques used for such scenes are view 
frustum culling, visibility culling and level-of-detail switching [13]. 
However, little work has been done so far concerning the general- 
ization of these methods for dynamic models, which are the bread 
and butter of VB applications. 

Consider visibility culling techniques [6,10,11,15], also known 
as occlusion culling or ou’tput-sensitive visibility algorithms. These 
techniques utilize the occlusions in a scene to render it in time 
proportional to the number of visible objects, rather than the total 
number of objects, which can be greater by orders of magnitude. 
However, these algorithms are designed for static models: as a 

Permission to make digitalhard copies of all or part ofthis m;lterial for 
personnl or chsroom use is granted without fee provided that the copies 
are not made or distributed for profit or commercial adv.antage, the copy- 
right notice, the title of the publication and its date appear, and notice is 
given that copyright is by permission of the ACM, Inc. To copy otherwise, 
to republish, to post on servers or to redistribute to lists, requires specific 
permission and/or fee 

ACM U?ST ‘97 Lausanne Switzerland 
Copyright 1997 ACM 0-8979L953~x/97/9.X3.50 

217 

preprocessing stage, they create a data structure based on the scene, 
which is assumed to be unchanging. To efficiently render dynamic 
scenes, these algorithms have to be modified properly; doing so in 
a naive way may result in performance which is even worse than if 
no visibility culling technique was used at all. 

One class of applications that naturally give rise to complex 
scenes with multiple dynamic objects are distributed virtual envi- 
ronments [7, 8, 19, 231. Such environments are gaining greater 
popularity as cyberspace continues to evolve. In these systems, 
numerous users can travel through a shared scene. Each user is 
virtually represented as a graphic character called an avutuz The 
avatar’s position and orientation in the virtual world are controlled 
by the user through his or her workstation. The user usually does 
not see his or her own avatar, but rather sees the world through the 
avatar’s eyes. This view may, of course, include avatars of other 
users. See Figure 1. 

Typically, most of the virtual world through which the avatars 
move is static scenery. While some of it may be modified by the 
users (e.g. constructing a new building), the fraction of the scenery 
that is changing, as well as the rate at which it is changing, are 
usually far smaller than the motions of the avatars. 

Distributed virtual environments pose particularly challenging 
optimization problems. As the avatars are controlled interactively 
by human users, and do not have a priori scripts, their behaviors 
might be unpredictable. Therefore 4D methods, such as Glassner’s 
spacetime technique [9], cannot be used. Additionally, since the 
users interact via a communication network of limited bandwidth, 
care must be taken to minimize communication requirements be- 
tween the users. 

Most current distributed virtual environments are implemented 
as client-server systems. Each user’s workstation acts as client; 
a central server maintains the scene, keeping track of each user’s 
position and sending model update messages to the clients (see Fig- 
ure 1). The drawback of such a system is its lack of scalability: as 
thenumberof users grows, the server becomes congested, degrading 
the system’s performance. Alternatives to the client-server config- 
uration are a network of communicating servers and a completely 
decentralized system where all workstations may communicate with 
each other. 

Whatever system configuration is chosen, the overall commu- 
nication requirements generally grow as the square of the number of 
users in the environment, because each user is informed of the other 
users’ whereabouts. Therefore, this problem will not be solved by 
faster communication alone. For example, quadrupling communi- 
cation throughput wilI only allow twice as many users to share a 
virtual environment at a given response time. 

A potential solution to this problem is to avoid transmitting 
unnecessary update messages. In most shared virtual environments 
of sufficient size and complexity, each user will usually see only a 
small proportion of the model and of the other users’ avatars. The 
rest of the users will normally be hidden by relatively static parts of 
the model, e.g. by walls of a building model, that change very little 
(if at all) and constitute static scenery. There is no need to waste 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F261135.261175&domain=pdf&date_stamp=1997-09-01


f3 Client 

iJ-y;cz Client Server Client 

0 

Other 
user’s 
avatar 

Figure 1: A typical distributed virtual environment 

communication resources on transmitting update messages between 
such non-intervisible users. A visibility calculation algorithm can be 
used to determine user-to-user visibility, and to eliminate unneeded 
messages. 

