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Abstract. In this work, we study protocols (i.e. distributed algorithms) so that populations of dis-
tributed processes can construct networks. In order to highlight the basic principles of distributed
network construction we keep the model minimal in all respects. In particular, we assume finite-state
processes that all begin from the same initial state and all execute the same protocol (i.e. the system is
homogeneous). Moreover, we assume pairwise interactions between the processes that are scheduled by
an adversary. The only constraint on the adversary scheduler is that it must be fair, intuitively meaning
that it must assign to every reachable configuration of the system a non-zero probability to occur. In
order to allow processes to construct networks, we let them activate and deactivate their pairwise con-
nections. When two processes interact, the protocol takes as input the states of the processes and the
state of their connection and updates all of them. In particular, in every interaction, the protocol may
activate an inactive connection, deactivate an active one, or leave the state of a connection unchanged.
Initially all connections are inactive and the goal is for the processes, after interacting and activat-
ing/deactivating connections for a while, to end up with a desired stable network (i.e. one that does
not change any more). We give protocols (optimal in some cases) and lower bounds for several basic
network construction problems such as spanning line, spanning ring, spanning star, and reqular network.
We provide proofs of correctness for all of our protocols and analyze the expected time to convergence
of most of them under a uniform random scheduler that selects the next pair of interacting processes
uniformly at random from all such pairs. Finally, we prove several universality results by presenting
generic protocols that are capable of simulating a Turing Machine (TM) and exploiting it in order to
construct a large class of networks. Our universality protocols use a subset of the population (waste)
in order to distributedly construct there a TM able to decide a graph class in some given space. Then,
the protocols repeatedly construct in the rest of the population (useful space) a graph equiprobably
drawn from all possible graphs. The TM works on this and accepts if the presented graph is in the
class. We additionally show how to partition the population into k supernodes, each being a line of log k
nodes, for the largest such k. This amount of local memory is sufficient for the supernodes to obtain
unique names and exploit their names and their memory to realize nontrivial constructions. Delicate
composition and reinitialization issues have to be solved for these general constructions to work.

Keywords: distributed network construction, stabilization, homogeneous population, distributed
protocol, interacting automata, fairness, random schedule, structure formation, self-organization

1 Introduction

1.1 Motivation

Suppose a set of tiny computational devices (possibly at the nanoscale) is injected into a human cir-
culatory system for the purpose of monitoring or even treating a disease. The devices are incapable
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of controlling their mobility. The mobility of the devices, and consequently the interactions between
them, stems solely from the dynamicity of the environment, the blood flow inside the circulatory
system in this case. Additionally, each device alone is incapable of performing any useful compu-
tation, as the small scale of the device highly constrains its computational capabilities. The goal
is for the devices to accomplish their task via cooperation. To this end, the devices are equipped
with a mechanism that allows them to create bonds with other devices (mimicking nature’s ability
to do so). So, whenever two devices come sufficiently close to each other and interact, apart from
updating their local states, they may also become connected by establishing a physical connection
between them. Moreover, two connected devices may at some point choose to drop their connection.
In this manner, the devices can organize themselves into a desired global structure. This network-
constructing self-assembly capability allows the artificial population of devices to evolve greater
complexity, better storage capacity, and to adapt and optimize its performance to the needs of the
specific task to be accomplished.

1.2 Our Approach

In this work, we study the fundamental problem of network construction by a distributed computing
system. The system consists of a set of processes that are capable of performing local computation
(via pairwise interactions) and of forming and deleting connections between them. Connections
between processes can be either physical or wvirtual depending on the application. In the most
general case, a connection between two processes can be in one of a finite number of possible states.
For example, state 0 could mean that the connection does not exist while state i € {1,2,...,k},
for some finite k, that the connection exists and has strength i. We consider here the simplest case,
which we call the on/off case, in which, at any time, a connection can either exist or not exist, that
is there are just two states for the connections. If a connection exists we also say that it is active
and if it does not exist we say that it is inactive. Initially all connections are inactive and the goal
is for the processes, after interacting and activating/deactivating connections for a while, to end up
with a desired stable network. In the simplest case, the output-network is the one induced by the
active connections and it is stable when no connection changes state any more.

Our aim in this work is to initiate this study by proposing and studying a very simple, yet
sufficiently generic, model for distributed network construction. To this end, we assume the com-
putationally weakest type of processes. In particular, the processes are finite automata that all
begin from the same initial state and all execute the same finite program which is stored in their
memory (i.e. the system is homogeneous). The communication model that we consider is also very
minimal. In particular, we consider processes that are inhabitants of an adversarial environment
that has total control over the inter-process interactions. We model such an environment by an
adversary scheduler that operates in discrete steps selecting in every step a pair of processes which
then interact according to the common program. This represents very well systems of (not neces-
sarily computational) entities that interact in pairs whenever two of them come sufficiently close to
each other. When two processes interact, the program takes as input the states of the interacting
processes and the state of their connection and outputs a new state for each process and a new
state for the connection. The only restriction that we impose on the scheduler in order to study the
constructive power of the model is that it is fair, by which we mean the weak requirement that,
at every step, it assigns to every reachable configuration of the system a non-zero probability to
occur. In other words, a fair scheduler cannot forever conceal an always reachable configuration
of the system. Note that such a generic scheduler gives no information about the running time of



our constructors. Thus, to estimate the efficiency of our solutions we assume a uniform random
scheduler, one of the simplest fair probabilistic schedulers. The uniform random scheduler selects
in every step independently and uniformly at random a pair of processes to interact from all such
pairs. What renders this model interesting is its ability to achieve complex global behavior via a
set of notably simple, uniform (i.e. with codes that are independent of the size of the system),
homogeneous, and cooperative entities.

We now give a simple illustration of the above. Assume a set of n very weak processes that can
only be in one of two states, “black” or “red”. Initially, all processes are black. We can think of
the processes as small particles that move randomly in a fair solution. The particles are capable of
forming and deleting physical connections between them, by which we mean that, whenever two
particles interact, they can read and write the state of their connection. Moreover, for simplicity of
the model, we assume that fairness of the solution is independent of the states of the connections.
This is in contrast to schedulers that would take into account the geometry of the active connections
and would, for example, forbid two non-neighboring particles of the same component to interact
with each other. In particular, we assume that throughout the execution every pair of processes
may be selected for interaction. Consider now the following simple problem. We want to identically
program the initially disorganized particles so that they become self-organized into a spanning star.
In particular, we want to end up with a unique black particle connected (via active connections) to
n — 1 red particles and all other connections (between red particles) being inactive. Equivalently,
given a (possibly physical) system that tends to form a spanning star we would like to unveil the
code behind this behavior. Consider the following program. When two black particles that are not
connected interact, they become connected and one of them becomes red. When two connected red
particles interact they become disconnected (i.e. reds repel). Finally, when a black and a red that
are not connected interact they become connected (i.e. blacks and reds attract). The protocol forms
a spanning star as follows. As whenever two blacks interact only one survives and the other becomes
red, eventually a unique black will remain and all other particles will be red (we say “eventually”,
meaning “in finite time”, because we do not know how much time it will take for all blacks to meet
each other but from fairness we know that this has to occur in a finite number of steps). As blacks
and reds attract while reds repel, it is clear that eventually the unique black will be connected to
all reds while every pair of reds will be disconnected. Moreover, no rule of the program can modify
such a configuration thus the constructed spanning star is stable (see Figure . It is worth noting
that this very simple protocol is optimal both w.r.t. to the number of states that it uses and w.r.t.
to the time it takes to construct a stable spanning star under the uniform random scheduler.

Our model for network construction is strongly inspired by the Population Protocol model
[AADT06] and the Mediated Population Protocol model [MCS11a)]. In the former, connections do
not have states. States on the connections were first introduced in the latter. The main difference
to our model is that in those models the focus was on the computation of functions of some input
values and not on network construction. Another important difference is that we allow the edges
to choose between only two possible states which was not the case in [MCS1lal. Interestingly,
when operating under a uniform random scheduler, population protocols are formally equivalent
to chemical reaction networks (CRNs) which model chemistry in a well-mized solution [Dotl14].
CRNSs are widely used to describe information processing occurring in natural cellular regulatory
networks, and with upcoming advances in synthetic biology, CRNs are a promising programming
language for the design of artificial molecular control circuitry. However, CRNs and population
protocols can only capture the dynamics of molecular counts and not of structure formation. Our
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Fig. 1. (a) Initially all particles are black and no active connections exist. (b) After a while, only 3 black particles
have survived each having a set of red neighbors (red particles appear as gray here). Note that some red particles are
also connected to red particles. The tendency is for the red particles to repel red particles and attract black particles.
(¢) A unique black has survived, it has attracted all red particles, and all connections between red particles have been
deactivated. The construction is a stable spanning star.

model then may also be viewed as an extension of population protocols and CRNs aiming to capture
the stable structures that may occur in a well-mixed solution. From this perspective, our goal is to
determine what stable structures can result in such systems (natural or artificial), how fast, and
under what conditions (e.g. by what underlying codes/reaction-rules). Most computability issues
in the area of population protocols have now been resolved. Finite-state processes on a complete
interaction network, i.e. one in which every pair of processes may interact, (and several variations)
compute the semilinear predicates [AAEROT]. Semilinearity persists up to o(loglogn) local space
but not more than this [CMNT11]. If additionally the connections between processes can hold a
state from a finite domain (note that this is a stronger requirement than the on/off that the present
work assumes) then the computational power dramatically increases to the commutative subclass
of NSPACE(n?) [MCST1al. Other important works include [GR09] which equipped the nodes of
population protocols with unique ids and [BBCK10] which introduced a (weak) notion of speed of
the nodes that allowed the design of fast converging protocols with only weak requirements. For a
very recent introductory text see [MCS11b].

The paper essentially consists of two parts. In the first part, we give simple (i.e. small) and effi-
cient (i.e. polynomial-time) protocols for the construction of several fundamental networks. In par-
ticular, we give protocols for spanning lines, spanning rings, cycle-covers, partitioning into cliques,
and regular networks (formal definitions of all problems considered can be found in Section .
We remark that the spanning line problem is of outstanding importance because it constitutes a
basic ingredient of universal constructors. We give three different protocols for this problem each
improving on the running time but using more states to this end. Additionally, we establish a
2(nlogn) generic lower bound on the expected running time of all constructors that construct a
spanning network and a §2(n?) lower bound for the spanning line, where n throughout this work
denotes the number of processes. Our fastest protocol for the problem runs in O(n?) expected time
and uses 9 states while our simplest uses only 5 states but pays in an expected time which is be-
tween 2(n*) and O(n®). In the second part, we investigate the more generic question of what is in
principle constructible by our model. We arrive there at several satisfactory characterizations estab-
lishing some sort of universality of the model. The main idea is as follows. To construct a decidable



graph-language L we (i) construct on k of the processes (called the waste) a network G capable
of simulating a Turing Machine (abbreviated “TM” throughout the paper) and of constructing a
random network on the remaining n — k processes (called the useful space), (ii) use G to construct
a random network Go € G,,_j 1/2 on the remaining n — k processes, (iii) execute on G the TM
that decides L with Gy as input. If the TM accepts, then we output G2 (note that this is not a
terminating step - the reason why will become clear in Section [6} the protocol just freezes and its
output forever remains G2), otherwise we go back to (ii) and repeat. Using this core idea we prove
several universality results for our model. Additionally, we show how to organize the population
into a distributed system with names and logarithmic local memories.

In Section 2| we discuss further related literature. Section [3| brings together all definitions and
basic facts that are used throughout the paper. In particular, in Section [3.1 we formally define the
model of network constructors, Section [3.2] formally defines all network construction problems that
are considered in this work, and in Section we identify and analyze a set of basic probabilistic
processes that are recurrent in the analysis of the running times of network constructors. In Section
[ we study the spanning line problem. In Section [5 we provide direct constructors for all the other
basic network construction problems. Section [6] presents our universality results. Finally, in Section
[l we conclude and give further research directions that are opened by our work.

2 Further Related Work

Algorithmic Self-Assembly. There are already several models trying to capture the self-assembly
capability of natural processes with the purpose of engineering systems and developing algorithms
inspired by such processes. For example, [Dotl2] proposes to learn how to program molecules
to manipulate themselves, grow into machines and at the same time control their own growth.
The research area of “algorithmic self-assembly” belongs to the field of “molecular computing”.
The latter was initiated by Adleman [Adl94], who designed interacting DNA molecules to solve
an instance of the Hamiltonian path problem. The model guiding the study in algorithmic
self-assembly is the Abstract Tile Assembly Model (aTAM) [Win98, RW00| and variations.
In contrast to those models that try to incorporate the exact molecular mechanisms (like e.g.
temperature, energy, and bounded degree), we propose a very abstract combinatorial rule-based
model, free of specific application-driven assumptions, with the aim of revealing the fundamental
laws governing the distributed (algorithmic) generation of networks. Our model may serve as a
common substructure to more applied models (like assembly models or models with geometry
restrictions) that may be obtained from our model by imposing restrictions on the scheduler, the
degree, and the number of local states (see Section [7|for several interesting variations of our model).

