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Abstract. By prior work, there is a distributed algorithm that finds a maximal
fractional matching (maximal edge packing) in O(∆) rounds, where ∆ is the maximum
degree of the graph. We show that this is optimal: there is no distributed algorithm
that finds a maximal fractional matching in o(∆) rounds.

Our work gives the first linear-in-∆ lower bound for a natural graph problem in
the standard model of distributed computing—prior lower bounds for a wide range of
graph problems have been at best logarithmic in ∆.
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1 Introduction

This work settles the distributed time complexity of the maximal fractional matching
problem as a function of ∆, the maximum degree of the input graph.

By prior work [3], there is a distributed algorithm that finds a maximal fractional
matching (also known as a maximal edge packing) in O(∆) communication rounds,
independently of the number of nodes. In this work, we show that this is optimal: there
is no distributed algorithm that finds a maximal fractional matching in o(∆) rounds.

This is the first linear-in-∆ lower bound for a natural graph problem in the standard
LOCAL model of distributed computing. It is also a step towards understanding the
complexity of the non-fractional analogue, the maximal matching problem, which is a
basic symmetry breaking primitive in the field of distributed graph algorithms. For
many related primitives, the prior lower bounds in the LOCAL model have been at best
logarithmic in ∆.

1.1 Matchings

Simple randomised distributed algorithms that find a maximal matching in time O(log n)
have been known since the 1980s [1, 14, 21]. Currently, the fastest algorithms that
compute a maximal matching stand as follows:

− Dense graphs. There is a recent O(log ∆+log4 log n)-time randomised algorithm
due to Barenboim et al. [6]. The fastest known deterministic algorithm runs in
time O(log4 n) and is due to Hańćkowiak et al. [11].

− Sparse graphs. There is a O(∆ + log∗ n)-time deterministic algorithm due to
Panconesi and Rizzi [25]. Here log∗ n is the iterated logarithm of n, a very slowly
growing function.

Our focus is on the sparse case. It is a long-standing open problem to either improve
on the O(∆ + log∗ n)-time algorithm of Panconesi and Rizzi, or prove it optimal by
finding a matching lower bound. In fact, Linial’s [20] seminal work already implies that
O(∆) + o(log∗ n) rounds is not sufficient. This leaves us with the following possibility
(see Barenboim and Elkin [5, Open Problem 10.6]):

Open question. Can maximal matchings be computed in time o(∆) +O(log∗ n)?

We conjecture that there are no such algorithms. The lower bound presented in
this work builds towards proving conjectures of this form.

1.2 Fractional matchings

While a matching associates a weight 0 or 1 with each edge of a graph, with 1 indicating
that the edge is in a matching, a fractional matching (FM) associates a weight between
0 and 1 with each edge. In both cases, the total weight of the edges incident to any
given node has to be at most 1.

Formally, let G = (V,E) be a simple undirected graph and let y : E → [0, 1] associate
weights to the edges of G. Define, for each v ∈ V ,

y[v] :=
∑

e∈E:v∈e
y(e).
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The function y is called a fractional matching, or an FM for short, if y[v] ≤ 1 for each
node v. A node v is saturated if y[v] = 1.

There are two interesting varieties of fractional matchings.

− Maximum weight. An FM y is of maximum weight, if its total weight
∑

e∈E y(e)
is the maximum over all fractional matchings on G.

− Maximality. An FM y is maximal, if each edge e has at least one saturated
endpoint v ∈ e.

See below for examples of (a) a maximum-weight FM, and (b) a maximal FM; the
saturated nodes are highlighted.
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Distributed complexity. The distributed complexity of computing maximum-
weight FMs is completely understood. It is easy to see that computing an exact
solution requires time Ω(n) already on odd-length path graphs. If one settles for an
approximate solution, then FMs whose total weight is at least a (1 − ε)-fraction of
the maximum can be computed in time O(ε−1 log ∆) by the well-known results of
Kuhn et al. [16–18]. This is optimal: Kuhn et al. also show that any constant-factor
approximation of maximum-weight FMs requires time Ω(log ∆).

By contrast, the complexity of computing maximal FMs has not been understood.
A maximal FM is a 1/2-approximation of a maximum-weight FM, so the results of
Kuhn et al. imply that finding a maximal FM requires time Ω(log ∆), but this lower
bound is exponentially small in comparison to the O(∆) upper bound [3].

1.3 Contributions

We prove that the O(∆)-time algorithm [3] for maximal fractional matchings is optimal:

Theorem 1. There is no LOCAL algorithm that finds a maximal FM in o(∆) rounds.

To our knowledge, this is the first linear-in-∆ lower bound in the LOCAL model for
a classical graph problem. Indeed, prior lower bounds have typically fallen in one of
the following categories:

− they are logarithmic in ∆ [16–18],
− they analyse the complexity as a function of n for a fixed ∆ [7–10, 19, 20, 23],
− they only hold in a model that is strictly weaker than LOCAL [13, 15].

We hope that our methods can eventually be extended to analyse algorithms (e.g.,
for maximal matching) whose running times depend mildly on n.

1.4 The LOCAL model

Our result holds in the standard LOCAL model of distributed computing [20, 26]. For
now, we only recall the basic setting; see Section 3 for precise definitions.