In the following sections, we show how visibility culling al- 
gorithms can be adapted to dynamic scenes, and used to avoid 
unnecessary messages between non-intervisible users in shared en- 
vironments. Occlusions will thus be utilized both to optimize the 
rendering at each station and to reduce communication between 
the stations. The extension to dynamic scene models has been im- 
plemented for octree based and BSP tree based visibility culling 
algorithms. 

2 Related work 

2.1 Visibility culling for static scenes 
A few visibility culling algorithms have been presented in recent 
years. All these algorithms construct a spatial hierarchical data 
structure as a preprocessing stage: a binary space partitioning 
tree (BSP tree) in Naylor’s partitioning tree visible surface algo- 
rithm 1151; an octree or a k-D tree in Greene et al’s hierarchical 
Z-buffer algorithm [l l] and in Coorg and Teller’s object-space vis- 
ibility algorithm [6]. Given a viewpoint, these algorithms proceed 
by traversing the spatial hierarchical data structure in a top-down, 
near-to-far order, terminating the recursion as soon as an entire sub- 
tree is occluded by the previously projected objects. The algorithms 
differ mainly in the manner in which these occlusions are detected: 
Nayloruses BSP tree containment, Greene et al. utilize a Z-pyramid, 
and Coorg and Teller perform object-space analysis. Incidentally, 
all three algorithms perform view frustum culling as well as visibil- 
ity culling, by terminating recursion at tree nodes which are outside 
the field of view. 

Each of these three visibility culling algorithms has its draw- 
backs. Naylor requires that the scene model itself be represented as 

218 

Figure 2: Naylor’s BSP tree projection algorithm 

a BSP tree, with boolean “in/out” attributes at the leaves and with 
a color associated with each “in” leaf. This tree of the scene is 
transformed into a tree describing its image by uniting it with the 
volume occluded by each face encountered during the traversal of 
the tree (see Figure 2); this projection process is output-sensitive if 
the initial BSP tree is constructed as a series of approximations to 
the modeled objects [16]. The requirement for a BSP tree restricts 
the geometry to planar polygons, and makes the use of surface 
attributes such as normal directions and texture maps more com- 
plicated. Furtbennore, the overwhelming majority of the models 
available worldwide (e.g. VRML models on the Web) are not given 
as BSP trees, but as boundary representations (B-reps). Such mod- 
els have to be converted to BSP trees in a separate process. The 
conversion process [21] assumes that there are polygons on all of the 
objects’ boundaries, only on the objects’ boundaries, and that all of 
the polygons’ normals consistently point out of the objects. Many of 
the available models fail to meet these requirements-in fact, very 
few do. On the other hand, Naylor’s algorithm is elegant because it 
uses the same type of data structure-a BSP tree-to represent both 
the scene itself and its image. Since it is an object-space algorithm, 
it is not prone to aliasing artifacts, and its runtime is independent of 
image size. It does not depend on any hardware capabilities such 
as Z-buffering; any display which draws filled convex polygons can 
be used, e.g. Xl 1 terminals and low-end PCs. 

Greene et al. rely on a Z-pyramid constructed on top of the 
Z-buffer. Updating these structures in software is too inefficient; 
reading the Z-buffer from hardware (to build the pyramid on top 
of it) takes too long on most platforms. Even once the Z-pyramid 
is available, too much overhead is involved in testing whether it 
occludes a given octree node (answering the so-called “Z query”). 
Becauseoftheseoverheadfactors,Greeneetal.report thatthebmak- 
even point for the hierarchical Z-buffer algorithm (compared to 
ordinaryz-buffer rendering) is about3 secondsper animation frame 
for a 512xS12pixel image. This means that, given current hardware 
performance, the hierarchical Z-buffer algorithm does not allow 
interactive speeds; this has been verified by our own experiments. 
One possible long-term solution is to construct graphics hardware 
(probably involving an internal Z-pyramid) that answers Z queries 
efficiently, in time which is constant and independent of the queried 
object’s projected image size. However, such hardware has yet to 
become available. 