Distributed Network Construction. To the best of our knowledge, classical distributed
computing has not considered the problem of constructing an actual communication network
from scratch. From the seminal work of Angluin |[Ang80] that initiated the theoretical study
of distributed computing systems up to now, the focus has been more on assuming a given
communication topology and constructing a virtual network over it, e.g. a spanning tree for
the purpose of fast dissemination of information. Moreover, these models assume most of the
time unique identities, unbounded memories, and message-passing communication. Additionally,
a process always communicates with its neighboring processes (see [Lyn96] for all the details).
An exception is the area of geometric pattern formation by mobile robots (cf. [SY99, DFSY10]



and references therein). A great difference, though, to our model is that in mobile robotics
the computational entities have complete control over their mobility and thus over their future
interactions. That is, the goal of a protocol is to result in a desired interaction pattern while
in our model the goal of a protocol is to construct a network while operating under a totally
unpredictable interaction pattern. Very recently, a model inspired by the behavior of ameba that
allows algorithmic research on self-organizing particle systems was proposed [DGRS13]. The goal
is for the particles to self-organize in order to adapt to a desired shape without any central control,
which is quite similar to our objective, however the two models seem two have little in common.
In the same work, the authors observe that, in contrast to the considerable work that has been
performed w.r.t. to systems (e.g. self-reconfigurable robotic systems), only very little theoretical
work has been done in this area. This further supports the importance of introducing a simple yet
sufficiently generic model for distributed network construction, as we do in this work.

Cellular Automata. A cellular automaton (cf. e.g. [Sch1l]) consists of a grid of cells each cell
being a finite automaton. A cell updates its own state by reading the states of its neighboring cells
(e.g. 2 in the 1-dimensional case and 4 in the 2-dimensional case). All cells may perform the updates
in discrete synchronous steps or updates may occur asynchronously. Cellular automata have been
used as models for self-replication, for modeling several physical systems (e.g. neural activity,
bacterial growth, pattern formation in nature), and for understanding emergence, complexity, and
self-organization issues. Though there are some similarities there are also significant differences
between our model and cellular automata. One is that in our model the interaction pattern is
nondeterministic as it depends on the scheduler and a process may interact with any other process
of the system and not just with some predefined neighbors. Moreover, our model has a direct
capability of forming networks whereas cellular automata can form networks only indirectly (an
edge between two cells u and v has to be represented as a line of cells beginning at u, ending at v
and all cells on the line being in a special edge-state). In fact, cellular automata are more suitable
for studying the formation of patterns on e.g. a discrete surface of static cells while our model is
more suitable for studying how a totally dynamic (e.g. mobile) and initially disordered collection
of entities can self-organize into a network.

Social Networks. There is a great amount of work dealing with networks formed by a group of
interacting individuals. Individuals, also called players, which may, for example, be people, animals,
or companies, depending on the application, usually have incentives and connections between
individuals indicate some social relationship, like for example friendship. The network is formed
by allowing the individuals to form or delete connections usually selfishly by trying to maximize
their own utility. The usual goal there is to study how the whole network affects the outcome of a
specific interaction, to predict the network that will be formed by a set of selfish individuals, and to
characterize the quality of the network formed (e.g. its efficiency). See e.g. [Jac05, BEK™13|. This
is a game-theoretic setting which is very different from the setting considered here as the latter
does not include incentives and utilities. Another important line of research considers random
social networks in which new links are formed according to some probability distribution. For
example, in [BA99] it was shown that growth and preferential attachment that characterize a great
majority of social networks (like, for example, the Internet) results in scale-free properties that are
not predicted by the Erdds-Rényi random graph model [ER59, Bol01]. Though, in principle, we
allow processes to perform a coin tossing during an interaction, our focus is not on the formation



of a random network but on cooperative (algorithmic) construction according to a common
set of rules. In summary, our model looks more like a standard dynamic distributed computing
system in which the interacting entities are computing processes that all execute the same program.

Network Formation in Nature. Nature has an intrinsic ability to form complex structures
and networks via a process known as self-assembly. By self-assembly, small components (like e.g.
molecules) automatically assemble into large, and usually complex structures (like e.g. a crystal).
There is an abundance of such examples in the physical world. Lipid molecules form a cell’s mem-
brane, ribosomal proteins and RNA coalesce into functional ribosomes, and bacteriophage virus
proteins self-assemble a capsid that allows the virus to invade bacteria [Dot12]. Mixtures of RNA
fragments that self-assemble into self-replicating ribozymes spontaneously form cooperative cat-
alytic cycles and networks. Such cooperative networks grow faster than selfish autocatalytic cycles
indicating an intrinsic ability of RNA populations to evolve greater complexity through cooperation
[VMC™12]. Through billions of years of prebiotic molecular selection and evolution, nature has pro-
duced a basic set of molecules. By combining these simple elements, natural processes are capable
of fashioning an enormously diverse range of fabrication units, which can further self-organize into
refined structures, materials and molecular machines that not only have high precision, flexibility
and error-correction capacity, but are also self-sustaining and evolving. In fact, nature shows a
strong preference for bottom-up design.

Systems and solutions inspired by nature have often turned out to be extremely practical and
efficient. For example, the bottom-up approach of nature inspires the fabrication of biomaterials by
attempting to mimic these phenomena with the aim of creating new and varied structures with novel
utilities well beyond the gifts of nature [Zha03]. Moreover, there is already a remarkable amount
of work envisioning our future ability to engineer computing and robotic systems by manipulating
molecules with nanoscale precision. Ambitious long-term applications include molecular computers
[BPS™10] and miniature (nano)robots for surgical instrumentation, diagnosis and drug delivery in
medical applications (e.g. it has very recently been reported that DNA nanorobots could even kill
cancer cells [DBC12]) and monitoring in extreme conditions (e.g. in toxic environments). However,
the road towards this vision passes first through our ability to discover the laws governing the
capability of distributed systems to construct networks. The gain of developing such a theory will
be twofold: It will give some insight to the role (and the mechanisms) of network formation in the
complexity of natural processes and it will allow us engineer artificial systems that achieve this
complexity.

3 Preliminaries

3.1 A Model of Network Constructors

Definition 1. A Network Constructor (NET) is a distributed protocol defined by a 4-tuple
(@, q0, Qout, 0), where Q is a finite set of node-states, qop € @ is the initial node-state, Qo C Q is
the set of output node-states, and 6 : Q@ x @ x {0,1} — Q x Q x {0,1} is the transition function.

If 6(a,b,c) = (d,¥,c), we call (a,b,c) — (a',V/,c) a transition (or rule) and we define
0(a,b,¢) = d, da(a,b,c) = b, and d3(a,b,¢) = . A transition (a,b,c) — (da’,b',) is called
effective if x # 2’ for at least one = € {a,b,c} and ineffective otherwise. When we present the
transition function of a protocol we only present the effective transitions. Additionally, we agree
that the size of a protocol is the number of its states, i.e. |Q|.



The system consists of a population V; of n distributed processes (also called nodes when clear
from context). In the generic case, there is an underlying interaction graph Gy = (Vr, Er) specifying
the permissible interactions between the nodes. Interactions in this model are always pairwise. In
this work, Gy is a complete undirected interaction graph, i.e. E = {uv : u,v € V7 and u # v},
where uv = {u,v}. Initially, all nodes in V; are in the initial node-state qo.

A central assumption of the model is that edges have binary states. An edge in state 0 is said
to be inactive while an edge in state 1 is said to be active. All edges are initially inactive.

Execution of the protocol proceeds in discrete steps. In every step, a pair of nodes uwv from
E is selected by an adversary scheduler and these nodes interact and update their states and the
state of the edge joining them according to the transition function ¢. In particular, we assume that,
for all distinct node-states a,b € @ and for all edge-states ¢ € {0,1}, ¢ specifies either (a,b,c) or
(b,a,c). So, if a, b, and ¢ are the states of nodes u, v, and edge uv, respectively, then the unique
rule corresponding to these states, let it be (a,b,¢) — (a’,V', ), is applied, the edge that was in
state ¢ updates its state to ¢’ and if a # b, then u updates its state to @’ and v updates its state to
b, if a = b and o’ =/, then both nodes update their states to a’, and if a = b and a’ # ¥’, then the
node that gets a’ is drawn equiprobably from the two interacting nodes and the other node gets b'.

A configuration is a mapping C' : V; U E; — Q U {0,1} specifying the state of each node
and each edge of the interaction graph. Let C' and C’ be configurations, and let u, v be distinct
nodes. We say that C' goes to C' via encounter e = uv, denoted C' = C', if (C'(u), C’(v),C'(e)) =
5(C(u),C(v),C(e)) or (C'(v),C"(u),C'(e)) = 6(C(v),C(u),C(e)) and C'(z) = C(z), for all z €
(Vi\{u,v})U(Er\{e}). We say that C’ is reachable in one step from C, denoted C' — C',if C' 5 "
for some encounter e € E;. We say that C’ is reachable from C and write C' ~ C’, if there is a
sequence of configurations C' = Cy, C1,...,Cy = C’, such that C; — C;yq for all 4, 0 < i < t.

An execution is a finite or infinite sequence of configurations Cy, Cy, Cs, ..., where Cp is an
initial configuration and C; — C;y1, for all i > 0. A fairness condition is imposed on the adversary
to ensure the protocol makes progress. An infinite execution is fair if for every pair of configurations
C and C’ such that C — C’, if C occurs infinitely often in the execution then so does C’. In what
follows, every execution of a NET will by definition considered to be fair.

We define the output of a configuration C as the graph G(C) = (V, E) where V = {u € V7 :
C(u) € Qout} and E = {uv : u,v € V, u # v, and C(uv) = 1}. In words, the output-graph of a
configuration consists of those nodes that are in output states and those edges between them that
are active, i.e. the active subgraph induced by the nodes that are in output states. The output of an
execution Cy, C1, . .. is said to stabilize (or converge) to a graph G if there exists some step ¢ > 0 s.t.
G(C;) = G for all i > t, i.e. from step ¢ and onwards the output-graph remains unchanged. Every
such configuration Cj, for i > ¢, is called output-stable. The running time (or time to convergence)
of an execution is defined as the minimum such ¢ (or oo if no such ¢ exists). Throughout the paper,
whenever we study the running time of a NET, we assume that interactions are chosen by a uniform
random scheduler which, in every step, selects independently and uniformly at random one of the
|Er| = n(n — 1)/2 possible interactions. In this case, the running time becomes a random variable
(abbreviated “r.v.”) X and our goal is to obtain bounds on the expectation E[X] of X. Note that
the uniform random scheduler is fair with probability 1.

Definition 2. We say that an execution of a NET on n processes constructs a graph (or network)
G, if its output stabilizes to a graph isomorphic to G.

Definition 3. We say that a NET A constructs a graph language L with useful space g(n) < n, if
g(n) is the greatest function for which: (i) for all n, every execution of A on n processes constructs



a G € L of order at least g(n) (provided that such a G exists) and, additionally, (ii) for all G € L
there is an execution of A on n processes, for some n satisfying |V (G)| > g(n), that constructs G.
Equivalently, we say that A constructs L with waste n — g(n).

Definition 4. Define REL(g(n)) to be the class of all graph languages that are constructible with
useful space g(n) by a NET. We call REL(-) the relation or on/off class.

Also define PREL(g(n)) in precisely the same way as REL(g(n)) but in the extension of
the above model in which every pair of processes is capable of tossing an unbiased coin during
an interaction between them. In particular, in the weakest probabilistic version of the model, we
allow transitions that with probability 1/2 give one outcome and with probability 1/2 another.
Additionally, we require that all graphs have the same probability to be constructed by the protocol.

We denote by DGS(f(1)) (for “Deterministic Graph Space”) the class of all graph languages
that are decidable by a TM of (binary) space f(l), where [ is the length of the adjacency matrix
encoding of the input graph.

3.2 Problem Definitions

We here provide formal definitions of all the network construction problems that are considered in
this work. Protocols and bounds for these problems are presented in Sections {4f and

Global line. The goal is for the n distributed processes to construct a spanning line, i.e. a
connected graph in which 2 nodes have degree 1 and n — 2 nodes have degree 2.

Cycle cover. Every process in V; must eventually have degree 2. The result is a collection of
node-disjoint cycles spanning V7.

Global star. The processes must construct a spanning star, i.e. a connected graph in which
1 node, called the center, has degree n—1 and n—1 nodes, called the peripheral nodes, have degree 1.

Global ring. The processes must construct a spanning ring, i.e. a connected graph in which every
node has degree 2.

k-regular connected. The generalization of global ring in which every node has degree k > 2
(note that k is a constant and a protocol for the problem must run correctly on any number n of
processes).

c-cliques. The processes must partition themselves into |n/c| cliques of order ¢ each (again c is a
constant).

Replication. The protocol is given an input graph G = (V, E) on a subset V; of the processes
(IVi] = |V|). The processes in V; are initially in state go and the edges of E are the active edges
between them. All other edges in Ej are initially inactive. The processes in Vo = V;\V; are initially
in state 9. The goal is to create a replica of G on Va, provided that V2| > |Vi]|. Formally, we want,
in every execution, the output induced by the active edges between the nodes of V5 to stabilize to
a graph isomorphic to G.



3.3 Basic Probabilistic Processes

We now present a set of very fundamental probabilistic processes that are recurrent in the
analysis of the running times of network constructors. All these processes assume a uniform
random scheduler and are applications of the standard coupon collector problem. In most of these
processes, we ignore the states of the edges and focus only on the dynamics of the node-states,
that is we consider rules of the form § : Q x Q — @ x Q. Throughout this section, we call a step
a success if an effective rule applies on the interacting nodes and we denote by X the r.v. of the
running time of the processes.

One-way epidemic. Consider the protocol in which the only effective transition is (a,b) — (a,a).
Initially, there is a single @ and n — 1 bs and we want to estimate the expected number of steps
until all nodes become as.

Proposition 1. The expected time to convergence of a one-way epidemic (under the uniform ran-
dom scheduler) is ©(nlogn).