In the LOCAL model an input graph G = (V,E) defines both the problem instance
and the structure of the communication network. Each node v ∈ V is a computer
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and each edge {u, v} ∈ E is a communication link through which nodes u and v can
exchange messages. Initially, each node is equipped with a unique identifier and, if we
study randomised algorithms, a source of randomness. In each communication round,
each node in parallel (1) sends a message to each neighbour, (2) receives a message
from each neighbour, and (3) updates its local state. Eventually, all nodes have to stop
and announce their local outputs—in our case the local output of a node v ∈ V is an
encoding of the weight y(e) for each edge e incident to v. The running time t of the
algorithm is the number of communication rounds until all nodes have stopped. We
call an algorithm strictly local, or simply local, if t = t(∆) is only a function of ∆, i.e.,
independent of n.

The LOCAL model is the strongest model commonly in use—in particular, the size
of each message and the amount of local computation in each communication round is
unbounded—and this makes lower bounds in this model very widely applicable.

2 Overview

The maximal FM problem is an example of a locally checkable problem: there is a local
algorithm that can check whether a proposed function y is a feasible solution.

It is known that randomness does not help a local algorithm in solving a locally
checkable problem [23]: if there is a t(∆)-time worst-case randomised algorithm, then
there is a t(∆)-time deterministic algorithm (see Appendix B). Thus, we need only
prove our lower bound for deterministic algorithms.

2.1 Deterministic models

Our lower bound builds on a long line of prior research. During the course of the proof,
we will visit each of the following deterministic models (see Figure 1), whose formal
definitions are given in Section 3.

ID: Deterministic LOCAL. Each node has a unique identifier [20, 26]. This is the
standard model in the field of deterministic distributed algorithms.

OI: Order-invariance. The output of an algorithm is not allowed to change if we relabel
the nodes while preserving the relative order of the labels [23]. Equivalently, the
algorithm can only compare the identifiers, not access their numerical value.

PO: Port numbering and orientation. For each node, there is an ordering on the
incident edges, and all edges carry an orientation [22].

EC: Edge colouring. A proper edge colouring with O(∆) colours is given [13].

The models are listed here roughly in the order of decreasing strength. For example,
the ID model is strictly stronger than OI, which is strictly stronger than PO. However,
the EC model is not directly comparable: there are problems that are trivial to solve in
ID, OI, and PO but impossible to solve in EC with any deterministic algorithm (example:
graph colouring in 1-regular graphs); there are also problems that can be solved with a
local algorithm in EC but they do not admit a local algorithm in ID, OI, or PO (example:
maximal matching).
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Figure 1: Deterministic models that are discussed in this work.

2.2 Proof outline

In short, our proof is an application of techniques that were introduced in two of our
earlier works [10, 13]. Accordingly, our proof is in two steps.

A weak lower bound. In our prior work [13] we showed that maximal matchings
cannot be computed in time o(∆) in the weak EC model. The lower-bound construction
there is a regular graph, and as such, tells us very little about the fractional matching
problem, since maximal fractional matchings are trivial to compute in regular graphs.

Nevertheless, we use a similar unfold-and-mix argument on what will be called
loopy EC-graphs to prove the following intermediate result in Section 4:

Step 1. The maximal FM problem cannot be solved in time o(∆) on loopy EC-graphs.

The proof heavily exploits the limited symmetry breaking capabilities of the EC

model. To continue, we need to argue that similar limitations exist in the ID model.

Strengthening the lower bound. To extend the lower bound to the ID model, we
give a series of local simulation results

EC ; PO ; OI ; ID,

which state that a local algorithm for the maximal fractional matching problem in one
model can be simulated fast in the model preceding it. That is, even though the models
EC, PO, OI, and ID are generally very different, we show that the models are roughly
equally powerful for computing a maximal fractional matching.

This part of the argument applies ideas from another prior work [10]. There,
we showed that, for a large class of optimisation problems, a run-time preserving
simulation PO ; ID exists. Unfortunately, the maximal fractional matching problem is
not included in the scope of this result (fractional matchings are not simple in the sense
of [10]), so we may not apply this result directly in a black-box fashion. In addition,
this general result does not hold for the EC model.

Nevertheless, we spend Section 5 extending the methods of [10] and show that they
can be tailored to the case of fractional matchings:

Step 2. If the maximal FM problem can be solved in time t(∆) on ID-graphs, then it
can be solved in time t(Θ(∆)) on loopy EC-graphs.

In combination with Step 1, this proves Theorem 1.

3 Tools of the Trade

Before we dive into the lower-bound proof, we recall the definitions of the four models
mentioned in Section 2.1, and describe the standard tools that are used in their analysis.
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3.1 Locality

Distributed algorithms are typically described in terms of networked state machines:
the nodes of a network exchange messages for t synchronous communication rounds
after which they produce their local outputs (cf. Section 1.4).

Instead, for the purposes of our lower-bound analysis, we view an algorithm A
simply as a function that associates to each pair (G, v) an output A(G, v) in a way
that respects locality. That is, an algorithm A is said to have run-time t, if the output
A(G, v) depends only on the information that is available in the radius-t neighbourhood
around v. More formally, define

τt(G, v) ⊆ (G, v)

as consisting of the nodes and edges of G that are within distance t from v—the distance
of an edge {u,w} from v is min{dist(v, u),dist(v, w)}+ 1. A t-time algorithm A is then
a mapping that satisfies

A(G, v) = A(τt(G, v)). (1)

The information contained in τt(G, v) depends on which of the models EC, PO, OI,
and ID we are studying. For each model we define an associated graph class.