04 

Figure 3: (a) A scene with dynamic objects (chairs) 
moving along preset trajectories. (b) Sweep surface 
temporal bounding volumes for the chairs moving to- 
wards the table. Note that the closer chair on the left 
wobbles during its movement. 

Coorg and Teller estimate a node’s visibility by observing the 
position of the viewpoint relative to supporting and separating 
planes, i.e. planes which include an edge of one polyhedron and 
a vertex of another. This analysis conservatively detects only some 
of the occlusions: it never reports a visible octree node as invisible, 
but it may erroneously classify some invisible nodes as visible. It 
is only gnaranteed to correctly detect occlusions by a single convex 
polygon, or by a mesh of edge-connected polygons with a convex 
silhouette. Consequently, the visibility algorithm needlessly tra- 
verses some hidden regions of the octree. Another disadvantage of 
the algorithm is that it involves a preprocessing stage which finds, 
for each octree leaf node, the set of scene polygons that appearrel- 
atively large from viewpoints inside the leaf. This takes some time 
and space, and has to berepeated if any of the scenery changes, e.g. 
by users doing construction work in the shared virtual environment. 

2.2 Octree-based visibility culling for dynamic scenes 
A disadvantage common to all of the above visibility culling algo- 
rithms is that they are unsuitable for dynamic scenes. While they al- 
low the exploitation of temporal coherencein animation sequences, 
these are restricted to walkthrough animations, in which the sceneis 
static and only the viewpoint moves through it. If anything else but 
the viewpoint moves in the scene, then the spatial hierarchical data 
structure used by the visibility culling algorithm becomes outdated, 
possibly resulting in incorrect images. The solution is, of course, 
to update the data structure; initializing it again from scratch would 
be too wasteful-much slower than just displaying everything by 
the plain Z-buffer algorithm. To preserve output sensitivity, the 
update should be performed only on the visible regions of the data 
structure. No time should be wasted on updating it for invisible 
dynamic objects, e.g. for avatars of other users which are moving 
behind occluding walls. 

We have introduced [20] a technique to update an octree for 
the movements of dynamic objects. This technique avoids wasting 
time on hidden dynamic objects by utilizing temporal bounding 

Figure 4: A test scene used in our experiments 

volumes (fl3Vs). These are volumes guaranteed to contain a given 
dynamic object from the moment of their construction until some 
later time, based on someknown constraints ontheobject’s behavior. 
For example, for objects moving along preset trajectories, sweep 
surfaces can be used (see Figure 3); if only maximum velocities or 
maximum accelerations are known, then spheres may be employed 
as TBVs. Generally, we assume some bounding volume can be 
found for each dynamic object until any desired moment in the 
future. 

The TBVs are inserted into the octree in lieu of dynamic ob- 
jects which the visibility culling algorithm deems to be invisible. 
Subsequently, a hidden dynamic object is ignored until such time as 
its TBV expires, i.e. is no longer guaranteed to contain the object, 
or until the visibility culling algorithm determines that the TBV is 
visible, whichever comes first. Several strategies to choose expira- 
tion times for TBVs were discussed; the most advanced of these is 
adaptive expiry, in which aTBV’s validity period is shortenedif the 
previous TBV’s period was too long (i.e. the previous TBV became 
visible before it expired), lengthened if too short (in the opposite 
case). 

To test the performance of this technique compared to other 
rendering techniques, we conducted experiments on the test scene 
shown in Figure 4, using a Silicon Graphics Indy R5000. The 
number of static objects and the number of visible dynamic objects 
were kept constant at 13,220 and 14,946 polygons, respectively; 
the number of hidden dynamic objects was varied by adding men 
inside the building. As Figure 5 shows, the mntime of the plain 
Zbuffer algorithm (ZB) is linearly proportional to the total number 
of objects in the scene. The hierarchical Z-buffer algorithm (HZB) 
requires that the octree be updated for every dynamic object, and 
therefore does even worse than ZB. Our TBV technique updates 
the octree only for the visible dynamic objects, and its runtime is 
almostconstantin comparisonto ZB andHZB. Notethatnoneofthe 
techniques achieves real-time speed. As discussed in Section 2.1, 
given current hardware performance, such speedcannotbe achieved 
using the hierarchical Z-buffer algorithm. 