Proof. Let X be a r.v. defined to be the number of steps until all n nodes are in state a. Call a
step a success if an effective rule applies and a new a appears on some node. Divide the steps of the
protocol into epochs, where epoch i begins with the step following the (i — 1)st success and ends
with the step at which the ith success occurs. Let also the r.v. X;, 1 < i < n — 1 be the number
of steps in the i-th epoch. Let p; be the probability of success at any step during the i-th epoch.

We have p; = =0 — ii(%:g, where m = |Ej| = n(n — 1)/2 denotes the total number of possible

interactions and E[X;] = 1/p; = ;LZ(& :11; By linearity of expectation we have
n—1 n—1 n—1 n—1
nn—1) n(n—1) 1
E|X|=E Xl = EX;| = - < = - -
[X] [Z ] Z i =, 2i(n = 1) 2 i)
=1 =1 =1 =1
n—1 n—1 n—1
Can-1&1 /1 1\ (n—1) 1 1
2 ;n(z’+n—z’>_ 2 z;z+z;n—z
—1
_n 3 Vot 1 = (n—1)[In(n — 1)+ 6(1),
= O(nlogn),

where H,, denotes the nth Harmonic number.

One-to-one elimination. All nodes are initially in state a. The only effective transition of the
protocol is (a,a) — (a,b). We are now interested in the expected time until a single a remains.
We call the process one-to-one elimination because as are only eliminated with themselves. A
straightforward application is in protocols that elect a unique leader by beginning with all nodes
in the leader state and eliminating a leader whenever two leaders interact.

Proposition 2. The expected time to convergence of a one-to-one elimination is ©(n?).
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Proof. Epoch i begins with the step following the ith success and ends with the step at which the
(¢ + 1)st success occurs. The probability of success during the ith epoch, for 0 < i < n — 2, is
pi =[(n—i)(n—i—1)/2]/[n(n —1)/2] = [(n —i)(n —i —1)]/[n(n — 1)] and

n—2 n

1 1 - 1
EX]=ntn=1)) oy =" V2 oy <0 D oy

=0 =2 =2

n—1

:n(n—l)z%<n(n—1)(1—l)<n2.

; n
=1

The above uses the fact that 377! 1/i% is bounded from above by (1 — 1/n). This holds because
yrl1/i? < Jr . (1)sP)ds = [—s _1] =1-1/n.

Now for the lower bound, observe that the last two as need on average n(n — 1)/2 steps to
meet each other. As n(n —1)/2 < E[X] < n?, we conclude that E[X] = O(n?). O

A slight variation of the one-to-one elimination protocol constructs a mazimum matching, i.e.
a matching of cardinality |n/2] (which is a perfect matching in case n is even). The variation
is (a,a,0) — (b,b,1) and the running time of a one-to-one elimination, i.e. ©(n?), is an upper
bound on this variation. For the lower bound, notice that when only two (or three) as remain the
expected number of steps for a success is n(n —1)/2 (n(n — 1)/6, respectively), that is the running
time is also £2(n?). We conclude that there is a protocol that constructs a maximum matching in
an expected number of ©(n?) steps.

One-to-all elimination. All nodes are initially in state a. The effective rules of the protocol are
(a,a) — (b,a) and (a,b) — (b,b). We are now interested in the expected time until no a remains.
The process is called one-to-all elimination because as are eliminated not only when they interact
with as but also when they interact with bs. At a first sight, it seems to run faster than a one-way
epidemic as bs still propagate towards as as in a one-way epidemic but now bs are also created when
two as interact. We show that this is not the case.

Proposition 3. The expected time to convergence of a one-to-all elimination is ©(nlogn).

Proof. The probability of success during the ith epoch, for 0 < i < n—1,isp; = 1 — [i(i —

1)/2]/In(n = 1)/2] = [n(n = 1) —i(i = 1)]/[n(n — 1)] and
BlX] n—lz n—l—z(z—l)

1=0

For the upper bound, we have

n—1 1 n—2 1 n
E|X] = —1 < -1 —
[X] = n(n );n(n—l)—i(i—l) n(n )Lzo(n—l)Q—zZ 3
n—2 n—2 n—1 2n—3 n—2
n 1 1 n 1 1 1
2<Zn—i—1+2n+z’—1+> 2(, Pt Zz+>
i=0 i=0 i=1 =1 =1
n 1 3 n n n
- ol =g, e
2<n—1+;i+> PR R ey

n(Han + 1) = n[ln2n + O(1)].
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For the lower bound, we have

n—1 n—1
1 1
E[X]| = -1 -1
X} =n(n >z:0n(n—1)—z(z—1)>”(” )§n2—(i—1)2
n—1 n—1
n—1 1 1
2 (;n—i+1+zn+z—l>
n+1 2n—2 n—2
n—1 1 1 1
== (Zﬁzz‘ z‘1>
=1 =1 =1
2n—2
n—1 1 1 1 1 n—1
= - — -1 Hyp 9 —1
2 <i1i+n—1+n+n—|—1 >> 5 (Han2—1)
=" n(2n - 2) + 6(1)]
We conclude that E[X] = @(nlogn). O

Meet everybody. A single node w is initially in state a and all other nodes are in state b. The
only effective transition is (a,b) — (a,c). We study the time until all bs become cs which is equal
to the time needed for u to interact with every other node.

Proposition 4. The expected time to convergence of a meet everybody is ©(n?logn).

Proof. Assume that in every step u participates in an interaction. Then w must collect the n — 1
coupons which are n—1 different nodes that it must interact with. Clearly, in every step, every node
has the same probability to interact with u, i.e. 1/(n — 1), and this is the classical coupon collector
problem that takes average time @(nlogn). But on average u needs ©(n) steps to participate in
an interaction, thus the total time is ©(n?logn). O

Node cover. All nodes are initially in state a. The only effective transitions are (a,a) — (b,b),
(a,b) — (b,b). We are interested in the number of steps until all nodes become bs, i.e. the time
needed for every node to interact at least once.

Proposition 5. The expected time to convergence of a node cover is @(nlogn).

Proof. For the upper bound, simply observe that the running time of a one-to-all elimination, i.e.
O(nlogn), is an upper bound on the running time of a node cover. The reason is that a node cover
is a one-to-all elimination in which in some cases we may get two new bs by one effective transition
(namely (a,a) — (b,b)) while in one-to-all elimination all effective transitions result in at most one
new b.

For the lower bound, if 7 is the number of bs then the probability of success is p; = 1 — [i(i —
1)]/[n(n—1)]. Observe now that a node cover process is slower than the artificial variation in which
whenever rule (a,b) — (b,b) applies we pick another a and make it a b. This is because, given i bs,
this artificial process has the same probability of success as a node cover but additionally in every
success the artificial process is guaranteed to produce two new bs while a node cover may in some
cases produce only one new b. Define k = [n/2] + 1. Then, taking into account what we already
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proved in the lower bound of one-to-all elimination (see Proposition , we have

[n/2] 1 n(n—1) k—1
E[X] > -1
X}z n(n—1) ; nn—1)—2i(2i—1) Z < nln 1) wi D
_n(n—l)k_l 1 >n(n—1)kl 1
4 =R -5 —ili—3) 4 k(k-1)—i(i—1)
n(n —1 n—1
> ( )(Hgk_g — 1) > (Hn — 1)
8k
-1
== o[+ 6(1))
We conclude that E[X] = O(nlogn). O

Edge cover. All nodes are in state a throughout the execution of the protocol. The only effective
transition is (a,a,0) — (a,a,1) (we now focus on edge-state updates), i.e. whenever an edge is
found inactive it is activated (recall that initially all edges are inactive). We study the number of
steps until all edges in E; become activated, which is equal to the time needed for all possible
interactions to occur.

Proposition 6. The expected time to convergence of an edge cover is ©(n?logn).

Proof. Given that m = n(n — 1)/2 and given that j successes (i.e. j distinct interactions) have
occurred the corresponding probability for the coupon collector argument is pj = (m — j)/m and
the expected number of steps is E[X] = .7 m/(m — i) = m 317, "/ m—i)=mY" 1/i =
m(Inm + 6(1)) = O(n?logn). Another way to see this is to observe that it is a classical coupon
collector problem with m coupons each selected in every step with probability 1/m, thus E[X] =
mInm + O(m) = O(n?logn). O

Table [1| summarizes the expected time to convergence of each of the above fundamental proba-
bilistic processes.

Protocol Expected Time
One-way epidemic O(nlogn)
One-to-one elimination O(n?)
One-to-all elimination O(nlogn)
Meet everybody O(n?logn)
Node Cover O(nlogn)
Edge cover O(n?logn)

Table 1. Our results for the expected time to convergence of several fundamental probabilistic processes.

4 Constructing a Global Line

In this section, we study probably the most fundamental network-construction problem, which is
the problem of constructing a spanning line. Its importance lies in the fact that a spanning line
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provides an ordering on the processes which can then be exploited (as shown in Section @ to
simulate a TM and thus to establish universality of our model. We give three different protocols for
the spanning line problem each improving on the running time but using more states to this end.

We begin with a generic lower bound holding for all protocols that construct a spanning network.

Theorem 1 (Generic Lower Bound). The expected time to convergence of any protocol that
constructs a spanning network, i.e. one in which every node has at least one active edge incident to
it, is £2(nlogn). Moreover, this is the best lower bound for general spanning networks that we can
hope for, as there is a protocol that constructs a spanning network in ©(nlogn) expected time.

Proof. Consider the time at which the last edge is activated. Clearly, by that time, all nodes must
have some active edge incident to them which implies that every node must have interacted at least
once. Thus the running time is lower bounded by a node cover, which by Proposition [5| takes an
expected number of ©(nlogn) steps.

Now consider the variation of node cover which in every transition that is effective w.r.t. node-
states additionally activates the corresponding edge. In particular, the protocol consists of the rules
(a,a,0) — (b,b,1) and (a,b,0) — (b,b,1). Clearly, when every node has interacted at least once,
or equivalently when all as have become bs, every node has an active edge incident to it, and thus
the resulting stable network is spanning. The reason is that all nodes are as in the beginning,
every node at some point is converted to b, and every such conversion results in an activation of
the corresponding edge. As a node-cover completes in @(nlogn) steps, the above protocol takes
O(nlogn) steps to construct a spanning network. O

We now give an improved lower bound for the particular case of constructing a spanning line.

Theorem 2 (Line Lower Bound). The expected time to convergence of any protocol that con-
structs a spanning line is £2(n?).

Proof. Take any protocol A that constructs a spanning line and any execution of A on n nodes.
Consider the step t at which A performed the last modification of an edge. Observe that the
construction after step ¢t must be a spanning line. We distinguish two cases.

(i) The last modification was an activation. In this case, the construction just before step ¢ was
either a line on n—1 nodes and an isolated node or two disjoint lines spanning all nodes. To see this,
observe that these are the only constructions that can be turned into a line by a single additional
activation. In the first case, the probability of obtaining an interaction between the isolated node
and one of the endpoints of the line is 4/[n(n — 1)] and in the second the probability of obtaining
an interaction between an endpoint of one line and an endpoint of the other line is 8/[n(n —1)]. In
both cases, the expected number of steps until the last edge becomes activated is £2(n?).

(ii) The last modification was a deactivation. This implies that the construction just before step
t was a spanning line with an additional active edge between two nodes, u and v, that are not
neighbors on the line. If one of these nodes, say u, is an internal node, then u has degree 3 and we
can only obtain a line by deactivating one of the edges incident to u. Clearly, the probability of
getting one of these edges is 6/[n(n — 1)] and it is even smaller if both nodes are internal. Thus, if
at least one of u and v is internal, the expected number of steps is £2(n?). It remains to consider the
case in which the construction just before step ¢t was a spanning ring, i.e. the case in which v and v
are the endpoints of the spanning line. In this case, consider the step ¢ < t of the last modification
of an edge that resulted in the ring. To this end notice that all nodes of a ring have degree 2. If ¢/
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was an activation then exactly two nodes had degree 1 and if ¢’ was a deactivation then two nodes
had degree 3. In both cases, there is a single interaction that results in a ring, the probability of
success is 2/[n(n — 1)] and the expectation is again £2(n?). O

We proceed by presenting protocols for the spanning line problem.

4.1 1st Protocol

We present now our simplest protocol for the spanning line problem.

Protocol 1 Simple-Global-Line

Q = {q05q17q27law}

o:
(90, 90,0) — (g1,1,1)
(1,40,0) = (g2,1,1)
(1,1,0) = (g2, w, 1)
(w,q2,1) = (g2, w, 1)
(w,q1,1) = (g2,1,1)

// All transitions that do not appear have no effect

Protocol Simple-Global-Line: (qo,qo0,0) — (q1,0,1), (1,90,0) — (g2,0,1), (1,1,0) — (g2, w,1),
(w,q2,1) = (g2, w, 1), (w,q1,1) = (g2,1,1)

Theorem 3. Protocol Simple-Global-Line constructs a spanning line. It uses 5 states and its ex-
pected running time is 2(n*) and O(n®).

Proof. We begin by proving that, for any number of processes n > 2, the protocol correctly con-
structs a spanning line under any fair scheduler. Then we study the running time of the protocol
under the uniform random scheduler.

