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1. INTRODUCTION

Reconfigurable systems can be seen as interactive collections of elements, capable of 
managing themselves at runtime. This is very close to the original vision of autonomic 
computing [Kephart and Chess 2003] that advocates the realization of autonomic ele-
ments as individual systems consisting of a managed element and an autonomic man-
ager. These systems are supposed to deal with uncertain environments, heterogeneous 
resources, and irregular workloads; enforcing autonomicity in such conditions usu-ally 
requires the ability to plan and to perform multiple, correlated adjustments (i.e., 
sequential decision making).

At the same time, every system should have some self-adaptive capabilities. In fact, 
programmers have to deal with the advent of multi/manycore systems, which make the 
task of writing solid code much more complicated than it was for singlecore systems 
(e.g., achieving the desired quality of service (QoS) in multiple scenarios that might not
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be known a priori). The same code is required to work in multiple architectures, with
possible performance guarantees on each of them. The complexity of this task is sky-
rocketing and it is not advisable to demand that a single programmer has such strong
competences both in software design and in architecture-related issues. Therefore, the
best way to deal with this problem is to adopt a reconfigurable system. A reconfigurable
system is able to mask this complexity to the programmer, by adjusting itself when
changes in the environment occur.

As an example, take a piece of code that has to run on multiple types of hardware.
If the code has a high degree of parallelism its performance usually benefits from the
availability of multiple cores. If a lot of memory is needed, the presence of multiple
cores can become a disadvantage, since sharing the data over multiple computation
units can actually slow down the computation instead of speeding it up. Since the
machine configuration can differ, add-ons such as symmetric multithreading (SMT),
sprinting, etc. can alter the behavior of the application. For example, the Intel Turbo
Boost Technology can alter the frequency of cores in a completely transparent fashion
to the operating system kernel and applications, providing a source of irregularity in
the execution environment. All these quantities can be controlled by specific entities,
receiving feedback from the system and deciding in which way to act on a specific knob
in order to obtain the desired performance, or save power, or whatever policy could be
expressed at design time. However, all these entities need coordination and, due to this
reason, will be disabled during all the performed experiments.

In this article, we propose a software approach to reconfiguration in which different
loops are encapsulated in the system and are available to be activated. A loop is an
entity that takes decisions on the runtime execution of the system, whichever nature
these decisions can have. For example, a decision can be to implement a simple policy
such as “if the number of frames to be processed by the hardware and sent over the
network for surveillance purposes is greater than 5, then activate some additional hard-
ware accelerator, otherwise keep it off”. Loops can be much more complicated, based on
techniques that analyze the current execution and react consequently—control theory
and reinforcement learning being two examples of these techniques. Loops modify the
system behavior, in an a priori unpredictable way, since their combination could result
in unforeseen configurations. Different loops can act independently on the same or on
different quantities, shaping the way the overall system behaves. Since their behavior
is not coordinated, different loops can in principle be distruptive for the system and
they must be coordinated in some way [Heo and Abdelzaher 2009]. The main idea
behind the article is to build a model free solution that is able to select a policy for the
activation of internal loops of the system in order to coordinate them, without prior
knowledge on the system. This work makes the following contributions.

(1) We propose a framework enabling the coordination of different reconfiguring ele-
ments acting in a system. Each of these elements closes one or more loops around
the system. Our framework is based on observations of the actual performance
and it selects which loops to disconnect and which loops to activate, exploiting a
reinforcement learning approach.

(2) We implement policies harnessing the infrastructure of the framework. The frame-
work uses the Heart Rate Monitor (HRM) [Sironi et al. 2012] to retrieve information
from the running applications and it uses reinforcement learning to select the new
configuration to be applied.

(3) We assess our solution across a significant subset of the PARSEC benchmark
suite [Bienia 2011] with core allocation, frequency scaling and dummy loops. The
evaluation shows that we are able to enable the loops that make the system tend
towards its goals.



The remainder of this article is organized as follows. Section 2 presents the related 
work, then Section 3 explains our main contribution in designing the decision ele-
ment in charge of orchestrating all the loops, exposes the theoretical foundations of 
the algorithms exploited to enforce self-adaptation and describes relevant implemen-
tation details. The results obtained on real hardware are illustrated in Section 4, while 
Section 5 presents further extensions of our approach. Last, Section 6 concludes the 
article.

2. RELATED WORK

This section summarizes significant research contributions to the coordination of mul-
tiple entities acting on a single system in order to make it reconfigurable and achieve 
user goals or desired properties. First, we present related works whose focus is on fun-
damental attributes needed for reconfiguration, for example, monitoring capabilities. 
Then, we discuss comprehensive frameworks to realize reconfigurable systems and, fi-
nally, we extend the discussion to self-adaptive systems exploiting artificial intelligence 
and machine learning.