A significant advantage of our dynamic scene visibility culling 
method is that it not only avoids unnecessary updates of the spatial 
data structure used by the visibility algorithm; it also avoids need- 
less updates of the invisible objects themselves. In other words, 
an invisible dynamic object (say, some other user’s avatar, hidden 
by a wall) can be completely ignored most of the time-not just 



ol , , , , , 1 , , , I 
20 30 40 50 60 70 80 90 100110120 

Input size (thousands of polygons) 

Figure 5: Performance of algorithms on a test scene 
with a fixed number of static and visible dynamic ob- 
jects and a varying number of hidden dynamic objects 

eliminated from the rendering process, but disregarded altogether. 
This can save a lot of time if this object would be very costly to 
update, e.g. over a busy communication line. Thus our method ap- 
plies to distributed virtual environments: it uses a visibility culling 
algorithm to cut down on the number of unnecessary transmissions 
between users that do not see each other. 

While it may appear that the a priori knowledge of some mo- 
tion constraints by which TBVs can be calculated is an excessive 
requirement, this is not the case. Interactive virtual environments 
generally, have user interfaces that impose such constraints: a user 
moving through the environment cannot exceed a certain speed. If 
the system allows users to “teleport” to a remote location, this speed 
limit is violated; however, in such a case it is quite acceptable for the 
display to takelonger to update than during ordinary, smooth motion 
(both the teleporting user’s display and the displays of other users 
into whose vicinity this user teleports). Furthermore, one may use 
probabilistic bounding volumes, i.e. volumes that are not guaran- 
teed to contain the dynamic object throughout their validity period, 
but are only assumed to do so. A TBV for which this assumption 
fails is treated as an expired TBV: its dynamic object is no longer 
ignored, but is inserted into the octree and tested for visibility. 

2.3 BSP trees of dynamic scenes 
Since the BSP tree visibility culling algorithm has several advan- 
tages over the octree-based algorithms, namely independence of 
graphics hardware and image size, it would be advantageous to use 
the same ideas in Naylor’s algorithm. It should be noted that this 
is not a straightforward generalization of the same technique, be- 
cause BSP trees are inherently different from octrees and .4-D tree: 
BSP trees, as used by the visibility algorithm, represent the objects 
themselves (with leaf “in/out” attributes), whereas octrees and k-D 
trees are merely auxiliary data structures, supplementing a B-rep. 

Chrysanthou and Slater [4,5] and Agarwal et al. [l] have pro- 
posed algorithms to maintain dynamic BSP trees. However, their 
trees are of the wrong kind for visibility culling purposes: they keep 
the objects’ boundaries as B-rep polygons at the trees’ inner nodes, 
rather than keeping the objects’ interiors as leaf “in/out” attributes. 

The scheme proposed by Torres [22] can be used with either 
brand of BSP trees: he suggests associating the higher levels of 
the tree with planes that separate between objects, thus allowing 
more efficient updates. A simple method, proposed by us [20], is to 
keep each object’s BSP tree separately, and to construct the tree for 
the entire scene by uniting these trees, transformed to their proper 

positions and orientations. This can be done quickly by copying 
pointers to BSP tree nodes rather than entire subtrees, and avoids 
the need to update a BSP tree due to dynamic objects’ motions, In 
Section 3, this method will be used as a basis for a new, output- 
sensitive visibility algorithm for dynamic scenes. 

These techniques can be used to dynamically update a BSP 
tree which is subsequently displayed by Naylor’s visibility culling 
algorithm. However, this combination will not be output-sensitive 
with respect to the number of dynamic objects: each such object 
will be updated every time the sceneis displayed, even if the object 
is hidden. That is, the runtime of these algorithms, followed by 
visibility culling, is !2(v+i) per frame (where v is the number of 
visible objects, whether static or dynamic, and i is the number of 
invisibIe dynamic objects), whereas we would like to achieve O(v). 
For such performance, the BSP tree update must be closely coupled 
with BSP tree visibility culling. 