Correctness. In the initial configuration Cy, all nodes are in state gg and all edges are inactive,
i.e in state 0. Every configuration C that is reachable from Cj consists of a collection of active
lines and isolated nodes. Additionally, every active line has a unique leader which either occupies
an endpoint and is in state [ or occupies an internal node, is in state w, and moves along the
line. Whenever the leader lies on an endpoint of its line, its state is [ and whenever it lies on an
internal node, its state is w. Lines can expand towards isolated nodes and two lines can connect
their endpoints to get merged into a single line (with total length equal to the sum of the lengths
of the merged lines plus one). Both of these operations only take place when the corresponding
endpoint of every line that takes part in the operation is in state [.

We have to prove two things: (i) there is a set S of output-stable configurations whose active
network is a spanning line, (ii) for every reachable configuration C (i.e. Cy ~» C) it holds that
C ~ Cs for some Cy4 € S. For (i), consider a spanning line, in which the non-leader endpoints
are in state q1, the non-leader internal nodes in g9, and there is a unique leader either in state
[ if it occupies an endpoint or in state w if it occupies an internal node. For (ii), note that any
reachable configuration C' is a collection of active lines with unique leaders and isolated nodes.
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We present a (finite) sequence of transitions that converts C' to a Cs € S. If there are isolated
nodes, take any line and if its leader is internal make it reach one of the endpoints by selecting the
appropriate interactions. Then successively apply the rule (I, qo,0) — (g2,1,1) to expand the line
towards all isolated nodes. Thus we may now w.l.o.g. consider a collection of lines without isolated
nodes. By successively applying the rule (I,1,0) — (g2, w, 1) to pairs of lines while always moving
the internal leaders that appear towards an endpoint it is not hard to see that the process results
in an output-stable configuration from &, i.e. one whose active network is a spanning line.

Running Time Upper Bound. For the running time upper bound, we have an expected number
of O(n?) steps until another progress is made (i.e. for another merging to occur given that at least
two I-leaders exist) and O(n?) steps for the resulting random walk (walk of state w until it reaches
one endpoint of the line) to finish and to have again the system ready for progress. O(n?) follows
because we have a random walk on a line with two absorbing barriers (see e.g. [Fel68] pages 348-349)
delayed on average by a factor of O(n?). As progress must be made n—2 times, we conclude that the
expected running time of the protocol is bounded from above by (n — 2)[0O(n?) + O(n*)] = O(n®).

We next prove that we cannot hope to improve the upper bound on the expected running time
by a better analysis by more than a factor of n. For this we first prove that the protocol w.h.p.
constructs ©(n) different lines of length 1 during its course. A set of k disjoint lines implies that k
distinct merging processes have to be executed in order to merge them all in a common line and
each single merging results in the execution of another random walk. We exploit all these to prove
the desired §2(n*) lower bound.

Recall that initially all nodes are in qg. Every interaction between two gg-nodes constructs
another line of length 1. Call the random interaction of step i a success if both participants are in
qo. Let R be the r.v. of the number of nodes in state ¢g; i.e. initially R = n. Note that, at every
step, R decreases by at most 2, which happens only in a success (it may also remain unchanged, or
decrease by 1 if a leader expands towards a qo). Let the r.v. X; be the number of successes up to step
i and X be the total number of successes throughout the course of the protocol (e.g. until no further
successes are possible or until stabilization). Our goal is to calculate the expectation of X as this is
equal to the number of distinct lines of length 1 that the protocol is expected to form throughout
its execution (note that these lines do not necessarily have to coexist). Given R, the probability of
success at the current step is pr = [R(R—1)]/[n(n—1)] > (R—1)?/n%. Aslong as R > (n/2)+1 =z
it holds that pr > (n?/4)/n? = 1/4. Moreover, as R decreases by at most 2 in every step, there are
at least (n—2z)/2 =[(n/2) —1]/2 = (n/4) — 1/2 steps until R becomes less or equal to z. Thus, our
process dominates a Bernoulli process Y with (n/4) —1/2 trials and probability of success p’ = 1/4
in each trial. For this process we have E[Y]| = [(n/4) — 1/2](1/4) = (n/16) — 1/8 = O(n).

We now exploit the following Chernoff bound (cf. [MR95], page 70) establishing that w.h.p. YV’
does not deviate much below its mean p = E[Y]:
Chernoff Bound. Let Y1,Ys,...,Y; be independent Poisson trials such that, for 1 < i <t, P[Y; =
1] = p;, where 0 < p; < 1. Then, forY = Zle Y, pn=E[Y] = 22211% and 0 < § < 1,

P[Y < (1 —0)u] < exp(—ud?/2).
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Additionally, it holds that exp(—ud?/2) = € < 6 = 4/ 21n#1/6. Thus exp(—ud?/2) = n~¢ implies

2 _ 2clnn __ 2clnn _ 1l6¢clnn _ 16¢clnn
0% = M = @Ryme=) = njeei = 0 = \/ njet =

(1—5)M:;<1—,/$;1ﬂ> (5-1) >%(n—2\/m—2) — O(n).

So, for all ¢ = O(1),

1
PlY < T (n—2\/cnlnn—2)] <n ‘=
1
PY > — (n—2\/cnlnn—2)] >1-n=

PY=0Mn)]>1-n"°

and as X dominates Y, we have P[X = ©(n)] > 1 — n~°. In words, w.h.p. we expect ©(n) lines of
length 1 to be constructed by the protocol.

Now, given that X = ©(n), we distinguish two cases: (i) At some point during the course of the
protocol two lines both of length @(n) get merged. In this case, the corresponding random walk
takes on average ©(n?) transitions involving the leader and on average the leader is selected every
O(n?) steps to interact with one of the 2 active edges incident to it. That is, the expected number
of steps for the completion of such a random walk is ©(n*) and the expected running time of the
protocol is £2(n*) (ii) In every merging process, at least one of the two participating lines has length
at most dpae = o(n). We have already shown that the protocol w.h.p. forms k& = ©(n) distinct
lines of length 1. Consider now the interval I = {k/2 — dypaz + 1,...,k/2}. As h = O(n) > dpmax
for all h € I, only a single line can ever have length h € I and one, call it l;, will necessarily fall
in this interval due to the fact that the length of I; will increase by at most d;q. in every merging
until it becomes n. Consider now the time at which [; has length A € I. As the total length due
to lines of length 1 (ever to appear) is k and the length of [; is h there is still a remaining length
of at least k —h >k — k/2 = k/2 = O(n) to be merged to l;. As the maximum length of any line
different than 1 is diaz, [1 Will get merged to the k— h remaining length via at least j = O(n)/dmax
distinct mergings with lines of length at most d,,q,. These mergings, and thus also the resulting
random walks, cannot occur in parallel as all of them share I; as a common participant (and a line
can only participate in one merging at a time). Let d; denote the length of the i-th line merged to
l1, for 1 < < j.If l; has length d(l1) just before the i-th merging, then the expected duration of
the resulting random walk is n? - d(I1) - d; and the new [y resulting from merging will have length
d(l1)+d;. Let Y denote the duration of all random walks, and Y;, 1 < i < j, the duration of the i-th
random walk. In total, the expected duration of all random walks resulting from the j mergings of
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=1
j j
>n®Y hdi=n"h) _d;
=1 =1
= n?0(n)O(n)
= O(nh).

The fifth equality follows from the fact that Z{Zl d; = k—h = O(n). We conclude that the expected
running time of the protocol is also in this case £2(n?).

Now if we define the r.v. W to be the total running time of the protocol (until convergence),
by the law of total probability and for every constant ¢ > 1, we have that:

EW]|=E[W | X =60(n)]-P[X =O(n)]+ E[W | X =o(n)] - P[X = o(n)]
>E[W | X =0(n)]-P[X =0(n)] >6(n")(1 —-n"° =0(n*—n"
= O(n).
Thus, the expected running time of the protocol is £2(n*). O

4.2 2nd Protocol

The random walk approach followed in Protocol [I] takes time, thus a straightforward attempt
for improvement is to replace the random walk merging process with some more “deterministic”
merging. In Protocol |2| the random walk rules 3-5 of Protocol [If have been replaced by a more
“deterministic” procedure.

Theorem 4. Protocol Intermediate-Global-Line constructs a spanning line. It uses § states and
its expected running time under the uniform random scheduler is §2(n3) and O(n?).

Proof. The proof idea is precisely the same as that of Theorem [3| The only difference is that now
merging two lines of lengths d; and da takes time max{d;,ds} ~ d; + da (asymptotically) instead
of the dj - dy of the random walk. Thus, for the upper bound we need O(n) mergings each taking
an average of O(n?) to complete in the worst case. O(n?) holds because O(n) steps are performed
by the merging process in the worst-case and the process must wait an average of O(n?) until its
leader is selected to interact over one of its active edges. Thus the dominating factor is now O(n?).

For the lower bound we again have w.h.p. ©(n) lines of length 1 and for cases (i), (ii) as above
we have: (i) merging two lines both of length ©(n) takes time ©(n?). (ii)

EY]=E]> Y| = EJ:E[Yi] = ZJ:nQ(h—i— di+ ...+ di1)

=1 i=1 i=1

n)O(n)/dmaz = O(n*)/o(n).

v
S
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>
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S
N
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Protocol 2 Intermediate-Global-Line

Q = {q07q17q27lau_}aw17w27w3}

o:
(90, 90,0) — (q1,1,1)
(1,q0,0) = (g2,1,1)
(1,1,0) = (w,w1,1)
(w1,q2,1) = (w1,w1,1)
(w1, q1,1) = (w2,q1,1)
(w2, w1, 1) = (w2, we, 1)
(w2, w,1) = (ws, q2,1)
(w3, w2, 1) = (g2, ws, 1)
(ws,q1,1) = (g2,1,1)

4.3 3rd Protocol

We now give our fastest protocol (Protocol |3) for the global line construction. The main difference
between this and the previous protocols is that we now totally avoid mergings as they seem to
consume much time. As shown above, even a merging in which a linear number of steps must be
performed needs ©(n?) time as every step takes an average of ©(n?) time. Then a linear number of
mergings naturally require an average of @(n*) time, which is quite big. The intuition behind the
following improvement is that when two disjoint lines interact, instead of merging, the corresponding
leaders play a game in which only one survives. The winner grows by one towards the other line
and the loser sleeps. A sleeping line cannot increase any more and only loses nodes by lines that
are still awake. A single leader is guaranteed to always win and this occurs quite fast. Then the
leader makes progress (by one) in most interactions and every such progress is in turn quite fast.

Protocol 3 Fast-Global-Line

Q = {q07q17q27Qé7l,l/7l//7f07f1}

:

(90, 90,0) = (qu,1,1)
(1,90,0) = (g2,1,1)

(1,1,0) = (g3,1',1)
(',q2,1) = (I, f1,0)
(';q1,1) = (1", f0,0)
(1",42,1) = (I, q2,1)
(L, f0,0) = (g2,1,1)
(1, f1,0) = (g2, 1, 1)

Theorem 5. Protocol Fast-Global-Line constructs a spanning line. It uses 9 states and its expected
running time under the uniform random scheduler is O(n?).
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Proof. Observe first that in O(n?) steps all gos become something else. To see this let X be the
r.v. of the total number of steps until all qgs disappear and let X; be the r.v. of the number
of steps between the ith and the (i 4+ 1)st interaction between two nodes in state gy (assume
no other interactions can change the state of a qp). Let p; = [(n — 2i)(n — 20 — 1)]/[n(n — 1)]
be the probability that such an interaction occurs. Then E[X;] = 1/p; = O(n?/(n — 4)?) and
E[X] ~ n? Z:L:/? 1/(n—1i)? = ©(n?). The last equation follows from the fact that Z:L:/? 1/(n—1i)? <
S 1/i = 2% i~ 2l + O(1) — 2Inn + 2In2 — O(1) = O(1), i.e. it is bounded. Finally,
observe that gps that become leaders can also turn other gps to something else thus the actual
expectation is in fact O(n?) (i.e. what we have ignored can only help the process end faster).
Now notice that after this O(n?) time we have a set of at most O(n) leaders and no new leader
can ever appear. Moreover, in every interaction between two leaders only one survives and the
other becomes a follower. Clearly, a single leader must win all the pairwise games in which it will
participate. Consider that leader and observe that it takes it an average of n? steps to participate
to another game in the worst case and another n? steps to win it. Clearly, in O(n?) steps on average
there is a unique leader and every other node is either isolated in state fy or part of a line that
has a unique follower fi. Every interaction of a leader with a follower increases the length of the
leader’s line by 1 in O(n?) steps. Thus an increment occurs every O(n?) steps as the leader needs
O(n?) steps to meet a follower and then O(n?) steps to increase by 1 towards that follower. As the
leader needs to make at most O(n) increments to make its own line global, we conclude that the
expected time for this to occur is O(n) - O(n?) = O(n?). O

5 Other Basic Constructors

Cycle Cover

Protocol 4 Cycle-Cover

Q= {q,q1,q}
J:

(%7%70) — (q17Q171)
(q17q070) - (q27q171)
(q17q170) — (q2,q271)

Theorem 6. Protocol Cycle-Cover constructs a cycle cover with waste 2 (i.e. a cycle cover on a
subset of Vi of n — 2 nodes). It uses 3 states, its expected running time under the uniform random
scheduler is ©(n?), and it is optimal w.r.t. time.

Proof. Note that the protocol stabilizes when all nodes have become gz. In O(n?) time all gos have
become ¢; and in another O(n?) steps (by dominating a one-to-one elimination) all ¢;s have become
g2s. For the lower bound consider the last edge modification that ever occurs. Due to the symmetry
of cycle cover, both if it was an activation or a deactivation only a single edge satisfies the fact
that after its activation or deactivation we get a cycle cover, which requires ©(n?) rounds (this is
a lower bound for any protocol that constructs a cycle cover). That the waste is 2 follows from the
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fact that some executions may construct a cycle cover on n — 2 nodes and leave the remaining two
nodes connected and in state ¢; forever. O

Global Star

Theorem 7 (Star Lower Bound). Any protocol that constructs a spanning star has at least 2
states and its expected time to convergence is £2(n?logn).