3.2 Identifier-based networks

ID-graphs. An ID-graph is simply a graph G whose nodes are assigned unique identi-
fiers; namely, V (G) ⊆ N. Any mapping A satisfying (1) is a t-time ID-algorithm.

OI-graphs. An OI-graph is an ordered graph (G,�) where � is a linear order on
V (G). An OI-algorithm A operates on OI-graphs in such a way that if (G,�, v) and
(G′,�′, v′) are isomorphic (as ordered structures), then A(G,�, v) = A(G′,�′, v′).

Every ID-graph G is naturally an OI-graph (G,≤) under the usual order ≤ on N.
In the converse direction, we often convert an OI-graph (G,�) into an ID-graph by
specifying an ID-assignment ϕ : V (G) → N that respects � in the sense that v � u
implies ϕ(v) ≤ ϕ(u). The resulting ID-graph is denoted ϕ(G).

3.3 Anonymous networks

On anonymous networks the nodes do not have identifiers. The only symmetry breaking
information is now provided in an edge colouring of a suitable type. This means that
whenever there is an isomorphism between (G, v) and (G′, v′) that preserves edge
colours, we will have A(G, v) = A(G′, v′).

EC-graphs. An EC-graph carries a proper edge colouring E(G)→ {1, . . . , k}, where
k = O(∆). That is, if two edges are adjacent, they have distinct colours.

PO-graphs. A PO-graph is a directed graph whose edges are coloured in the following
way: if (u, v) and (u,w) are outgoing edges incident to u, then they have distinct
colours; and if (v, u) and (w, u) are incoming edges incident to u, then they have
distinct colours. Thus, we may have (v, u) and (u,w) coloured the same.
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Figure 2: Two equivalent definitions of PO-graphs: (PO1) a node of degree d can
refer to incident edges with labels 1, 2, . . . , d; (PO2) edges are coloured so that
incoming edges have distinct colours and outgoing edges have distinct colours.

We find it convenient to treat PO-graphs as edge-coloured digraphs, even if this view
is nonstandard. Usually, PO-graphs are defined as digraphs with a port numbering, i.e.,
each node is given an ordering of its neighbours. This is equivalent to our definition: A
port numbering gives rise to an edge colouring where an edge (u, v) is coloured with
(i, j) if v is the i-th neighbour of u and u is the j-th neighbour of v (see Figure 2a).
Conversely, we can derive a port numbering from an edge colouring—first take all
outgoing edges ordered by the edge colours, and then take all incoming edges ordered
by the edge colours (Figure 2b).

We are not done with defining EC and PO algorithms. We still need to restrict their
power by requiring that their outputs are invariant under graph lifts, as defined next.

3.4 Lifts

A graph H is said to be a lift of another graph G if there exists an onto graph
homomorphism α : V (H)→ V (G) that is a covering map, i.e., α preserves node degrees,
degH(v) = degG(α(v)). Our discussion of lifts always takes place in either EC or PO; in
this context we require that a covering map preserves edge colours.

1
1

1
2H G

1
11

21 1

1
2

α

The defining characteristic of anonymous models is that the output of an algorithm
is invariant under taking lifts. That is, if α : V (H)→ V (G) is a covering map, then

A(H, v) = A(G,α(v)), for each v ∈ V (H). (2)

Since an isomorphism between H and G is a special case of a covering map, the
condition (2) generalises the discussion in Section 3.3. We will be exploiting this
limitation extensively in analysing the models EC and PO.

Graphs are partially ordered by the lift relation. For any connected graph G, there
are two graphs UG and FG of special interest that are related to G via lifts.
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Universal cover UG. The universal cover UG of G is an unfolded tree-like version
of G. More precisely, UG is the unique tree that is a lift of G. Thus, if G is a tree,
UG = G; if G has cycles, UG is infinite. In passing from G to UG we lose all the
cycle structure that is present in G. The universal cover is often used to model the
information that a distributed algorithm—even with unlimited running time—is able
to collect on an anonymous network [2].

1
1

1
2 UGG

1 1

1

21 1

1

2 1

Factor graph FG. The factor graph FG of G is the smallest graph F such that G is
a lift of F ; see Figure 3. In general, FG is a multigraph with loops and parallel edges.
It is the most concise representation of all the global symmetry breaking information
available in G. For example, in the extreme case when G is vertex-transitive, FG
consists of just one node and some loops.

Even though we want our input graphs always to be simple, we may still analyse
EC and PO-algorithms A on multigraphs F with the understanding that the output
A(F, v) is interpreted according to (2). That is, to determine A(F, v), do the following:

1. Lift F to a simple graph G (e.g., take G = UF ) via some α : V (G)→ V (F ).
2. Execute A on (G, u) for some u ∈ α−1(v).
3. Interpret the output of u as an output of v.

In what follows we refer to multigraphs simply as graphs.

3.5 Loops

In EC-graphs, a single loop on a node contributes +1 to its degree, whereas in PO-graphs,
a single (directed) loop contributes +2 to the degree, once for the tail and once for the
head. This is reflected in the way we draw loops—see Figure 3.