2.4 Message reduction in virtual environment systems 
As mentioned in Section 2.2, a major advantage of our dynamic 
scenes visibility culling technique is that it can also eliminate a 
significant number of unnecessary messages-those messages that 
would otherwise be transmitted to update hidden objects. This 
technique may be used instead of or in addition to other methods 
to reduce the required number of update messages in shared virtual 
environments. These methods include decomposition into cells, 
multicasting, dead reckoning and visibility precalculation. 

The virtual environment may be decomposed into separate rc- 
gions or cells; each user receives messages only from users which 
are in his cell (and possibly in immediately neighboring cells). 
NPSNET [14] uses this method with 4km hexagonal cells,Splinc [2] 
allows arbitrary polyhedral cells given as BSP trees, and Worlds 
Chat [23] uses cells just big enough to contain six other users and 
restricted to one room. The disadvantage of this method is that 
the display is correct only in the cell that contains the viewer and 
its immediate neighborhood. If the cells are relatively small, as 
in Worlds Chat, this results in an incorrect image; if the cells arc 
made very large to minimize this effect, as in NPSNET, then the 
user is flooded with messages from many other users. In Spline, 
the model is constrained such that there is no direct line of sight bc- 
tween non-neighboring cells. This limitation requires the model to 
be distorted to match the constraint, e.g. by using winding corridors 
or airlock-style doors. 

Spline, NPSNET and DIVE [3,12] use a message multicasting 
protocol, so when a user updates other users of his movement, hc 
only sends one message, regardless of how many users receive it. 
In Spline and NSPNET, each cell has a different multicast channel 
associated with it; each user sends update messages on the channel 
associated with the cell he is currently in. The drawback is that 
each user receives and processes numerous update messages from 
other users. For example, in NPSNET, a process participating in 
a multi-user simulation spends most of its time filtering irrelevant 
messages. 

NPSNBT and its predecessorDIS/SIMNET use dead reckoning 
to further reduce the number of required messages: instead of a user 
updating the other users of his position at every moment, the other 
users perform second-order approximation of his position, based on 
his prior behavior. The user himself performs the same approxima- 
tion, and sends his updated position when the approximated position 
differs from the real one by more than some threshold (or after some 
fixed time limit). 

In the RING system [8], a k-D tree of the model is constructed 
as a preprocessing stage; the model is usually of a building interior, 
and the leaves of the k-D tree generally represent the rooms in the 
building. Also at preprocessing time, the intervisibility relationship 
between the leaves of the tree is calculated, and stored at the leaves. 
At nmtime, the system only transmits messages between users that 



potentially see each other because they are located in intervisible 
rooms. This method is effective mainly in densely occluded indoor 
scenes, and it does not utilize occlusions by dynamic objects. For 
example, a user in an office may be notified of movements of users 
in other offices down the hall, even though none of them are visible 
to him because his office door (a dynamic object) is closed at the 
moment. 5; ‘J 

-‘I 
3 BSP tree visibility culling for dynamic scenes 
We hereby introduce an algorithm that performs output-sensitive 
visibility calculation of aBSP tree representing a scenewith multiple 
dynamic objects. It is based on the method of uniting separate, 
transformed BSP trees of individual objects into a tree of the entire 
scene (as described in Section 2.3), then rendering this tree using 
Naylor’s visibility technique [15]. However, it avoids wasting time 
on hidden dynamic objects. Like the octree-based method [20], 
this algorithm not only optimizes the rendering time at each user’s 
workstation, but also reduces communication overhead in multi-user 
distributed virtual environments by utilizing occlusions and known 
constraints on objects’ motions. 

At each user’s station, the following data structures are maintained: 

D a set of all the dynamic objects, each having a unique identifier 
(ID) and a time of last observation. Those of the dynamic objects 
that are hidden also have a TBV, specified by a BSP tree; an 
expiration time for the TBV; and a set of pointers to the leaves of 
S (see below) that intersect the TBV. 

S a BSP tree that is the union of the static scenery and the TBVs 
of hidden dynamic objects in D. A set of dynamic objectIDs is 
associated with each leaf of S; an object’s ID is in the set if it is 
invisible and its TBV intersects the leaf. 