Proof. Clearly, with a single state we cannot make the necessary distinction of a center and a
peripheral node. More formally, if there is a single state go then (qo, go, 0) must necessarily activate
the edge (otherwise no edges will be ever activated) which implies that eventually all edges will
become activated, i.e. instead of a star we will end up with a global clique. So every protocol that
constructs a global star must have at least 2 states.

For the lower bound on the expected running time we argue as follows. Take any execution of
a protocol that constructs a global star. Consider the node u that will become the center in that
execution. When the execution stabilizes, u must be connected to every other node by an active
edge. This implies that v must have interacted to every other node. Clearly, the time it takes for
the eventually unique center, v in this case, to meet every other node is a lower bound on the total
running time. This is a meet everybody that, as proved in Proposition takes ©(n?logn) time. O

Protocol 5 Global-Star

Q - {C7p}7 qo = C
o:

(¢,¢,0) = (¢,p, 1)
(p,p,1) = (p,p,0)
(¢,p,0) = (¢,p, 1)

Theorem 8. Protocol Global-Star constructs a spanning star. It uses 2 states and its expected
running time under the uniform random scheduler is O(n?logn), that is it is optimal both w.r.t.
size and time.

Proof. Correctness. Each node may play one of the following two roles during an execution of the
protocol: a center (state c) or a peripheral (state p). The unique output-stable configuration C
whose active network is a spanning star, has one center and n — 1 peripheral nodes, and a uv edge
is active iff one of w,v is the center. Initially all nodes are centers. When two centers interact one
of them remains a center and the other becomes a peripheral. No other interactions eliminate a
center, which implies that not all centers can be eliminated, and once a center becomes a peripheral
it can never become a center again. Due to fairness, eventually all pairs of centers will interact and,
as no new centers appear, eventually a single center will remain. Thus from some point on there
is a single center and n — 1 peripheral nodes. The idea from now on is that ¢-p attract while p-p
repel. In particular, rule (¢, p,0) — (¢, p, 1) guarantees that any inactive edges joining the center to
the peripherals will become activated and rule (p,p,1) — (p, p,0) guarantees that any active edges
joining two peripherals will become deactivated. At the same time active edges between the center
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and the peripherals remain active and inactive edges between two peripherals remain inactive. This
clearly leads to the construction of a spanning star.

Running Time. Forget for a while the edge updates and consider the rule (¢, c¢) — (¢, p), which
is the only effective interaction of the protocol w.r.t. the states of the nodes. We are interested
in the time needed for a single ¢ to remain. This is clearly an original application of one-to-one
elimination and as proved in Proposition [2] it takes @(n?) time.

Notice now that once the states of the nodes have stabilized, the constructed network will for
sure stabilize to a global star after all p-nodes have interacted with each other in order to deactivate
any active edges between them and after the ¢ has interacted with all ps in order to activate any
inactive edges, i.e. after all pairs of interactions have occurred. This is an edge cover that, as
proved in Proposition @, takes ©(n?logn) time. Thus the total expected running time is at most
O(n?) + O(n?logn) = O(n?logn). O

Global Ring

Theorem 9 (Ring Lower Bound). The ezpected time to convergence of any protocol that con-
structs a spanning ring is 2(n?).

Proof. Take any protocol A that constructs a spanning ring and any execution of A on n nodes.
Consider the step t at which A performed the last modification of an edge. Observe that the
construction after step ¢t must be a spanning ring. We distinguish two cases.

(i) The last modification was an activation. It follows that the previous active network should
be a spanning line wuq, uo, ..., u,. But the only activation that can convert this spanning line into
a spanning ring is uju, which occurs with probability 2/[n(n — 1)], i.e. in an expected number of
O(n?) steps.

(ii) The last modification was a deactivation. It follows that the previous active network should
be a spanning ring wi, us, ..., u,,u1 with an additional active edge u;u; for 1 < i < j < n and
j #i+1 (i.e. a chord). Clearly, the only interaction that can convert such an active network into
a spanning ring is w;u; which takes an expected number of O(n?) steps to occur. O

Theorem 10. Protocol Global-Ring constructs a spanning ring.

Proof. The protocol is essentially the same as the Simple-Global-Line protocol (Protocol (1) but
additionally we allow the endpoints of a line to become connected. This occurs whenever one
endpoint is in state [ and the other is in state g; and the two endpoints interact. In this case, rule
(I,q1,0) — (I',¢},1) applies and the two endpoints become blocked. If any of the two endpoints
detects the existence of another component, then, in the next interaction between them, the two
endpoints backtrack, by which we mean that they deactivate the connection between them and both
become unblocked again by returning to their original states. The existence of another component
can be eventually detected due to the fact that every component is either an isolated node in state
go or has at least one leader. Now take an arbitrary reachable configuration C' with at least 2
components. We may w.l.o.g. assume that C' has no blocked nodes, as if it has there is a sequence
of interactions that unblocks them all. Thus, as in the Simple-Global-Line protocol we have a
collection of lines and isolated nodes. This may very well lead to the formation of a spanning line
with a single leader. It is now clear that at some point the leader will occupy one endpoint of the
line, will interact with the other endpoint, the spanning line will close to form a spanning ring and
the previous endpoints will become blocked. As there is a single component in the network, these
two nodes will remain blocked forever and therefore the constructed active ring is stable. a
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Protocol 6 Global-Ring

Q = {q():q17q27l7wyl/7l”7qll7qi/}

o:
(20, 40,0) = (q1,1,1)
(1,40,0) = (g2,1,1)
(1,1,0) = (g2, w, 1)
(w,q2,1) = (g2, w,1)
(w,q1,1) = (g2,1,1)
(a1,0) = (', q1,1)
(z',y,0) = (2", y,0), for x € {l,q1} and y € {l,w,q1,q0}
(', y',0) = (2", y",0), for x € {l,q1} and y € {l, q1}
" a1,1) = (I, q1,0)
', a1,1) = (I, 1,0)
(1",d7,1) = (I, q1,0)

// The first 5 rules are the same as in the Simple-Global-Line protocol (Protocol

Global Ring: A Generic Approach

Protocol 7 2RC

Q = {q07q17q27llal2al3}

o:
(qo,qmo) — (qlalhl)
(q17q0a0) - (q21q171)
(a1,41,0) = (g2, 42, 1)
(l1,0,0) = (l2, g2, 1)

(l1,4,0) = (g2, li+1,1), for i € {0,1}
// swapping: leaders keep moving inside components
(lisg;,1) = (4,15, 1), for 4, j € {1,2}
// leader elimination: eventually a single leader will remain in every component
(liy1;,1) = (gs, 15, 1), for 4,5 € {1,2}
// opening cycles in the presence of other components
(I2,90,0) = (I3, q1,1)

(I2,01,0) = (Is, g2, 1)
(I2,12,0) — (I3,13,1)
(Is,q1,1) — (127%0)
(I3;q2,1) = (I2,11,0)
(Isyl1,1) — (lz,qo,(])
(Is,l2,1) = (I2,11,0)
(I3,13,1) = (l2,12,0)
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Theorem 11. Protocol 2RC constructs a connected spanning 2-reqular network (i.e. a spanning
ring).

Proof. The set S of output-stable configurations whose active network is a spanning ring consists
of those configurations that have one node in state ls and all other nodes in state ¢o. The index of a
state indicates the number of active neighbors of a node. A first goal is for all nodes to have degree
2 which implies a cycle cover, i.e. a partitioning of the nodes into disjoint cycles. The protocol
achieves this by allowing every node with degree smaller than 2 to increase its degree. The final
goal is to end up with a unique spanning ring. To achieve this, the protocol allows nodes with degree
2 to drop an existing neighbor and pick a new one provided that there are at least 2 components
in the network. Clearly, this implies that any closed cycle coexisting with other components, which
are cycles, lines, or isolated nodes, may open to form a line. As any collection of lines and isolated
nodes can always be merged to a global line and any global line can close to form a global ring, the
theorem follows. O

Generalizing to k-Regular Connected

Protocol 8 kRC

Q= {qO,q17.. iyl la, .. ,,lk+1}, ie. ‘Q‘ = 2(k + l)
:

(90,40,0) = (g1,11,1)
(¢,45,0) = (git1,qi41,1), for 1 <i< kand j <k
(1i,15,0) = (lix1,q541,1), for 1 < 4,5 < k
(li,45,0) = (gix1,li41,1), for 1 <i< kand j <k
// swapping: leaders keep moving inside components
(li,g5,1) = (4,05, 1), for 1 <4, j <k
// leader elimination: eventually a single leader will remain in every component
(L, 15, 1) = (g, 15, 1), for 1 <i,j < k
// opening k-regular components in the presence of other components
(Ik;90,0) = (lks1,q1,1)

(lky 15,0) = Ik, qig1,1), for 1 <i < k
(lky 1, 0) = (lit1s k1, 1)
(Ikt1,q1,1) = (Ik, 90, 0)
(k1,95 1) = (g, li=1,0), for 2 < i < k
(let1, i, 1) = (g, li=1,0), for 1 <3 < k
(Ik+1, k1, 1) = (le, Ik, 0)

Using almost the same ideas as in the proof of Theorem one can prove the following.

Theorem 12. For every fized integer k > 2 and population of size n > k + 1, Protocol kRC (see
Protocol @ constructs a connected spanning network in which at least n — k 4+ 1 nodes have degree
k and each of the remaining | < k — 1 nodes has degree at least | — 1 and at most k — 1.

It is interesting to point out that the number of states can be substantially reduced in some
cases by relying on the computability of the target-degree k. For an example, we show that we can
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make a node u obtain 2¢ neighbors by using only 2(d + 2) states, for all fixed integers d. Node u
is initially in state ¢p and all other nodes are in state ag. The protocol is (qo, ag,0) — (¢, a1, 1),
(g5, a0,0) = (q,a1,1), (¢,ai,1) = (Gi+1,ai+1,1), (¢j,00,0) = (q,a;,1) for all 1 < i < d—1,
2 < j < d. Note that wu initially collects 2 neighbors (by activating edges) which go to state aj.
Then for every a; neighbor that it encounters it makes it an as and collects another neighbor
which goes to state as. Eventually both a; neighbors will become ag and there will be another 2
neighbors in state ag, so in total 4 as neighbors. This process is repeated d times (the 4 ags will
become 8 ags, and so on), each time doubling the number of neighbors, thus eventually u will have
obtained 2¢ neighbors. The protocol uses only 2(d + 1) states for the indices of the ¢;s and the a;s
and another 2 states, namely ¢ and ¢. Clearly, it follows that the target-degree of the nodes is not
a lower bound on the size of the protocol.

Many Small Components

We show here how to partition the population into small active cliques. This construction is of
special value as such a partitioning may serve as a means of maintaining non-interfering clusters.
In particular, given such a partitioning, we can easily have a node u perform effective interactions
only with nodes belonging to the same component as u. This can be easily determined by the state
of the connection between the interacting nodes.

Protocol 9 c-Cliques

Q:{lovlla-"7l0*21flu-"7fc 27f7l07"' e—2,0,1,2,. _17l,17"‘ c— lvr}
0:
(l07l070)_>(ll7f71)
(li,lo,O) — (li+1,f, 1), ifi<e—2
— (I1,1,1), ifi=c—2

(1:,15,0) = (Lig1, f5,1), if j<i<ec—2
— (lo, fj,1), ifi=c—2
(fi, £,1) = (fi=1,10,0), if i > 1
= (f,10,0), ifi=1
@, f, )a(l’+1,1,1) ifi<e—2
= (,1,1), ifi=c—2
(4,7,0) > e+ 1,5+ 1,1),ifi<c—land j<c—1
1,4,1) — (r, ll,l)
(U 05,1) = (i1, l54,0)
(15,7, 1) — (i,1,1)

Theorem 13. For every fized positive integer ¢, Protocol c-Cliques (see Protocol @ constructs
|n/c| cliques of order ¢ each.

Proof. The protocol first constructs |n/c| components of order ¢, each having a unique leader (state
‘I’) directly connected to ¢ — 1 followers (state f). Each follower then tries to become connected to
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the other ¢ — 1 followers of the component. To do this, it becomes connected one after the other to
¢ — 1 other followers. As it cannot distinguish the followers of its component from the followers of
other components several of these connections may be wrong. It suffices to prove that the protocol
recognizes wrong connections and deactivates them. Then, as followers always try to make their
degree ¢ — 1 when it is still less than ¢ — 1 and as wrong connections between different components
are always corrected, it follows (by fairness) that eventually each component will become a clique
(having only correct connections). At that time, no new connections may be created and no existing
connection can be deactivated (as they are all correct), and the correctness of the protocol follows.
To recognize erroneous connections, the leader of a component constantly visits the followers of its
component and checks any active connections that it may encounter during its stay (the duration of
its stay is nondeterministic as it depends on the chosen interactions). If it ever encounters another
leader over an active connection, then this is clearly a connection between different components and
the leaders deactivate that connection and decrease the counters of the corresponding followers.
Clearly, by fairness, every wrong connection will eventually be selected for interaction while having
a leader in each of its endpoints. Finally, note that correct connections (between nodes of the same
component) are never deactivated as at any time at most one of their endpoints may be occupied
by a leader. O

Replication

We now study the related problem of replicating a given input graph G; = (Vi, E1). Let V5 =
Vi\V1 be the set of the remaining nodes. The protocols use the nodes of V5 to construct a replica
G2 of G1, thus it must hold that |Va| > |Vi]. In most cases, it suffices that V5 = V;. Throughout
the section we assume that nodes in Vj are in different initial states than nodes in V5. We usually
use qo and 7 as the initial states of nodes in V7 and V5, respectively. Additionally, E; is defined by
the active edges between nodes in V7. We assume that 7 is connected.