PO:

EC:
2 1 2 FGG

2 1

1

1 1

2

H

1 2

2 2

2 1FH

u

v

u’

v’

Figure 3: Factor graphs and loops. We follow the convention that undirected loops
in EC-graphs count as a single incident edge, while directed loops in PO-graphs
count as two incident edges: an incoming edge and an outgoing edge. In this
example, both u and its preimage u′ are nodes of degree 2; they are incident to
one edge of colour 1 and one edge of colour 2. Both v and its preimage v′ are
nodes of degree 3; they are incident to two outgoing edges of colours 1 and 2, and
one incoming edge of colour 1.
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G
H

v v1

v2

α

Figure 4: EC-graph G is loopy. Assume that an EC-algorithm A produces an
output in which node v is unsaturated. Then we can construct a simple EC-graph
H that is a lift of G via α : V (H) → V (G) such that α(v1) = α(v2) = v and
{v1, v2} ∈ E(H). If we apply A to H, both v1 and v2 are unsaturated; hence A
fails to produce a maximal FM.

The loop count on a node v ∈ V (G) measures the inability of v to break local
symmetries. Indeed, if v has ` loops, then in any simple lift H of G each node u ∈ V (H)
that is mapped to v by the covering map will have ` distinct neighbours w1, . . . , w`
that, too, get mapped to v. Thus, an anonymous algorithm is forced to output the
same on u as on each of w1, . . . , w`.

We consider loops as an important resource.

Definition 1 (Loopiness). An edge-coloured graph G is called k-loopy if each node in
FG has at least k loops. A graph is simply loopy if it is 1-loopy.

When computing maximal fractional matchings on a loopy graph G, an anonymous
algorithm must saturate all the nodes. For suppose not. If v ∈ V (G) is a node that does
not get saturated, the loopiness of G implies that v has a neighbour u (can be u = v
via a loop) that produces the same output as v. But now neither endpoint of {u, v} is
saturated, which contradicts maximality; see Figure 4. We record this observation.

Lemma 2. Any EC-algorithm for the maximal FM problem computes a fully saturated
FM on a loopy EC-graph.

4 Lower Bound in EC

In this section we carry out Step 1 of our lower-bound plan. To do this we extend the
previous lower bound result [13] to the case of maximal fractional matchings.

4.1 Strategy

Let A be any EC-algorithm computing a maximal fractional matching. We construct
inductively a sequence of EC-graph pairs

(Gi, Hi), i = 0, 1, . . . ,∆− 2,

that witness A having run-time greater than i. Each of the graphs Gi and Hi will have
maximum degree at most ∆, so for i = ∆− 2, we will have the desired lower bound.
More precisely, we show that there are nodes gi ∈ V (Gi) and hi ∈ V (Hi) satisfying the
following property:

(P1) The i-neighbourhoods τi(Gi, gi) and τi(Hi, hi) are isomorphic—yet,

A(Gi, gi) 6= A(Hi, hi).

Moreover, there is a loop of some colour ci adjacent to both gi and hi such that
the outputs disagree on its weight.
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same colour c0,
different weight

Figure 5: Base case. By removing a loop e with a non-zero weight, we force the
algorithm to change the weight of at least one edge that is present in both G0

and H0.

We will also make use of the following additional properties in the construction:

(P2) The graphs Gi and Hi are (∆− 1− i)-loopy—consequently, A will saturate all
their nodes by Lemma 2.

(P3) When the loops are ignored, both Gi and Hi are trees.

4.2 Base case (i = 0)

Let G0 consist of a single node v that has ∆ differently coloured loops. When A is run
on G0, it saturates v by assigning at least one loop e a non-zero weight; see Figure 5.
Letting H0 := G0 − e it is now easy to check that the pair (G0, H0) satisfies (P1–P3)
for g0 = h0 = v. For example, τ0(G0, v) ∼= τ0(H0, v) only because we consider the loops
to be at distance 1 from v.

4.3 Inductive step

Suppose (Gi, Hi) is a pair satisfying (P1–P3). For convenience, we write G, H, g, h,
and c in place of Gi, Hi, gi, hi, and ci. Also, we let e ∈ E(G) and f ∈ E(H) be the
colour-c loops adjacent to g and h to which A assigns different weights.

To construct the pair (Gi+1, Hi+1) we unfold and mix; see Figure 6

Unfolding. First, we unfold the loop e in G to obtain a 2-lift GG of G. That is,
GG consists of two disjoint copies of G − e and a new edge of colour c (which we
still call e) that connects the two copies of g in GG. For notational purposes, we fix
some identification V (G) ⊆ V (GG) so that we can easily talk about one of the copies.
Similarly, we construct a 2-lift HH of H by unfolding the loop f .

Recall that A cannot tell apart G from GG, or H from HH. In particular A
continues to assign unequal weights to e and f in these lifts.

Mixing. Next, we mix together the graphs GG and HH to obtain a graph GH defined
as follows: GH contains a copy of G− e, a copy of H − f , and a new colour-c edge that
connects the nodes g and h. For notational purposes, we let V (GH) := V (G) ∪ V (H),
where we tacitly assume that V (G) ∩ V (H) = ∅.