T a BSP tree that represents the entire scene, including the static 
scenery, visible dynamic objects and TBVs of hidden dynamic 
objects. Each leaf of T has a set of dynamic object IDS; an ID 
is in the set if the corresponding dynamic object is either visible 
and intersects the leaf, or hidden and its TBV intersects the leaf. 

Q an event queue of TBV expiration events for hidden dynamic 
objects. 

V a set of IDS of visible dynamic objects. 

Each of the “dynamic objects” referred to above can be either an 
avatar of some other user or an autonomously moving object, con- 
trolled by a program, e.g. Java-controlled objects in VFUvK 2.0 
models. 

The algorithm uses two subroutines: deLTBV (delete temporal 
bounding volume) accepts an ID of a hidden dynamic object, and 
changes the object’s status from hidden to (potentially) visible; 
uni-vis (unite a visible object into the scene) handles a visible object. 

deLTBV(ID): 

1. Delete ID from the leaves of S that contain ID. 

2. Merge leaves of S, if possible. 

3. vcvu {ID]. 

In step 1 of deLTBV, the leaves of S which contain ID are given by 
the set of leaves maintained with the corresponding dynamic object 
in D. In step 2, the leaves that should be merged are siblings that 
contain the same set of IDS after the deletion of step 1. The merge 
proceeds bottom-up, terminating at siblings that are either not both 
leaves or have different ID sets. 

221 

uni-vis(ID): 

1: ‘Obtain a BSP tree B representing the current configuration of the 
dynamic object corresponding to ID. 

2. T + T U B. During the union, insert ID into into every leaf of T 
that B intersects. 

In step 1 of um-vis, B can be obtained, e.g., through a conununi- 
cation link. The exact content of the communication may depend 
on the nature of the dynamic object. For example, if the object is 
rigid, then all that needs to be sent (after the first frame) are trans- 
lation and rotation parameters, possibly as a 4x4 homogeneous 
transformation matrix A; the tree B is obtained by multiplying every 
coordinate in the object’s BSP tree by A, and every plane equation 
by A-‘. For an articulated object, a transformation is needed for 
each rigid segment, For a deformable object, the communication 
can include some deformation parameters, or a complete BSP tree 
representing the object’s current form. 

The union operation in step 2 can be performed as discussed by 
Naylor et al. [17]. 

At each user’s workstation, all the dynamic objects in D are 
initially marked as visible, and have a time of last observation 
earlier than the first frame. S is initialized to the union of all the 
static objects; T and Q are empty, and V initially contains the IDS 
of all the dynamic objects. 

At every frame; the following steps are performed at each station: 

1; For each object ID of an expired TBV, as determined by Q, do 
deLTBV(lD). 

2. 

3. 

4. 

T + S. 

For each ID in V do uni-vi@). 

Operate Naylor’s visibility algorithm on T, displaying visible 
faces. At each leaf of T encountered during this traversal, for 
each ID of an invisible object whose TBV intersects the leaf, do: 

(a) deLTBV(ID); 
(b) unLvis@D). 

For each ID of a visible object intersecting the leaf, update the 
time of last observation associated with the object in D. 

5. For each dynamic object in V whose time of last observation is 
earlier than the current frame, do: 

(a) Obtain a TBV for the object until some time in the future. 
(b) Unite the TBV into S; for every leaf of S that intersects the 

TBV, add the object’s ID to the leaf, and add a pointer to the 
leaf into the object’s set of leaf pointers. 

(c) Insert the TBV’s expiration event into Q. 
(d) Delete the object’s ID from V. 

Step 1 of the algorithm handles hidden dynamic objects whose 
TBVs have expired by deleting their TBVs and moving them to the 
set V. Note that V contains potenrially visible dynamic objects, 
rather than objects which are certainly visible; at this stage it is 
too early to determine certain visibility, so we simply bundle the 
objects whose TBVs have expired with those that are potentially 
visible because they were visible in the previous frame. 

In steps 2 and 3, the BSP tree T representing the entire scene is 
constructed. It is used in step 4, the heart of the algorithm. 