2.1. Enforcement of Self-Awareness

Application Heartbeats is an infrastructure for active self-monitoring introduced and 
developed by Hoffmann et al. [2010c]. Application Heartbeats is built over the well-
known ideas of heartbeats and heart rate [Sterritt and Bustard 2003] and implements 
them through a compact Application Programming Interface (API). Application Heart-
beats empowers applications (i.e., managed elements) with the ability to export user-
defined performance goals and signal progression towards those goals. In the work by 
Maggio et al. [2010], Application Heartbeats is exploited by a control-theoretical frame-
work allocating resources to applications; in such a framework, Application Heartbeats 
APIs provided the self-monitoring capabilities. This work also led to a comparison of 
many different decision-making mechanism ranging from heuristic to control-theoret-
ical and machine learning [Maggio et al. 2011].

Metronome [Sironi et al. 2012] is a framework enabling self-adaptive computing 
in the scheduling infrastructure of Linux kernel. The framework contains two com-
ponents, Heart Rate Monitor (HRM), which inherits the ideas of Application Heart-
beats [Hoffmann et al. 2010b] improving the support of multi/manycore system and 
operating system kernels. The framework we propose here perfectly fits the system 
architecture at the very base of Metronome including sensors, effectors, and adap-
tation policies. Results demonstrating the effectiveness of reinforcement learning in 
achieving desired throughput goals have been presented in Panerati et al. [2013].

AdaptGuard is a framework for guarding autonomic systems from instability caused 
by software anomalies and faults proposed by Heo and Abdelzaher [2009]. The approach 
of AdaptGuard is not strictly correlated to the one proposed here. Nevertheless, we 
might envision the two frameworks work hand-in-hand, with AdaptGuard protecting 
the system during its learning phase. Also, a policy can implement the AdaptGuard 
rules to check that when the optimal policy changes at runtime during the program 
execution, this change is detected and acted upon by the framework. The theory behind 
AdaptGuard is not at present incorporated in the proposed work but it is easy enough 
to specify new policies with the proposed framework and to define a policy that obeys 
also to the rules determined by the tool.

2.2. Frameworks for Reconfiguration

SElf-awarE Computing (SEEC) [Hoffmann et al. 2011, 2012] is a comprehensive 
framework exploiting Application Heartbeats as a self-monitoring provider and 
different decision-making techniques. The primary decision-making mechanism of



SEEC is based on control-theory, though the framework utilizes machine learning
for refining the models of applications and systems provided by developers. SEEC
includes an actuator to change the scheduling priorities of threads and an actuator
affecting the working frequency of the CPUs. This set of actuators is considered basic
to give to reconfigured elements the capability to adjust themselves.

In Sima and Bertels [2009] and Sigdel et al. [2009] the physical implementation,
hardware or software, of a requested functionality of the system is taken online during
the system execution. Moreover, two similar GNU/Linux-based platforms with support
for dynamic reconfiguration, with extensive details regarding the online support, are
presented in Williams and Bergmann [2004], Santambrogio et al. [2007], Donato et al.
[2007], and Santambrogio and Sciuto [2008]. All these solutions proved to be quite
effective: they can be used to monitor the system and to react to modification in the
runtime environments but adjustments can be made only if they have been previously
envisioned and studied at designed time. Unknown situations cannot be dealt with.
The BORPH Operating System [So and Brodersen 2007, 2008] is an extended Linux
kernel that is able to handle field-programmable gate array (FPGA) resources as na-
tive computational resources on the Berkeley Emulation Engine 2 (BEE2) [Chang et al.
2005]. BORPH introduces the concept of hardware process, which is a hardware com-
ponent running on an FPGA; this hardware process is a standard user process, so it
behaves just like a normal software program running on a processor. However there is
no possibility to execute a partitioning on a given application to derive a software and
a hardware part, and there is no automatic flow that is able to generate a hardware
process from a high-level specification. Thus each change in the high-level specifica-
tion of the problem has to be directly translated in a manual change of the low-level
hardware description. All the works cited so far are effective solutions for promoting
adaptive systems and constitute important milestones. However, they still need to be
embraced by more comprehensive, autonomic operating systems and runtimes such as
the K42 research operating system. K42 [Krieger et al. 2006] is a research operating
system embracing the concepts of autonomic computing and hence making monitoring
and adaptation first-class citizens. Taking advantage of solution such as BORPH, and
Caronte [Donato et al. 2007] while leveraging autonomic computing like in K42 could
enable a whole new class of applications capable of seamlessly employing processors,
coprocessors, and fabrics to achieve high performance and full utilization on hetero-
geneous systems with minimal effort for developers and maximal benefit for users.
K42 provides a comprehensive support for both monitoring and adaptation; however,
it lacks support and formalism when it comes to decision-making. AQuoSA [Palopoli
et al. 2009] is an extension of the Linux kernel comprising a runtime to enable rea-
soning and formal decision-making in operating systems. AQuoSA provides a control
theoretical framework to allow soft real-time applications meeting user-specified QoS
requirements through adaptive CPU reservation.