Analysis. Consider the weight that A assigns to the colour-c edge {g, h} in GH.
Since A gives the edges e and f different weights in GG and HH, we must have that the
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Figure 6: Unfold and mix. The weights of e and f differ; hence the weight of
{g, h} is different from the weight of e or f .

weight of {g, h} differs from the weight of e or the weight of f (or both). We assume
the former (the latter case is analogous), and argue that the pair

(Gi+1, Hi+1) := (GG,GH)

satisfies the properties (P1–P3). It is easy to check that (P2) and (P3) are satisfied by
the construction; it remains is to find the nodes gi+1 ∈ V (GG) and hi+1 ∈ V (GH) that
satisfy (P1).

To this end, we exploit the following property of fractional matchings:

Fact 3 (Propagation principle). Let y and y′ be fractional matchings that saturate a
node v. If y and y′ disagree on some edge incident to v, there must be another edge
incident to v where y and y′ disagree.

Our idea is to apply this principle in a fully saturated graph, where the disagreements
propagate until they are resolved at a loop; this is where we locate gi+1 and hi+1. See
Figure 7 for an example.

We consider the following fully saturated fractional matchings on G:

y = the FM determined by A’s output on the nodes V (G) in GG,
y′ = the FM determined by A’s output on the nodes V (G) in GH.

Starting at the node g ∈ V (G) we already know by assumption that y and y′ disagree
on the colour-c edge incident to g. Thus, by the propagation principle, y and y′ disagree
on some other edge incident to g. If this edge is not a loop, it connects to a neighbour
g′ ∈ V (G) of g and the argument can be continued: because y and y′ disagree on
{g, g′}, there must be another edge incident to g′ where y and y′ disagree, and so on.
Since G does not have any cycles (apart from the loops), this process has to terminate
at some node g∗ ∈ V (G) such that y and y′ disagree on a loop e∗ 6= e incident to g∗.
Note that e∗ is a loop in both GG and GH, too. Thus, we have found our candidate
gi+1 = hi+1 = g∗.

10
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Figure 7: Propagation. The weights of e and {g, h} differ. We apply the propaga-
tion principle towards the common part G that is shared by GG and GH. The
graphs are loopy and hence all nodes are saturated by A; we will eventually find a
loop e∗ that is present in both GG and GH, with different weights.

To finish the proof, we need to show that

τi+1(GG, g
∗) ∼= τi+1(GH, g

∗). (3)

The critical case is when g∗ = g as this node is the closest among V (G) to seeing the
topological differences between the graphs GG and GH. Starting from g and stepping
along the colour-c edge towards the differences, we arrive, in GG, at a node ĝ that is a
copy of g ∈ V (G), and in GH, at the node h. But these nodes satisfy

τi(GG, ĝ) ∼= τi(GH,h)

by our induction assumption. Using this, (3) follows.

5 Local Simulations

Now that we have an Ω(∆) time lower bound in the EC model, our next goal is to
extend this result to the ID model. In this section we implement Step 2 of our plan and
give a series of local simulations

EC ; PO ; OI ; ID.

Here, each simulation preserves the running time of an algorithm up to a constant
factor. In particular, together with Step 1, this will imply the Ω(∆) time lower bound
in the ID model.

5.1 Simulation EC ; PO

We start with the easiest simulation. Suppose there is a t-time PO-algorithm for the
maximal fractional matching problem on graphs of maximum degree ∆; we describe a
t-time EC-algorithm for graphs of maximum degree ∆/2.

The local simulation is simple; see Figure 8. On input an EC-graph G we interpret
each edge {u, v} of colour c as two directed edges (u, v) and (v, u), both of colour c;
this interpretation makes G into a PO-graph G�. We can now locally simulate the
PO-algorithm on G� to obtain an FM y as output. Finally, we transform y back to an
FM of G: the edge {u, v} is assigned weight y(u, v) + y(v, u).
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Figure 8: EC ; PO. Mapping an EC-graph G into a PO-graph G�, and mapping
the output of a PO-algorithm back to the original graph.

5.2 Tricky identifiers

When we are computing a maximal fractional matching y : E(G) → [0, 1], we have,
a priori, infinitely many choices for the weight y(e) of an edge. For example, in a
path on nodes v1, v2, and v3, we can freely choose y({v1, v2}) ∈ [0, 1] provided we set
y({v2, v3}) = 1− y({v1, v2}). In particular, an ID-algorithm can output edge weights
that depend on the node identifiers whose magnitude is not bounded.

Unbounded outputs are tricky from the perspective of proving lower bounds. The
main result of the recent work [10] is a run-time preserving local simulation PO ; ID,
but the result only holds under the assumption that the solution can be encoded using
finitely many values per node on graphs of maximum degree ∆. This restriction has
its source in an earlier local simulation OI ; ID due to Naor and Stockmeyer [23]
that is crucially using Ramsey’s theorem. In fact, these two local simulation results
fail if unbounded outputs are allowed; counterexamples include even natural graph
problems [12].

In conclusion, we need an ad hoc argument to establish that an ID-algorithm cannot
benefit from unique identifiers in case of the maximal fractional matching problem.