Step 4displays the scene,and handles exposed TBVs by treating 
them the same way they would have been handled had they expired 
rather than becoming visible. This step requires special care, be- 
causeit traverses an hierarchical data structure and modifies it at the 



same time: although the union operation in step 4(b) preserves the 
overall structure of the BSP tree, it might replace leaf nodes with 
subtrees; if this happens, the new subtree should be traversed too. 

Finally, step 5 handles dynamic objects which cease being vis- 
ible. If such an object is controlled by another workstation, then 
that station should provide a BSP tree representing the TBV for the 
object, upon request; the request should also specify the time in the 
future until which the provided TBV should be valid. Note that 
the algoithm performs less calculations due to the TBV of a hidden 
dynamic object than it would perform due to the object itself, both 
because the TBV does not have to be updated at every frame and 
becauseit can be geometrically simpler than the object itself (e.g. it 
can be just a box). 

The algorithm achieves the goal of being output-sensitive with re- 
spect to the number of dynamic objects by ignoring such objects 
unless they are visible. While the algorithm involves some over- 
head, its amount does not depend linearly on the size of the entire 
scene. For most frames, no time is wasted on updating and dis- 
playing invisible dynamic objects, not even to discover that they 
are invisible; they are simply not reached during the traversal of 
the BSP tree. Hidden dynamic objects require processing only if 
their TBVs expire or become exposed. If TBVs are chosen with 
sufficient care (e.g. if adaptive expiry, discussed in Section 2.2, is 
used), thenTBV exposures only occur for a minority of the invisible 
objects, and TBV expiries become less frequent with time. 

Static objects may be regarded as dynamic objects with zero 
velocity. However, visible dynamic objects are updated at every 
frame, and it would be undesirable to ‘update’ visible static objects 
in the same way, especially if this update takes place over a slow 

network (although relatively few of the static objects may be visi- 
ble). Therefore the algorithm treats static objects differently from 
dynamic ones. 

4 Current status and ongoing work 
We have implemented the extension of the hierarchical Z-buffer 
algorithm to dynamic scenes, discussed in Section 2.2. The cx- 
perimental results reported in that section were obtained using this 
implementation. Currently the system executes on a single work- 
station: the viewpoint moves through the scene at the user’s control 
or along a preset trajectory, and all the other users are simulated by 
the program. 

We have also implemented the BSP tree based algorithm de- 
scribed in Section 3. Generally, it performs slower than the octrce 
based algorithm, due to the high overhead incurred by the numerl- 
cal calculations involved in BSP tree operations. However, it does 
exhibit the same output-sensitivity with respect to the number of 
dynamic objects as the octree based algorithm. Its performance 
is almost independent of the number of hidden dynamic objects, 
whereas the more ndive algorithm of uniting all the objects into a 
BSP tree of the whole scene, described in Section 2.3, needlessly 
spends time on these objects. 

Ongoing work includes the implementation a distributed, multi- 
user virtual environmentthat uses similar concepts to optimize both 
rendering and communication. A working prototype is expected 
shortly. 

Acknowledgements 
Wearegrateful toGershonElberforhiskindassistance with thelRLf 
solid modeler, which was used in the extension of the hierarchical 
Z-buffer algorithm to dynamic scenes. 



REFERENCES 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

P K. Agarwal, J. Erickson, and L. J. Guibas. Ki- 
netic binary space partitions for intersecting segments 
and disjoint triangles. (http: //www. cs . duke. edu/ 
“pankaj/papers/kinetic-3d.ps. gz). Submitted to 
FOCS 97, Apr. 1997. 

J. W. Barrus, R. C. Waters, and D. B. Anderson. Locales and 
beacons: Efficient and precise support for large multi-user 
virtual environments. TecbnicalReport TR-95-16, Mitsubishi 
Electric Research Laboratories Cambridge Research Center, 
201 Broadway, Cambridge, MA 02139, Nov. 1995. 

C. Carlssonand 0. Hagsand. DIVE-a platform for multi-user 
virtual environments. Computers & Graphics, 17(6):663-669, 
1993. 

Y. Chrysanthou and M. Slater. Computing dynamic changes 
to BSP trees. In Proceedings of Eurographics ‘92, pages 
321-332,Cambridge,U.K., Sept. 1992.BlackwellPublishers. 
Computer Graphics Forum, ll(3). 