2.3. Reinforcement Learning

In Tesauro et al. [2005] and Tesauro [2007], Unity, a framework to build self-managing
distributed systems, showed how autonomic systems can be dealt with as multiagent
systems through utility functions and (hybrid) reinforcement learning. The insight
obtained through Unity were used in the development of commercial products such
as IBM WebSphere Extended Deployment and IBM Tivoli Intelligent Orchestrator
proving the practical utility of reinforcement learning.

Model-free reinforcement learning allowed Tan et al. [2009] to learn robust and near-
optimal dynamic power management for devices such as hard drives, WLAN cards, and
many more. Wang et al. [2011] claim that reinforcement learning is the only way to deal
with uncertainty and variability coming from hardware, software, and environmental
context.



Fig. 1. Multiple adaptive control loops may coexist in a self-adaptive system; the loops coordinator is in
charge of properly activating and deactivating these loops to meet the perfomance goals.

3. PROPOSED APPROACH

Common self-adaptive systems may be made up of several adaptive control loops or
simply, loops; the coordination of these independent, and possibly conflicting, loops is
the problem addressed by this work.

The simplest loop is made up by (1) an application that is able to expose relevant
information about its behavior, (2) a system knob, i.e., a system feature whose value
can be dynamically tuned, and (3) a policy to take decision at runtime on the next value
of the knob, given the current value exposed by the application. Applications can pro-
vide relevant information to the system if instrumented with monitors; a performance
monitor, HRM, is exploited in our approach; a core allocator and a frequency scaler are
available as system knobs (for further implementation related details, please refer to
Section 3.2). Decision making strategies range from simple rule-based engines to con-
trol theoretical machine learning techniques. More complex loops, containing multiple
knobs and/or multiple applications, are possible, as shown in Figure 1.

At each time instant, each loop in the system can be active or not. The purpose
of the coordinator is to select which loops should be enabled in order to achieve the
desired user-specified performance goals. Therefore, based on the results achieved in
previous iterations, the coordinator exploits the knowledge obtained by activating and
deactivating loops or explores the space of possible solutions to build such a knowl-
edge. Regarding exploration, it is worth noting that, the amount of states exponen-
tially grows with the available loops. Adaptive and exploratory capabilities are given
by a machine learning engine that exploits different active reinforcement learning
techniques in order to meet the user goals. These techniques are further analyzed in
Section 3.1.

3.1. Background

In this section, we introduce the theoretical concepts about decision making and learn-
ing used to develop the optimal policy based on quantities that we can measure on the
system.

Markov Decision Process Framework. A Markov Decision Process (MDP) [Russell
and Norvig 2009] is a problem defined in a fully observable, stochastic, stationary
environment and it is composed by four elements:

(1) a finite set of states S,
(2) a finite set of actions A,



(3) a stochastic transition model (i.e., a probability distribution) P(s′|s, a) defining the
probability of going from state s to state s′ by performing action a,

(4) a reward function R(s) returning the reward for each state.

The solution of a MDP is a policy π (s) : s ∈ S �→ a ∈ A (i.e., function returning
an action in each state). The domain of such function is the entire set S since all
states are reachable in reason of the stochastic transition model. The optimal policy
is the solution that maximizes the expected utility E[U ], where the utility U (i.e., the
performance measure) is itself a function U ([s0, s1, . . . , sn]) of the states covered by the
agent along its path. There are several ways to express utility, we adopt infinite horizon
with discounted rewards, whose equation reads:

U ([s0, s1, . . . , si, . . .]) = R(s0) +
∞∑

i=1

γ i R(si), (1)

where γ is the discount factor. A possible interpretation of this factor is the “probability
of being alive in the next time step” of the agent. Using infinite horizon we do not need
to specify a lifespan that might be unknown a priori. The discount factor, however,
forces the summation of infinite elements to have a finite value thanks to the prop-
erty of infinite geometric series. Wo chose discounted-rewards over average-rewards to
discourage solutions that might be very penalizing during the initial stages.