We present a very simple protocol (Protocol that exploits the election of a unique leader to
copy G1 on |Va| = |Vi] free nodes.

Theorem 14. Protocol Leader-Replication constructs a copy of any connected input graph G1 =
(V1, E1) with no waste. It uses 12 states and its expected running time under the uniform random
scheduler is ©(n*logn).

Proof. Initially, all nodes of V; are in ¢o and all nodes of V5 are in ry. The protocol first creates
a matching between V7 and V5. Then it starts pairwise eliminations between leaders, that is when
two leaders (nodes in state ‘I’) interact one of them survives (i.e. remains /) and the other becomes
a follower (state ‘f’). Eventually the protocol ends up with a unique leader and |V;| — 1 followers.
Moreover, when a leader and a follower meet they swap their states with probability 1/2. With the
remaining 1/2 probability they become either l,, f, or l4, f4 depending on whether the edge joining
them was active or inactive, respectively. In both cases they mark their matched nodes from V5
to either activate or deactivate the edge between them in V5 accordingly. Once there is a unique
leader, the leader moves nondeterministically over the nodes of V; and again nondeterministically
applies this copying process on the edges of F1. Thus it will eventually apply this copying process
to all edges of Fj and as there are no conflicts with other activations/deactivations (as no other
leaders exist) G eventually becomes equal to G1. Finally, note that the active edges of the matching
between V; and Vs are never deactivated but this is not a problem provided that Quu = {7, 74,74}
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Protocol 10 Leader-Replication

Q = {qovroalyla7ld7f7 fa7 fd7T7 Ta,Td,"'/}

o:
(q0,70,0) — (I,7,1)
Lz) — (1, f,x)
(1,£,0) ¥ (la, f,0)
Y (£,1,0)
(1 £,1) % (Lo, fa,0)
Lt
(ziyr, 1) = (mi,7i,1), for z € {I, f} and i € {a,d}
(TG7TG70) - (T/’T,71)
(ra,ra,1) = (r',7",0)
(livljvm) — (llv.fjv ) for 7‘5.] S {a7d}

as each such edge uv has u in a state from Q\Qou: and v in a state from @y, that is it is not
considered as part of the output.

Now for the running time we consider three phases: the matching formation, the leader election,
and the unique-leader replication. The matching formation phase begins from step 1 and ends
when the last ¢y becomes [, i.e. when all nodes in V; have been matched to the nodes of V5. It
is not hard to see that the probability of the ith edge of the matching to be established (given
(i — 1) established matches) is p; = [2(n/2 — i)?]/[n(n — 1)] and the corresponding expectation is
E[X;] = 1/p; = O(n?/(n —i)?). Then similarly to the coupon collector’s application in the running
time of Protocol Fast-Global-Line in Theorem [5| we have that the expected running time of this
phase is E[X] = ©(n?). An almost identical analysis yields that the expected running time of the
leader election phase is also @(n?). Thus it remains to estimate the time it takes for the unique
leader to copy every edge of Fi. Given that the leader has marked the endpoints of a particular
edge of E then copying and restoring the state of the leader takes on average ©(n?) time (as a
constant number of particular interactions must occur and each one occurs with probability 1/n?).
Now we consider the time for copying as constant and try to estimate the time it takes for the
leader to “collect” (i.e. visit and mark) all edges of F;. Assume also that the leader is selected in
every step to interact with one of its neighbors (the truth is that it is selected every ©@(n) steps on
average). If p. is the probability that a specific edge e is selected after two subsequent interactions
then pe ~ (1/n)(1/2)(1/n)(1/2) = ©(1/n?), where (1/n)(1/2) is the probability that the leader
interacts with and decides to move on one endpoint of e and (1/n)(1/2) the probability that it
then interacts with and decides to mark the other endpoint of e. Let Y; be the r.v. of the number
of steps between the (i — 1)th and ith edge collected and p; be the probability of a success in two
consecutive steps of the ith epoch. Clearly, p; ~ (n? —i)/n? ElYi] = 1/p; = n?/(n? — i), and
E[Y] = B} 7. V] =n2 S0 1/ (n2 — i) = n2 32, 1/i = O(n?logn). Thus, provided that the
leader always interacts and that every copying that it performs takes constant time, the expected
time until the unique-leader replication phase ends is ©(n?logn). Now, notice that on average it
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takes ©(n) steps for the leader to interact and that in half of its interactions the leader performs a
copying that takes ©(n?) steps to complete. That is, each of the above ©(n?logn) steps is charged
on average by n and half of them are charged by n?, i.e. half of the steps are charged by ©(n)
and the other half are charged by n? +n = ©(n?). We conclude that the expected running time of
the unique-leader replication phase is O(n®logn) + ©(ntlogn) = O(n*logn). This is clearly the
dominating factor of the total running time of the protocol. O

Table 2] summarizes all upper and lower bounds that we established in Sections [4] and

Protocol # states Expected Time Lower Bound
Simple-Global-Line 5 2(n*) and O(n°) 2(n?)
Intermediate-Global-Line 8 2(n3) and O(n?) 2(n?)
Fast-Global-Line 9 O(n?) 2(n?)
Cycle-Cover 3 ©(n?) (optimal) 2(n?)
Global-Star 2 (optimal) O(n?logn) (optimal) 2(n?logn)
Global-Ring 9 2(n?)
2RC 6 R2(nlogn)
kRC 2(k+1) 2(nlogn)
c-Cliques 5¢—3 2(nlogn)
Leader-Replication 12 O(n'*logn)

Table 2. All upper and lower bounds established in Sections [4] and [5| Leader-Replication is a randomized protocol
thus it concerns class PREL, while all other protocols do not rely on randomization thus they concern REL.

6 Generic Constructors

In this section, we ask whether there is a generic constructor capable of constructing a large class
of networks. We answer this in the affirmative by presenting (i) constructors that simulate a Turing
Machine (TM) and (ii) a constructor that simulates a distributed system with names and logarith-
mic local memories. Denote by [ the binary length of the input of a TM and by n the size of a
population. Note that Theorems to construct a random graph in the useful space and that
graph constitutes the input to a TM. Thus, if the useful space consists of h nodes, the input to the
TM has size | = ©(h?) and, as all of our constructors have h = ©(n), in what follows it holds that
I = ©(n?). Moreover, the TM can use space at most O((n—h)?) = O(n?), where n — h is the waste.

We now briefly describe the main idea behind all of our generic constructors that simulate a
TM (see also Figure . Assume that we are given a decidable graph-language L and we are asked
to provide a NET that constructs L. The NET that we give works as follows:

1. It constructs on k of the nodes a network Gy capable of simulating a TM and of constructing
a random network on the remaining n — k& nodes. Let Vi C V be the set of the k nodes and
Vo = V\V; the set of the remaining n — k nodes. G is usually a sufficiently long line or a
bounded degree network as these networks can be operated as TMs. A line also serves as a
measure of order as we can match a line of length k with k& other nodes and by exploiting the
ordering of the line we may achieve an ordering of the other nodes.

28



2. The NET exploits G to construct a random network on V5. The idea is to exploit the structure
of GG1 so that it can perform a random coin tossing on each edge between nodes of Vs exactly
once. In this manner, it constructs a random network Gg from G,,_ 1/2 on the nodes of Vs. It
is worth noting that all networks of G,,_j 1 /2 have an equal probability to occur and this results
in an equiprobable constructor.

3. The NET simulates on G the TM that decides L with G5 as its input. The only constraint is
that the space used by the TM should be at most the space that the constructor can allocate
in G1. If the TM rejects, then the protocol goes back to 2, that is it draws another random
network and starts a new simulation. Otherwise, its output stabilizes to Gbs.

To construct a decidable graph-language L.

i

Construct on k of the nodes a net-
work G capable of simulating a TM
and of constructing a random net-
work on the remaining n — k nodes.

|

Use G to construct a random net-
work Ga € G,,_,1/2 on the remain-
ing n — k nodes.

The TM
REJECTS

Execute on G the TM that decides
L with G4 as input.

l The TM ACCEPTS

Output Go

Fig. 2. The main mechanism used by all generic constructors in this section. The loop repeats until the TM accepts
for the first time. When this occurs, the random graph G2 constructed belongs to L and thus the protocol may output
G2. Note that this is not a terminating step. The protocol just does not repeat the loop and thus its output forever
remains stable to Gs.

6.1 Linear Waste

Theorem 15 (Linear Waste-Half). DGS(O(v/1)) € PREL(|n/2]). In words, for every graph
language L that is decidable by a O(\/l)—space TM, there is a protocol that constructs L equiprobably
with useful space |n/2].

Proof. We give a high-level description of the protocol, call it A. Let us begin by briefly presenting
the main idea. Given a population of size n, A partitions the population (apart from one node
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when n is odd) into two equal sets U and D such that all nodes in U are in state g, all nodes
in D are in state gz and each v € U is matched via an active edge to a v € D, i.e. there is an
active perfect matching between U and D (see Figure [3)). By using the Simple-Global-Line protocol
(see Protocol (1] in Section on the nodes of set U, A constructs a spanning line in U which
has the endpoints in state g;, the internal nodes in state g2, and has additionally a unique leader
on some node. We should mention that, though we use protocol Simple-Global-Line here as our
reference, any protocol that constructs a spanning line would work. Given such a construction, A
organizes the line into a TM. The goal is for the TM to compute a graph from L and construct it
on the nodes of set D. To achieve this, the TM implements a binary counter (logn bits long) in
its memory and uses it in order to uniquely identify the nodes of set D according to their distance
from one endpoint, say e.g. the left one. Whenever it wants to modify the state of edge (i, j) of the
network to be constructed, it marks by a special activating or deactivating state the D-nodes at
distances ¢ and j from the left endpoint, respectively. Then an interaction between two such marked
D-nodes activates or deactivates, respectively, the edge between them. To compute a graph from
L equiprobably, the TM performs the following random experiment. It activates or deactivates
each edge of D equiprobably (i.e. each edge becomes active/inactive with probability 1/2) and
independently of the other edges. In this manner, it constructs a random graph G in D and all
possible graphs have the same probability to occur. Then it simulates on input G the TM that
decides L in v/1 space to determine whether G € L. Notice that the n /2 space of the simulator is
sufficient to decide on an input graph encoded by an adjacency matrix of (n/2)? binary cells (which
are the edges of U). If the TM rejects, then G ¢ L and the protocol repeats the random experiment
to produce a new random graph G’ and starts another simulation on input G’ this time. When
the TM accepts for the first time, the constructed random network belongs to L and the protocol
releases the constructed network by deactivating one after the other the active (g, qq) edges and
at the same time updates the state of each D-node to a special g, state. Finally, we should point
out that, whenever the global line protocol makes progress, all edges in D are deactivated and the
TM-configuration is reinitialized to ensure that, when the final progress is made (resulting in the
final line spanning U) the TM will be executed from the beginning on a correct configuration (free
of residues from previous partial simulations).

Fig. 3. The population partitioned into sets U and D. The vertical active edges (solid) match the nodes of the two
sets. The horizontal active edges between nodes in U form a spanning line that is used to simulate a TM. The TM
will construct the desired network on the nodes of set D by activating the appropriate edges between them (dashed
edges that are initially inactive).
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We now proceed with a more detailed presentation of the various subroutines of the protocol.
Simulating the direction of the TM’s head. We begin by assuming that the spanning line has been
constructed somehow (we defer for the end of the proof the actual mechanism of this construction),
as in Figure |3} and that each node has three components (c1, co, ¢3) in its state. ¢; is used to store
the head of the TM, i.e. the actual state of the control of the TM; assume that initially the head
lies on an arbitrary node, e.g. on the second one from the left as in Figure[3] ¢o is used to store the
symbol written on each cell of the TM. c3 is I, 7, t for “left”, “right”, and “temporal” respectively,
or U (for “empty”) and we assume that initially the left endpoint is [, the right endpoint is r, and
all internal nodes are L. As initially the head cannot have any sense of direction, it moves towards
an arbitrary neighbor, say w.l.o.g. the right one, and leaves a ¢ on its previous position. The ¢t
mark gives to the head a sense of direction on the line. The head can make progress towards one
endpoint by just moving only towards the unmarked neighbor (avoiding the one marked by t). Once
the head reaches the right endpoint for the first time, it starts moving towards the left endpoint
by leaving r marks on the way. Once it reaches the left endpoint it is ready to begin working as a
TM. Now every time it wants to move to the right it moves onto the neighbor that is marked by r
while leaving an [ mark on its previous position. Similarly, to move to the left, it moves onto the [
neighbor and leaves an r mark on its previous position. In this way, no matter what the position
of the head will be, there will be always [ marks to its left and r marks to its right, as in Figure
and the head can exploit them to move correctly. Additionally, we ensure that the endpoints are in
special states, e.g. I, and r., to ensure that the head recognizes them in order to start moving to
the opposite direction.
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Fig. 4. The main idea of using [ and r marks to simulate the movement of the head of a TM. The first three snapshots
present the phase of the initialization of the marks where a temporal ¢t mark is used to move for the first time towards
an endpoint. In the fourth snapshot, after the head has visited both endpoints, the ¢ marks have been removed and
all nodes to the left of the head are marked [ while all nodes to the right are marked r. Additionally, the endpoints
have special marks to ensure that the head recognizes them.