Y Chrysanthou and M. Slater. Shadow volume BSP trees for 
computation of shadows in dynamic scenes. In Proceedings 
of the 1995 Symposium on Interactive 3D Graphics, pages 
45-50, Monterey, California, Apr. 1995. ACM SIGGRAPH. 

S. Coorg and S. Teller. A spatially and temporally coherent 
object space visibility algorithm. Technical Report TM-546, 
MIT, Feb. 1996. 

R. A. Earnshaw, N. Chilton, and I. J. Palmer. Visualization 
and virtual reality on the Internet. In Proceedings of the V&u- 
alizution Conference, Jerusalem, Israel, Nov. 1995. 

T. A. Funkhouser. RING Aclient-serversystemformulti-user 
virtual environments. In Proceedings of the 199.5 Symposium 
on Interactive 30 Graphics, pages 85-92, Monterey, Califor- 
nia, Apr. 1995. ACM SIGGRAPH. 

A. S. Glassner. Spacetime ray tracing for animation. IEEE 
Computer Graphics and Applications, pages 6570, Mar 
1988. 

N. Greene. Hierarchical polygon tiling with coverage masks. 
In SIGGRAPH ‘96 Conference Proceedings, pages 65-74, 
New Orleans, Louisiana, Aug. 1996. ACM Computer Graph- 
ics, 30(4). 

N. Greene, M. Kass, and G. Miller. Hierarchical Z-buffer 
visibility. In SIGGRAPH ‘93 ConferenCe Proceedings, pages 
231-238, Anaheim, California, Aug. 1993. ACM Computer 
Graphics, 27(4). 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

0. Hagsand. Interactive multiuser VEs in the DIVE system. 
IEEEMultiMedia, 3(1):30-39, Spring 1996. 

R S. Heckbert and M. Garland. Multiresolution modeling 
for fast rendering. In Proceedings of Graphics Znterjke ‘94, 
Banff, Alberta, May 1994. 

M. R. Maccdonia,D. P. Brutzman, M. J. Zyda, D. R. Pratt, PT. 
Barham, J. Falby, and 3. Locke. NPSNET: A multi-player 3D 
virtual environment over the Internet. In Proceedings of the 
1995 Symposium on Interactive 30 Graphics, pages 93-94, 
Monterey, California, Apr. 1995. ACM SIGGRAPH. 

B. F. Naylor. Partitioning tree image representation and gener- 
ation from 3D geometric models. In Proceedingsof Graphics 
Inter&e ‘92, pages 201-212, Vancouver, May 1992. 

B. F. Naylor. Constructing good partitioning trees. In Pro- 
ceedings of Graphics Interface ‘93, pages 181-191, Toronto, 
May 1993. 

B. F. Naylor, J. Amanatides, and W. C. Thibauh. Merging 
BSP trees yields polyhedral set operations. In SIGGRAPH ‘90 
Conference Proceedings, pages 115-124, Dallas, Aug. 1990. 
ACM Computer Graphics, 24(4). 

Silicon Graphics, Inc. Cosmo Software. (http: //cosmo. 
sgi. corn/). 

Sony Corporation. Virtual Society on the Web. (ht!p: 
//sonypic. com/vs/). 

0. Sudarsky and C. Gotsman. Output-sensitive visibility al- 
gorithms for dynamic scenes with applications to virtual re- 
ality. In Proceedings of Eurographics ‘96, Poitiers, France, 
Aug. 1996.BlackwellPublishers. ComputerGraphics Forum, 
X(3). 

W. C. Thibault and B. F. Naylor. Set operations on polyhe- 
dra using binary space partitioning trees. In SIGGRAPH ‘87 
Conference Proceedings, pages 153-162, July 1987. ACM 
Computer Graphics, 21(4). 

E. Torres. Optimization of the binary space partition algorithm 
(BSP) for the visualization of dynamic scenes. In Proceedings 
of Eurographics ‘90, pages 507-518, Montreux, Switzerland, 
Sept. 199O.Elsevier SciencePublishersB.V. (North-Holland). 

WorldsInc. Worlds Chatm. (http: //www.worlds -net/ 
products/wchat/). 