5.3 Simulation PO ; OI

Before we address the question of simulating ID-algorithms, we first salvage one part
of the result in [10]: there is local simulation PO ; OI that applies to many locally
checkable problems, regardless of the size of the output encoding. Even though this
simulation works off-the-shelf in our present setting, we cannot use this result in a
black-box fashion, as we need to access its inner workings later in the analysis. Thus,
we proceed with a self-contained proof.

The following presentation is considerably simpler than that in [10], since we are
only interested in a simulation that produces a locally maximal fractional matching,
not in a simulation that also provides approximation guarantees on the total weight, as
does the original result.

PO-checkability. Maximal fractional matchings are not only locally checkable, but
also PO-checkable: there is a local PO-algorithm that can check whether a given y is a
maximal FM. An important consequence of PO-checkability is that if H is a lift of G
then any PO-algorithm produces a feasible solution on H if and only if it produces a
feasible solution on G.

12
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Figure 9: Given a PO-graph G, algorithm APO simulates the execution of AOI on
OI-graph τ . The linear order on V (τ) is inherited from the regular tree T . As T is
homogeneous, the linear order does not depend on the choice of node u in T .

Order homogeneity. The key to the simulation PO ; OI is a canonical linear order
that can be computed for any tree-like PO-neighbourhood. To define this ordering,
let d denote the maximum number of edge colours appearing in the input PO-graphs
that have maximum degree ∆, and let T denote the infinite 2d-regular d-edge-coloured
PO-tree. We fix a homogeneous linear order for T :

Lemma 4. There is a linear order � on V (T ) such that all the ordered neighbourhoods
(T,�, v), v ∈ V (T ), are pairwise isomorphic (i.e., up to any radius).

For a proof, see Appendix A.

Simulation. Let AOI be any t-time OI-algorithm solving a PO-checkable problem; we
describe a t-time PO-algorithm APO solving the same problem.

The algorithm APO operates on a PO-graph G as follows; see Figure 9. Given a
PO-neighbourhood τ := τt(UG, v), we first embed τ in T : we choose an arbitrary node
u ∈ V (T ), identify v with u, and let the rest of the embedding τ ⊆ (T, u) be dictated
uniquely by the edge colours. We then use the ordering � inherited from T to order
the nodes of τ . By Lemma 4, the resulting structure (τ,�) is independent of the choice
of u, i.e., the isomorphism type of (τ,�) is only a function of τ . Finally, we simulate

APO(τ) := AOI(τ,�). (4)

To see that the output of APO is feasible, we argue as follows. Embed the universal
cover UG as a subgraph of (T,�) in a way that respects edge colours. Again, all possible
embeddings are isomorphic; we call the inherited ordering (UG,�) the canonical ordering
of UG. Our definition of APO and the order homogeneity of (T,�) now imply that

APO(UG, v) = AOI(UG,�, v) for all v ∈ V (UG).
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Therefore, the output of APO is feasible on UG. Finally, by PO-checkability, the output
of APO is feasible also on G, as desired.

5.4 Simulation OI ; ID

The reason why an ID-algorithm A cannot benefit from unbounded identifiers is due to
the propagation principle. We formalise this in two steps.

(i) We use the Naor–Stockmeyer OI ; ID result to see that A can be forced to output
fully saturated FMs on so-called loopy OI-neighbourhoods.

(ii) We then observe that, on these neighbourhoods, A behaves like an OI-algorithm:
A’s output cannot change if we relabel a node in an order-preserving fashion,
because the changes in the output would have to propagate outside of A’s run-time.

That is, our simulation OI ; ID will work only on certain types of neighbourhoods (in
contrast to our previous simulations), but this will be sufficient for the purposes of the
lower bound proof.

Step (i). Let A be a t-time ID-algorithm that computes a maximal fractional matching
on graphs of maximum degree ∆.

From A we can derive, by a straightforward simulation, a t-time binary-valued
ID-algorithm A∗ that indicates whether A saturates a node. That is, A∗(G, v) := 1
if A saturates v in G, otherwise A∗(G, v) := 0. Such saturation indicators A∗ were
considered previously in [4, §4].

Because (and only because) A∗ outputs finitely many values, we can now apply
the Ramsey technique of Naor and Stockmeyer [23, Lemma 3.2]. To avoid notational
clutter, we use a version of their result that follows from the application of the infinite
Ramsey’s theorem (rather than the finite):

Lemma 5 (Naor and Stockmeyer). There is an infinite set I ⊆ N such that A∗ is an
OI-algorithm when restricted to graphs whose identifiers are in I.

We say that τt(UG,�, v) is a loopy OI-neighbourhood if G is a loopy PO-graph
and (UG,�) is the canonically ordered universal cover of G. We also denote by
Bt(v) ⊆ V (UG) the node set of τt(UG, v).

Our saturation indicator A∗ is useful in proving the following lemma, which encap-
sulates step (i) of our argument.

Lemma 6. Let τ := τt(UG,�, v) be loopy. If ϕ : Bt(v)→ I is an ID-assignment to the
nodes of τ that respects �, then A saturates v under ϕ.