Reading and Writing on the edges of set D. We now present the mechanism via which the TM
reads or writes the state of an edge joining two D-nodes. The TM uniquely identifies a D-node by
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its distance from the left endpoint. To do this, it implements a binary counter on logn cells of its
memory. Whenever it wants to read (write, resp.) the state of the edge joining the D-nodes i and 7,
it sets the counter to 7, places a special mark on the left endpoint, and repeatedly moves the mark
one position to the right while decrementing the counter by one. When the counter becomes 0, it
knows that the mark is over the i-th U-node. Now by exploiting the corresponding active vertical
edge it may assign a special mark to the i-th D-node (Figure [5| provides an illustration). By setting
the counter to j and repeating the same process, another special mark may be assigned to the
j-th D-node. Now the TM waits for an interaction to occur between the marked D-nodes 7 and j.
During that interaction edge (i,j) is read (written, resp.) by the corresponding endpoints. Then,
in case of a read (and similarly for a write), the TM reads the value of the edge that the endpoints
detected, and in both cases unmarks both endpoints resetting them to their original states.

Fig. 5. By exploiting the implemented binary counter, the TM has managed to mark the desired nodes from set D,
in this case the 2nd and the 4th ones counting from left, which are now in a special “reading” state ¢,. An interaction
between them will read the state of the edge joining them, which here happens to be an active one. Then the TM
will read that value from one of these two nodes, in this case from the 2nd one. A write is implemented similarly.

Creating the input of the TM. We now describe how the network construction works. As already
stated, to simplify the description and in order to present an equiprobable constructor we have
allowed nodes to toss a fair coin during their interaction. In particular, we allow transitions that
with probability 1/2 give one outcome and with probability 1/2 another. Now before executing the
simulation, the simulating protocol does the following. It visits one after the other the edges of
set D and on each one of them performs the following random experiment: with probability 1/2 it
activates the edge and with probability 1/2 it deactivates it. The result of this random process is
an equiprobable construction of a random graph. In particular, all possible graphs have the same
probability to occur. Note that the protocol can detect when all random experiments have been
performed because it can detect the endpoints of the spanning line. For example, to visit all edges
one after the other we may: (i) place two marks on the left endpoint, let 1 < i < j < n be their
positions on the line, (ii) for all 1 < i < n — 1, perform random experiments on all i < j < n by
starting the second mark from position ¢ 4+ 1 and moving it each time one position to the right, (iii)
the process stops when i becomes n, i.e. when the first mark occupies the right endpoint (which can
be detected). Thus we can safely compose the process that draws the random graph to the process
that simulates the TM. Once the random graph has been drawn, the protocol starts the simulation
of the TM. Notice that the input to the TM is the random graph that has been drawn on the edges
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of D which provide an encoding equivalent to an adjacency matrix. There are [ = (n/2)? edges
and the simulator has available space n/2 = V1, which is sufficient for the simulation of a v/I-space
TM. We now distinguish two cases, one for each possible outcome of the simulation.

1. The TM rejects: In this case, the constructed random graph does not belong to L. The protocol
repeats the random experiment, i.e. draws another random graph, and starts over the simulation
on the new input.

2. The TM accepts: The constructed graph belongs to L and the protocol enters the Releasing
phase (see below).

Releasing. When the TM accepts for the first time, the simulating protocol updates the head to a
special finalizing state f. Now the head moves to the left endpoint and starts releasing one after
the other the nodes of set D by deactivating the vertical edges and updating the states of the
released D-nodes to goy:. Now the network constructed over the nodes of set D is free to move in
the “solution”.

It remains to resolve the following issue. In the beginning, we made the assumptions that
the population has been partitioned into sets U and D and that a spanning line in U has been
constructed somehow. Though it is clear that the rule (qo,qo0,0) — (qu,qq,1) can achieve the
partitioning and that the Simple-Global-Line protocol can construct a spanning line in U, it is
not yet clear whether these processes can be safely composed to the simulating process. To get a
feeling of the subtlety, consider the following situation. It may happen that a small subset S of the
nodes has been partitioned into sets U’ and D’ and that U’ has been organized into a line spanning
its nodes. If the nodes in S do not communicate for a while to the rest of the network, then it
is possible that a graph is constructed in D’, which on one hand belongs to L but on the other
hand its order is much smaller than the desired n/2. To resolve this we introduce a reinitialization
phase.

Reinitialization. A reinitialization phase is executed whenever a line on U-nodes expands (either
by attracting free nodes or by merging with another line). At that point, the protocol “makes
the assumption” that no further expansions will occur, restores the components of the simulation
to their original values, ensures that each node in the updated set U has a D-neighbor (as it
is possible that some of them have released their neighbors), and initiates the drawing of a new
random graph on the new set D. Though the assumption of the protocol may be wrong as long
as further expansions of the line may occur, at some point the last expansion will occur and the
assumption of the protocol will be correct. From that point on, the simulation will be reinitialized
and executed for the last time on the correct sets U and D. A final point that we should make
clear is the following. During reinitialization we have two options: (i) block the line from further
expansions until all components have been restored correctly and then unblock it again or (ii) leave
it unblocked from the beginning. In the latter case, if another expansion occurs before completion
of the previous reinitialization then another reinitialization will be triggered. However, if the two
reinitialization processes ever meet then we can always kill one of them and restart a new single
reinitialization process. Both options are correct and equivalent for our purposes. O

We now show an interesting trade-off between the space of the simulated TM and the order
of the constructed network. In particular, we prove that if the constructed network is required to
occupy 1/3 instead of half of the nodes, then the available space of the TM-constructor dramatically
increases to O(n?) from O(n).
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Theorem 16 (Linear Waste-Two Thirds). DGS(I + O(v1)) € PREL(|n/3]). In words, for
every graph language L that is decidable by a (H—O(\ﬂ))-space TM, there is a protocol that constructs
L equiprobably with useful space |n/3].

Proof. The idea is to partition the population into three equal sets U, D, and M instead of the two
sets of Theorem The purpose of sets U and D is more or less as in Theorem The purpose
of the additional set M is to constitute a @(n?) memory for the TM to be simulated. The goal is
to exploit the (n/3)(n/3 —1)/2 edges of set M as the binary cells of the simulated TM (see Figure
@. The set U now, instead of executing the simulation on its own nodes, uses for that purpose the
edges of set M. Reading and writing on the edges of set M is performed in precisely the same way
as reading/writing the edges of set D (described in Theorem .
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Fig. 6. A partitioning into three equal sets U, D, and M. The line of set U plays the role of an ordering that will be
exploited both by the random graph drawing process and by the TM-simulation. The line of set U instead of using
its ©(n) memory as the memory of the TM it now uses the ©(n?) memory of set M for this purpose. Set D is again
the useful space on which the output-network will be constructed. Sets U and M constitute the waste.

As everything works in precisely the same way as in Theorem [15] we only present the subroutine
that constructs the (U, D, M) partitioning.
Constructing the (U, D, M) partitioning. The rules that guarantee the desired partitioning into the
three sets are:

(90, q0,0) = (qy,,qa,1)
(90> 90,0) = (qu, G, 1)
(90> Gus 0) = (Gus G 1)
(@n> 9, 1) = (gm>» 0,0)

The idea is to consider a U-node as unsatisfied as long as it has not managed to obtain a gy,
neighbor. The unsatisfied state of a U-node is ¢,. If a ¢/, meets a g then it makes that g its g,
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neighbor and becomes satisfied. Note that it is possible that at some point the population may
only consist of ¢/, nodes matched to D-nodes which is not a desired outcome. For this reason, we
have allowed ¢/, nodes to be capable of making other ¢/, nodes their g, neighbors. That is, when
two ¢, nodes interact, one of them becomes satisfied, the other becomes ¢/,,, and the edge joining
them becomes active. A ¢/, just waits to meet its active connection to a D-node, deactivates it,
isolates the D-node by making it g again, and becomes g,,. For an illustration, see Figure[7] Then,
for the construction of the line spanning U, we only allow satisfied U-nodes to participate to the
construction. As a satisfied U-node never becomes unsatisfied again, this choice is safe.
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Fig. 7. An example construction of a (U, D, M) partitioning.

6.2 Logarithmic Waste

We now relax our requirement for simulation space in order to reduce the waste (which, in both of
the previous two theorems, was of the order of n).

Theorem 17 (Logarithmic Waste). DGS(O(logl)) € PREL(n — logn). In words, for ev-
ery graph language L that is decidable in logarithmic space, there is a protocol that constructs L
equiprobably with useful space n — logn.

Proof. We give the main idea. The protocol first constructs a spanning line. Let us for now assume
that the spanning line has been somehow constructed by the protocol. Then the protocol exploits
the line to count the number of nodes in the network. We may assume that counting is performed
in the rightmost cells of the line. The head visits one after the other the nodes from left to right
and for each next move it increments the binary counter by one. When the head reaches the right
endpoint, counting stops and the binary counter will have occupied approximately logn nodes (in
fact, the rightmost logn nodes). Now the protocol releases the counter without altering its line
structure and additionally makes all remaining n — logn nodes isolated by resetting their states
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and deactivating the edges between them. From now on, we may assume w.l.o.g. that there is a
line of logn nodes with a unique leader and with a distributed variable containing a very good
estimate of the number of isolated nodes (for this, we just compute in the logarithmic memory
n — logn, where n was already stored in binary and logn is the number of cells of the memory;
another way to achieve this is to stop counting when the head - moving from left to right - reaches
the first, i.e. leftmost, cell occupied by the counter). All nodes of the memory are in a special m
state while all remaining nodes are in some other state, e.g. f, so the two sets are distinguishable.
Next the leader starts a random experiment in order to construct a random graph on the free
nodes as follows. It picks the first free node that it sees, call it uj, activates the edge between
them and informs it to start tossing coins on each one of the edges joining it to other free nodes.
Whenever u; tosses a coin on a new edge, it marks the corresponding node to avoid it in the future
and informs the leader to decrement its (n — logn)-counter by 1. When the counter becomes 0, u;
has tossed coins on all its edges, by a similar counting process it removes all marks from the other
free nodes, and remains marked so that the leader avoids picking it again in the future. Then the
leader moves to some other free node us, repeating more or less the same process. At the same
time the leader decrements another (n — logn)-counter by one to know when all free u;s have been
picked. In this manner, a random graph is drawn equiprobably on the set of free nodes. Next,
the leader simulates a logarithmic TM in its memory trying to decide whether the random graph
belongs or not to a given language L. If yes, then we are done. If not, then the TM just repeats
the random experiment and restarts the simulation.

Reinitialization. Clearly, the protocol cannot know when the line that it was initially trying to
construct has become spanning. Due to this, after every expansion of the line it assumes that the
line has become spanning and starts counting. It is clear that every counting process leads to the
formation of a small line with a leader (of length logarithmic in the length of the original line) and
several free nodes. The small line and its leader are kept forever by the simulation process. This
implies that if there are more than one such lines, they will eventually interact and detect that
their original line was not spanning. At that point, the interacting lines may merge to form a new
line. It is clear that the only stable case is the one in which the original line was spanning and this
will eventually occur. O

6.3 No Waste

Going one step further we prove that a large class of graph-families can be constructed with no
waste.

Theorem 18 (No Waste). Let L be a graph language such that: (i) there exists a natural number
d s.t. for all G € L there is a subgraph G' of G of logarithmic order s.t. either G' or its complement
is connected and has degree upper bounded by d and (ii) L is decidable in logarithmic space. Then
L € PREL(n), i.e. there is a protocol that constructs L equiprobably with useful space n.

Proof. We give again the main idea. As in Theorem the protocol first constructs a spanning line
used to separate a subpopulation S of V; of size approximately log n. Before deactivating the line of
T = Vi\S of length n—logn the protocol first exploits it to construct a random graph in S of active
or inactive degree (choosing randomly between these) upper bounded by d (note that d is finite
and thus it is known in advance by the protocol). Then the line of T' organizes the bounded-degree
graph of S into a TM M (which is feasible due to the fact that the degree is bounded; see Theorem
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7 of [AACT05]) of logarithmic space with a unique leader on some node. Next M draws (more or
less as in Theorem a random graph on the edges of E7\E[S], i.e. on all edges apart from those
between the nodes of S (to prevent destroying the structure of the TM). Note that, in order for
the TM to be able to distinguish the nodes of .S, the protocol has all these nodes in a special state
that is not present in 7. Observe now that, in this manner, the protocol has constructed on V7
a random graph from those having a connected subgraph of logarithmic order and degree upper
bounded by d. It remains to verify whether the one constructed indeed belongs to L. To do this,
M simulates the TM N that decides L in logarithmic space. If N rejects then M builds another
line in T" that repeats the whole process, i.e. draws a new random graph in .S and so on. When N
first accepts, the protocol sleeps (in the sense that it does not terminate but does not alter edges
anymore either). 0

Remark 1. If the graph-property L (in any of the above results) happens to occur with probability
at least 1/f(n), where f(n) is polynomial on n, in the G, ;/, random graph model, then its corre-
sponding generic constructor runs in polynomial expected time. Connectivity is such an example
as every G € G, 9(logn/n) 18 almost surely connected and the same holds for every G € G, 1,2
(hamiltonicity is another example).