Reinforcement Learning. Reinforcement learning is arguably the most flexible
methodology in machine learning due to its reward-based programming model that
does not require specifying a way to accomplish a task [Kaelbling et al. 1996]. Re-
inforcement learning algorithms in which an agent learns how to accomplish a task
through the interaction with the environment, in a trial-and-error process, go under
the label of active reinforcement learning algorithms, in contrast to passive reinforce-
ment learning algorithms for which a policy is given a priori [Russell and Norvig 2009].
A framework for active reinforcement learning is made up of elements (1), (2), and (4)
described in the previous Markov Decision Process Framework section definition.

Hence, such a framework contains the same elements of the MDP framework with
the exception of the transition model, which is exactly what the learning agent should
find out. The learning entity is placed in the environment and it performs actions
that affects the state of the environment; whenever an action is performed and a new
state of the environment is reached, the agent receives an immediate reinforcement
signal (i.e., reward). A reinforcement learning algorithm takes advantage of the trial-
and-error process in order to derive a policy that maximizes the long run collection
of rewards. In order to solve the problem, there are two ways to proceed: (1) develop
a model to derive a controller (i.e., model-based), and (2) directly develop a controller
through learning (i.e., model-free).

A simple model-based learning algorithm exploits adaptive dynamic programming
(ADP) in order to infer the transition model of the underlying MDP. This is achieved
by keeping count of how many times an action a has been performed in a given state s
and how many times action a has brought the agent from state s to state s′. Given this
approximate transition model, the optimal policy can by computed in a straightforward
fashion by using the value iteration or the policy iteration algorithm [Russell and Norvig
2009].1

In the following a model-free solution is proposed, since we assume no prior knowl-
edge on the system. The solution is based on Q-Learning [Watkins and Dayan 1992].
In Q-Learning, the agent learns the utility value of performing action a in state s, the

1These are well-established methodologies therefore we omit their details.



so called Q-Values Q(s, a). Given the Q-Values, the utility of each state can be derived
as the largest Q-value among those associated with a state.

U (s) = maxaQ(s, a). (2)

The rule to update the utility value when the agent moves from state s to state s′ is:

Q(s, a) = Q(s, a) + α(R(s) + γ maxa′ Q(s′, a′) − Q(s, a)), (3)

where γ is the discount factor and α is a parameter that decreases to zero as a function
of how many times a pair < s, a > has been observed; as long as this property stands,
Q-Learning will eventually converge. In Q-Learning, the agent chooses its next action
a after deciding if it is going to explore the environment or exploit the knowledge.

In our experiments, the state corresponds to the loops that are kept active and an
action from one state to another implies breaking an existing or creating a new loop.
Loops that are active allow their code to act on manipulated variables – for example
the number of core assigned to a specific application, its nice number, the frequency
of the cores on the machine – to obtain a specific objective, like the speed of a certain
application or a reduction in power consumption.

3.2. Implementation

An infrastructure is needed in order to realize the proposed system. A monitoring
system is necessary in order to obtain the execution speed of a specific program, to
understand which actions are to be taken on it. Every loop can use the same infras-
tructure to compute a control signal with whichever technique is considered to be more
useful. The coordinator uses the feedback to understand if the single loops are acting
correctly or failing in driving the feedback signal to its reference value.

Monitoring Infrastructure. The coordinator relies on HRM to provide self-monitoring
capabilities. HRM exploits the well-established ideas of heartbeat and heart rate, which
have been used in several other works both as a measure of availability or performance,
and as a metric for the declaration of performance objectives. HRM is implemented as
an extension of the Linux kernel and it supports diverse parallelization models (i.e.,
multiprocessing, multithreading, and feasible mixes) through the concept of group
and exploiting multicore processors by avoiding synchronization and adopting cache-
friendly data structures.

HRM provides the coordinator with:

(1) a compact API to instrument applications, allowing them to specify user-defined
performance goals and to register progression;

(2) a generic performance measure delivered by each instrumented application as a
generalization of an application-specific metric;

Applications instrumented with HRM translate user-defined performance goals into 
a generic performance measure. For instance, the x264 application from the PAR-
SEC 2.1 benchmark suite [Bienia 2011] is instrumented to make a one-to-one transla-
tion from frames/s to heartbeats/s and it emits a heartbeat for each frame is computed. 
If the performance goal specified by the application (or the user) says that it should 
produce 30 heartbeats per second, it means that the applications has to encode 30 
frames in a second.

Adaptive Loops. The system exploits different knobs in order to provide self-adjusting 
capabilities, examples being a core allocator and a frequency scaler. Knobs are encap-
sulated within libraries, which abstract their operations in the form of finite sets of 
actions to better support adaptation policies.