Proof. By loopiness of G, the node v has a neighbour u ∈ V (UG) such that τt(UG, v) ∼=
τt(UG, u) as PO-neighbourhoods. By order homogeneity, τt(UG,�, v) ∼= τt(UG,�, v) as
OI-neighbourhoods. By Lemma 5, this forces A∗ to output the same on v and u under
any ID-assignment ϕ′ : Bt(v) ∪Bt(u)→ I that respects �. But A∗ cannot output two
adjacent 0’s if A is to produce a maximal fractional matching. Hence, A∗ outputs 1 on
ϕ′(τ). Finally, by order-invariance, A∗ outputs 1 on ϕ(τ), which proves the claim.
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Step (ii). Define J as an infinite subset of I that is obtained by picking every
(m+ 1)-th identifier from I, where m is the maximum number of nodes in a (2t+ 1)-
neighbourhood of maximum degree ∆. That is, for any two j, j′ ∈ J , j < j′, there are
m distinct identifiers i ∈ I with j < i < j′.

The next lemma states that A behaves like an OI-algorithm on loopy neighbourhoods
that have identifiers from J .

Lemma 7. Let τ := τt(UG,�, v) be loopy. If ϕ1, ϕ2 : Bt(v) → J are any two ID-
assignments that respect �, then A(ϕ1(τ)) = A(ϕ2(τ)).

Proof. We first consider the case where ϕ1 and ϕ2 disagree only on a single node v∗ ∈
Bt(v). Towards a contradiction suppose that

A(ϕ1(τ)) 6= A(ϕ2(τ)). (5)

We start with partial ID-assignments for UG that are defined on the nodes B2t+1(v);
this will suffice for running A on the nodes Bt+1(v). Indeed, because J ⊆ I is sufficiently
sparse, we can extend ϕ1 and ϕ2 into assignments ϕ̄1, ϕ̄2 : B2t+1(v)→ I such that

− ϕ̄1 and ϕ̄2 respect �, and
− ϕ̄1 and ϕ̄2 still disagree only on the node v∗.

Let yi, i = 1, 2, be the fractional matching defined on the edges incident to Bt+1(v)
that is determined by the output of A on the nodes Bt+1(v) under the assignment ϕ̄i.
By Lemma 6, all the nodes Bt+1(v) are saturated in both y1 and y2.

Let D ⊆ UG be the subgraph consisting of the edges e with y1(e) 6= y2(e) and of
the nodes that are incident to such edges; by (5), we have v ∈ V (D). Now we can
reinterpret the propagation principle from Section 4:

Fact 8 (Propagation principle). Each node u ∈ Bt+1(v) ∩ V (D) has degD(u) ≥ 2.

Using the fact that D ⊆ UG is a tree, we can start a simple walk at v ∈ V (D), take
the first step away from v∗, and finally arrive at a node u ∈ Bt+1(v) ∩ V (D) that has
dist(u, v∗) ≥ t+ 1, i.e, the node u does not see the difference between the assignments
ϕ̄1 and ϕ̄2. But this is a contradiction: as the t-neighbourhoods ϕ̄i(τt(UG, u)), i = 1, 2,
are the same, so should the weights output by A.

General case. If ϕ1, ϕ2 : Bt(v)→ J are any two assignments respecting �, they can
be related to one another by a series of assignments

ϕ1 = π1, π2, . . . , πk = ϕ2,

where any two consecutive assignments πi and πi+1 both respect � and disagree on
exactly one node. Thus, the claim follows from the analysis above.

Let AOI be any t-time OI-algorithm that agrees with the order-invariant output of
A on loopy OI-neighbourhoods that have identifiers from J . We now obtain the final
form of our OI ; ID simulation:

Corollary 9. If G is a loopy PO-graph, AOI produces a maximal fractional matching
on the canonically ordered universal cover (UG,�).

Proof. The claim follows by a standard argument [23, Lemma 3.2] from two facts: J is
large enough; and maximal fractional matchings are locally checkable.
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5.5 Conclusion

To get the final lower bound of Theorem 1 we reason backwards. Assume that A is
a t-time ID-algorithm that computes a maximal fractional matching on any graph of
maximum degree ∆.

OI ; ID: Corollary 9 in Section 5.4 gives us a t-time OI-algorithm AOI that computes
a maximal fractional matching on the canonically ordered universal cover
(UG,�) for any loopy PO-graph G of maximum degree ∆.

PO ; OI: Simulation (4) in Section 5.3 queries the output of AOI only on (UG,�).
This gives us a t-time PO-algorithm APO that computes a maximal fractional
matching on any loopy PO-graph G of maximum degree ∆.

EC ; PO: The simple simulation in Section 5.1 gives us a t-time EC-algorithm AEC

that computes a maximal fractional matching on any loopy EC-graph G of
maximum degree ∆/2.

But now we can use the construction of Section 4: there is a loopy EC-graph of maximum
degree ∆/2 where AEC runs for Ω(∆) rounds. Hence the running time of A is also
Ω(∆).
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Figure 10: In this example, Ju vK = +1, Jv uK = −1, and hence u ≺ v.

A Proof of Lemma 4

We give two proofs for Lemma 4, the second one of which we have not seen in print.

A.1 Algebraic proof

The tree T can be thought of as a Cayley graph of the free group on d generators, and
the free group admits a linear order that is invariant under the group acting on itself
by multiplication; for details, see Neumann [24] and the discussion in [10, §5].

A.2 Combinatorial proof

In T there is a unique simple directed path x y between any two nodes x, y ∈ V (T ).
We use V (x y) and E(x y) to denote the nodes and edges of the path. Also, we set
Vin(x y) := V (x y) r {x, y}. We will assign to each path x y an integer value,
denoted Jx yK, which will determine the relative order of the endpoints.