Remark 2. All the above generic results have been proved for PREL. Note that in REL we can
again construct a sufficiently long line (as our protocols for global line are in REL) and exploit it
as a space-bounded TM of the following sort: on input g(n) (i.e. the useful space) the TM outputs a
graph of order g(n). By exploiting such graph-constructing TMs we can again construct a possibly
large class of networks without giving to our protocols access to randomization.

6.4 Constructing and Simulating Supernodes with Logarithmic Memories

We now show that a population consisting of n nodes can be partitioned into k supernodes each
consisting of log k£ nodes, for the largest such k. The internal structure of each supernode is a line,
thus it can be operated as a TM of memory logarithmic in the total number of supernodes. This
amount of storage is sufficient for the supernodes to obtain unique names and exploit their names
and their internal storage to realize nontrivial constructions. We are interested in the networks that
can be constructed at the supernode abstraction layer. The following theorem establishes that such
a construction is feasible and presents a network constructor that achieves it.

Theorem 19 (Partitioning into Supernodes). For every network G that can be constructed
by k nodes having local memories [logk| and unique names there is a NET that constructs G on
n = k[log k| nodes.

Proof. We present a NET A that when executed on n nodes it is guaranteed to organize the nodes
into k lines of length [log k| each for the maximum & for which k[log k] < n. We assume a unique
pre-elected leader in the initial configuration of the system and we will soon show how to drop
this requirement. Assume also for simplicity that n > 8 (this is again not necessary). The protocol
operates in phases. Variable j denotes the current phase number, r denotes the number of new lines
that should be constructed in the current phase, and a is a line counter. We assume that the leader
has somehow already created 4 lines of length 2 each (note that here we count the length of a line
in terms of its nodes). One of them is the leader’s line. Also the left endpoint of the leader’s line
is directly connected to the left endpoints of the other 3 lines. In fact, all these assumptions are
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trivial to achieve. Initially j <— 2. All variables are stored by the leader in the distributed memory
of its line.

— A new phase starts when the leader manages to increase by one the length of its line by attaching
an isolated node its right endpoint. When this occurs, the leader sets j < j + 1, r < 271, and
a < 2. A phase is divided into two subphases: the Increment existing lines subphase and the
Create new lines subphase.

o Increment existing lines: Initially, all existing lines, excluding the leader’s line, are marked
as unwvisited. While a < r the leader visits an unvisited line and tries to increment its length
by one by attaching an isolated node to its right endpoint. When it succeeds, it marks the
line as wvisited, sets a <— a + 1 and returns to its own line. When this subphase ends all
existing lines have length j. Then the leader sets a <— 1 and the Create new lines subphase
begins.

e (Create new lines: While a < r the leader becomes connected to an isolated node, it marks
that node as the left endpoint of the new line and then starts creating the new line node-by-
node, by attaching isolated nodes to its right. It stops increasing the length of the new line
when it becomes equal to the length of its own line. This can be easily implemented by a
mark on the leader’s line that moves one step to the right every time the length of the new
line increases by one. The new line has the right length when the mark reaches the right
endpoint of the leader’s line. When this subphase ends there is a total of 2r = 27 lines of
length j each and the leader is directly connected to the left endpoint of each one of them.
Then the leader waits again to increase its own length by one and when this occurs a new
phase begins.

Naming. We now show that it is not hard to keep the constructed lines named (in fact there are
various strategies for achieving this). Initially, the leader has 4 lines of length 2 each and we may
assume that these are uniquely named 0, 1, 2, 3 in binary, that is every line has its name stored in its
own memory. During a phase, the leader keeps a variable cname storing the current name to be as-
signed, initially 0. Whenever the leader increases the length of an existing line (during the increment
subphase) or creates a new line (during the create subphase) it assigns to it cname in binary and
sets cname < cname~+ 1. Clearly, at the end of phase j the lines are uniquely named 0,1, ...,27 —1.

Electing the Leader. We now show how to circumvent the problem of not having initially a
unique pre-lected leader. In fact, as we soon discuss, the solution we develop may serve as a generic
technique for simulating protocols that assume a pre-elected leader. Initially all nodes are leaders
in state lp. Rule (lp,10,0) — (lp,qo,0) eliminates one leader when two of them interact. These
leaders start executing the above protocol by attaching gy nodes to their construction. By the time
a lg leader attaches the first isolated node to its construction it remains leader but changes its state
to [. Each leader executes the protocol on its own constructed component until it meets another
leader. One this occurs, one of the two Is becomes w. The goal of a w leader is to revert its whole
component to a set of isolated nodes in a special sleeping state s (itself inclusive). A sleeping node
can like a gg node be attached to lines by leaders but unlike a gy node it cannot participate in the
creation of another leader. First of all note that it can easily revert a single line by beginning from
the right endpoint and releasing one after the other the nodes until it reaches the left endpoint.
In fact, the generic idea (that works for other constructions as well) is that in order to release a
node it suffices to know its degree. Then the only possible difficulty in our case is the fact that the
left endpoint of the leader’s line may be connected to a non-constant number of other endpoints.
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To resolve this, the leader exploits the fact that it can count in its line’s memory the number of
lines. When the reversion process begins, the leader knows the number of lines, that is it knows
also the degree of the left endpoint of its line. Whenever it reverts another line it decreases the
counter by one. So, when the counter becomes equal to 1, it knows that the only remaining line
is its own line, thus it knows that when it comes to release the last two nodes of its own line
(i.e. during the interaction between the left endpoint and the other remaining node of the line) it
should make both sleeping as there is no other reversion to be performed. This is quite important
as it guarantees that reverting does not introduce waste. Note that if the reversion process could
not determine its completion then every such reversion would result in a node remaining forever
in state w. Such zombie ws cannot be exploited by other leaders in their constructions as allowing
a leader to attach a w would introduce conflicts between constructing and reverting processes.

Reinitialization. Note that the simulated protocol that constructs G assuming memories and
names must be executed from the beginning because protocol A that gives the organization into
lines is not terminating thus the two protocols must be composed in parallel. It suffices to have
every line remember the number of active edges that it has to other lines. Then, whenever a new
phase begins (implying that what has been constructed so far by the simulated protocol is not
valid), each line deactivates one after the other all those edges and starts over the simulation.

The only drawback is that the above protocol retains forever the connections between the left
endpoint of the leader’s line and the left endpoints of the other lines. However, if we agree that the
output-network of the protocol is the one induced by the active edges joining the right endpoints of
lines then this is not an issue. Additionally, it should not be that hard to circumvent this subtlety
by having the leader periodically release the constructed lines and reattracting them only in case
it manages to increase the length of one of them. a

Many network construction problems are substantially simplified given the supernodes with
names and memories. For a simple example, consider the problem of partitioning the nodes into
triangles. This construction is quite hard to achieve in the original setting without a leader, however,
given the supernodes it becomes trivial. Each supernode with id 7 checks whether its id is a multiple
of 3 and, if it is, it connects to id (i 4 2), otherwise it connects to id (i —1). This is a totally parallel
and thus a very efficient solution.

Finally, the above approach introduces the idea of constructing disjoint stable structures and
then looking at those structures from a higher level and considering them as units (supernodes).
It is then challenging, interesting, and valuable to understand how these units behave, what is the
dependence of their behavior to their internal structure and configuration, what is the outcome of
an interaction between two such units, and what are their constructive capabilities. In fact, one
can imagine a whole such hierarchy of layers were nodes self-assemble into supernodes, supernodes
self-assemble into supersupernodes, and so on. Formalizing this hierarchy is a very promising and
totaly open research direction.

7 Conclusions and Further Research
There are many open problems related to the findings of the present work. Though our universal

constructors show that a large class of networks is in principle constructible, they do not imply
neither the simplest nor the most efficient protocol for each single network in the class. To this
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end, we have provided direct constructors for some of the most basic networks, but there are still
many other constructions to be investigated like grids or planar graphs. Moreover, a look at Table
[2l makes it evident that there is even more work to be done towards the probabilistic analysis of
protocols and in particular towards the establishment of tight bounds. Of special interest is the
spanning line problem as it is a key component of universal construction. All of our attempts to
give a protocol asymptotically faster than O(n?) have failed. Observe that with a preelected leader
in state [ and all edges initially inactive, the straightforward protocol (I, qo,0) — (q1,,1) produces
a stable spanning line in an expected number of ©(n?logn) steps (follows from the meet everybody
fundamental process). Moreover, by a one-to-one elimination we can elect a unique leader in an
expected number of ©(n?) steps. If we could safely compose these two protocols, then we would
obtain a ©(n?logn) constructor which is almost optimal as our present best lower bound for the
spanning line is £2(n?). The problem is that the protocol cannot detect when the leader-election
phase has completed, thus it has to activate edges while still having more than one leaders but
this gives an overhead for either merging the constructed disjoint lines or deactivating some wrong
connections. A possible solution could be to consider Monte Carlo protocols that may err with some
small probability, e.g. a protocol that would try somehow to estimate when w.h.p. the leader-election
phase completes and only then start the line construction phase.

One of the problems that we considered in this work, was the problem of constructing any
k-regular network. Note that this is a quite different problem than the problem of constructing
a specific k-regular network. For example, given a population of 10 processes is there a protocol
that stabilizes to the Petersen graph? In general, it is worth considering non-uniform protocols that
when executed on the correct number of nodes are required to construct a unique network like e.g.
the cubical graph or the Wagner graph on 8 processes.

Another very intriguing issue has to do with the size of network constructors. In particular,
we would like to know whether there is some generic lower bound on the size of all constructors,
to give problem-specific lower bounds, and to formalize the apparent relationship between the size
and the running time of a protocol. Is there some sort of hierarchy showing that with more states
we can produce faster protocols (until optimality is obtained)? To this end observe that neither
the maximum degree nor the number of different degrees of the target-network are lower bounds
on the number of states required to construct the network. For the former, it is not hard to show
that ©(x) states suffice to make a node obtain 2% neighbors (stably). The idea is to have a node
initially obtain 2 neighbors and then repeatedly double their number. For the latter, one can show
that ©(z) states suffice to have 2* nodes with different degrees (stably) and in particular for all
i € {1,...,2} we obtain a node with degree i. The idea is to mark a set of 2 nodes as before
and construct a line spanning these nodes. Then the protocol assigns to the ith node of the line,
counting e.g. from the left endpoint, ¢ neighbors. This can be done by using only a constant number
of states. The head begins from the left endpoint and moves step-by-step on the line towards wu.
For every step it takes it assigns to w a new neighbor and stops when it reaches u. In this manner,
it assigns to u a number of neighbors equal to its distance from the endpoint without having to
explicitly count the distance. Is there some other property of the target-network that determines
the number of states that have to be used?

All of our generic constructors, produce a random graph in the useful space and then simulate
a space bounded TM in the waste to determine whether the random graph belongs to the language
and therefore whether it should be accepted. An interesting open problem is to characterize the class
REL in which protocols do not have access to (internal) randomness. In this case, it seems useless
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to simulate deciding TMs and the focus should be on graph-constructing TMs which are much less
understood. Such a characterization would also help us appreciate whether randomization increases
the constructive power of the model. It is worth noting that our results on universal construction
indicate that the constructive power increases as a function of the available waste. A complete
characterization of this dependence would be of special value.

There is also a practically unlimited set of variations of the proposed model that is worth
considering. We mention a few of them. As already discussed, in this work we have considered a
model of network construction with as minimal assumptions as possible to serve as a simple and
clear starting point for more applied models to be defined. We now introduce such a model which
seems to be of particular interest. Assume that every node is equipped with a predefined number
of ports at specific positions of its “body”. For example, in the 2-dimensional case these could be
“North”, “South”, “East”, “West” having the obvious angles between them. Nodes interact via
their ports and they can detect which of their ports are used in an interaction. Moreover, when
a connection is activated, it is always activated at a predetermined distance (i.e. all connections
have the same length d) and it is always a straight line respecting the angles between itself and the
(potentially active) lines of the other ports of the same node. Such a model (and possible variations
of it, depending on the assumed hardware) seems particularly suitable for studying/designing very
simple and local distributed protocols that are capable of constructing stable geometric objects
(even in three dimensions), like squares, cubes, or more complex polyhedra, without any mobility-
control mechanism. Moreover, an immediate extension of our model is to allow the connections
to have more than just the two states that we considered in this work. Recall that, whenever we
had to analyze the running time of a protocol, we did it under the uniform random scheduler,
mainly because we wanted to keep this first model of network construction as simple as possible
and because of its correspondence to a well-mixed solution. However, there are many other natural
probabilistic scheduling models to be considered which would probably require different algorithmic
developments and techniques to achieve efficiency. It is also natural to consider a variant in which
connected nodes communicate much faster (even in synchronous rounds) than disconnected nodes.
Moreover, it would be interesting to consider a model of network construction in which the behavior
of a node depends on some input from the environment (this would allow the consideration of
codes that exhibit different behaviors in different environments). Interesting and natural seems
also the model in which a connected component has access to a self-bit indicating whether a given
interaction involves two nodes of the same component or not. It is not yet clear whether this
extra assumption increases the constructive power of the model but it is clear that it substantially
simplifies the description of several protocols. Also, of its own value would be to depart from
cooperative models and consider an antagonistic scenario in which different sets of nodes try to
construct different networks (by deterministic codes and not game-theoretic assumptions involving
incentives). It would be interesting to discover cases in which the antagonism leads to unexpected
stable formations.

Finally, a very valuable and challenging interdisciplinary goal is to further investigate and
formalize the apparent applicability of the model proposed here (and potential variations of
it) in physical and chemical (possibly biological) processes. As already stated, we envision that
a potential usefulness of such models is to unveil the algorithmic properties underlying the
structure/network formation capabilities of natural processes.
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