By definition, in the PO model, we are given the following linear orders:

− Each node v ∈ V (T ) has a linear order ≺v on its incident edges.
− Each edge e ∈ E(T ) has a linear order ≺e on its incident nodes.

For notational convenience, we extend these relations a little: for v ∈ Vin(x y) we
define x ≺v y ⇐⇒ e ≺v e′, where e is the last edge on the path x v and e′ is the first
edge on the path v y; similarly, for e ∈ E(x y), we define x ≺e y ⇐⇒ x′ ≺e y′,
where e = {x′, y′} and x′ and y′ appear on the path x y in this order.

For any statement P , we will use the following type of Iverson bracket notation:

[P ] :=

{
+1 if P is true,

−1 if P is false.

We can now define

Jx yK :=
∑

e∈E(x y)

[x ≺e y] +
∑

v∈Vin(x y)

[x ≺v y]. (6)

In particular, Jx xK = 0. The linear order ≺ on V (T ) is now defined by setting

x ≺ y ⇐⇒ Jx yK > 0.

See Figure 10. Next, we show that this is indeed a linear order.
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Antisymmetry and totality. Since [x ≺v y] = −[y ≺v x] and [x ≺e y] = −[y ≺e x],
we have the property that

Jx yK = −Jy xK.

Moreover, if x 6= y, the first sum in (6) is odd iff the second sum in (6) is even. Therefore
Jx yK is always odd; in particular, it is non-zero. These properties establish that
either x ≺ y or x ≺ y (but never both).

Transitivity. Let x, y, z ∈ V (T ) be three distinct nodes with x ≺ y and y ≺ z; we
need to show that x ≺ z. Denote by v ∈ V (T ) the unique node in the intersection of
the paths x z, z y, and y x.

Viewing the path x z piecewise as x v z we write

Jx zK = Jx vK + [x ≺v z] + Jv zK,

where it is understood that [x ≺v z] := 0 in the degenerate cases where v ∈ {x, z}.
Similar decompositions can be written for z y and y x. Indeed, it is easily checked
that

Jx zK + Jz yK + Jy xK = [x ≺v z] + [z ≺v y] + [y ≺v x].

By assumption, Jz yK, Jy xK ≤ −1, so we get

Jx zK ≥ 2 + [x ≺v z] + [z ≺v y] + [y ≺v x].

The only way the right hand side can be negative is if

[x ≺v z] = [z ≺v y] = [y ≺v x] = −1,

but this is equivalent to having z ≺v x ≺v y ≺v z, which is impossible. Hence
Jx zK ≥ 0. But since x 6= z we must have in fact that x ≺ z.

B Derandomising Local Algorithms

As discussed in Section 5.2, unbounded outputs require special care. In this Appendix
we note that even though Naor and Stockmeyer [23] assume bounded outputs, their
result on derandomising local algorithms applies in our setting, too.

Let A be a randomised t(∆)-time algorithm that computes a maximal FM on
graphs of maximum degree ∆ or possibly fails with some small probability. Given an
assignment of random bit strings ρ : V (G)→ {0, 1}∗ to the nodes of a graph G, denote
by Aρ the deterministic algorithm that computes as A, but uses ρ for randomness.

The proof of Theorem 5.1 in [23] is using the following fact whose proof we reproduce
here for convenience.

Lemma 10 (Naor and Stockmeyer). For every n, there is an n-set Sn ⊆ N of identifiers
and an assignment ρn : Sn → {0, 1}∗ such that Aρn is correct on all graphs that have
identifiers from Sn.

Proof. Denote by k = k(n) the number of graphs G with V (G) ⊆ {1, . . . , n}. Let
X1, . . . , Xq ⊆ N be any q disjoint sets of size n. Suppose for the sake of contradiction
that the claim is false for each Xi. That is, for any assignment ρ : Xi → {0, 1}∗ of
random bits, Aρ fails on at least one of the k many graphs G with V (G) ⊆ Xi. By
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averaging, this implies that for each i there is a particular graph Gi, V (Gi) ⊆ Xi, on
which A fails with probability at least 1/k. Consider the graph G that is the disjoint
union of the graphs G1, . . . , Gq. Since A fails independently on each of the components
Gi, the failure probability on G is at least 1 − (1 − 1/k)q. But this probability can
be made arbitrarily close to 1 by choosing a large enough q, which contradicts the
correctness of A.

The deterministic algorithms Aρn allow us to again obtain a t(∆)-time OI-algorithm,
which establishes the Ω(∆) lower bound for A. Only small modifications to Section 5.4
are needed:

− Step (i). Instead of the infinite set I ⊆ N as previously provided by Lemma 5,
we can use the finite Ramsey’s theorem to find arbitrarily large sets In ⊆ Sn (i.e.,
|In| → ∞ as n→∞) with the property that Aρn fully saturates the nodes of a
loopy OI-neighbourhood that has identifiers from In (Lemma 6).

− Step (ii). Then, passing again to sufficiently sparse subsets Jn ⊆ In, we can
reprove Lemma 7 and Corollary 9, which only require that J is large enough.

This concludes the lower bound proof for randomised LOCAL algorithms.
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