The core allocator is implemented as a wrapper library around the sched
setaffinity(2) system call2, which alters the affinity mask of tasks. The affinity
mask of a task specifies on which cores (of a multicore processor) the task is allowed
to be scheduled on. In Linux systems, by default, tasks are eligible to be scheduled
on every core and the Linux kernel tends to balance the load on all the cores. The
core allocator is a knob implementing the ability to decrease or increase the number
of cores that can be exploited by a parallel application. Local decision can be made for
a specific application, as well as global decision on the set of all active and monitored
applications.

The library implementing the frequency scaler is a wrapper around the cpufrequtils
package3, a set of user-space utilities designed to interface with the Linux kernel
assisting with frequency scaling. In this case, local decisions are not supported since
they would require to change the working frequency of a core possibly at each context
switch operated by the scheduling infrastructure of the Linux kernel, and second, the
frequency scaler supports a single system-wide working frequency.

Another loop, implemented for the only purpose of testing, simply does nothing to
help the application in reaching its goals. The coordinator should learn that it is useless
and deactivate it. Much more loops can be envisioned. For example, one loop can insert
idle cycles in cores to maintain the core temperature in a certain range [Bailis et al.
2011].

4. EXPERIMENTAL RESULTS

Experimental results were collected on a workstation equipped with a single Intel
Core i7-870 quad-core processor running natively at 2.93 GHz with 14 different op-
erating points4 featuring 8 MB of shared LLC (L3), 4 GB of DDR3-1066 non-ECC
RAM, and a 500 GB 7200 RPM SATA2 hard disk.5 Advanced features such as Intel
Hyper-Threading Technology and Intel Turbo Boost Technology were disabled while
the governor of Enhanced Intel SpeedStep Technology was set to userspace through
the cpufrequtils package granting ad-hoc tuning capabilities. The AMD64 version of
Debian 6.0 alias “squeeze” was configured to run Linux 2.6.35.14 extended with HRM.

Six applications from the PARSEC 2.1 benchmark suite [Bienia 2011], were
instrumented with HRM in order to gather experimental evidence that our framework
is capable of learning at runtime how to drive applications towards their performance
goals. Applications composing the PARSEC benchmark suite are gathered from many
different areas: blackscholes is a financial application computing option pricing; can-
neal performs a heuristic optimization of the routing costs in a chip design; dedup is a
compression algorithm; swaptions, another financial application, computes the pricing
of a portfolio; x264 is a video encoding algorithm; and raytrace is a real-time rendering
algorithm. Their instrumentation aims at measuring options/s in blackscholes;
exchanges/s in canneal; chucks/s in dedup; simulations/s in swaptions; and frames/s in
x264 and raytrace. Table I reports reference metrics for the heart rate of each applica-
tion. We let our machine learning framework run alongside these applications, one at
a time. Each application was run ten consecutive times with its native input bundled
with the benchmark suite. During iterations 1 and 2, the machine learning engine
was let free to perform random adjustments in the number of cores and the operating
frequency, this phase is called exploration. From iteration 3 to 10, the machine learning

2http://kernel.org/doc/man-pages/online/pages/man2/sched setaffinity.2.html.
3http://kernel.org/pub/linux/utils/kernel/cpufreq/.
4The working frequencies of the available operating points are: 1200, 1333, 1466, 1599, 1732, 1865, 1998,
2131, 2264, 2397, 2530, 2663, 2796, and 2929 MHz.
5Hard drive specs, however, do not have a significant impact on the experimental results because the
benchmark applications under test are not disk-bound.



Table I.
Heart rate semantic, desired heart rate range, average, minimum and maximum heart rate registered in the
experiments for the six applications from the PARSEC benchmark suite.

application HR Semantic Goal HR Range Avg. HR Std. Dev. Min. HR Max. HR
blackscholes options/s 8.23 · 106 − 12.35 · 106 8.57 · 106 3.38 · 106 0.11 · 106 20.58 · 106

canneal exchanges/s 0.8 · 106 − 1.25 · 106 1.04 · 106 0.26 · 106 0.04 · 106 2.17 · 106

dedup chucks/s 3.16 · 103 − 4.74 · 103 5.11 · 103 3.62 · 103 0.07 · 103 26.40 · 103

raytrace frames/s 5.60 − 8.40 6.67 2.40 3.00 17.00
swaptions simulations/s 37.96 · 103 − 56.94 · 103 41.92 · 103 13.66 · 103 2.71 · 103 95.26 · 103

x264 frames/s 6.40 − 9.60 7.90 4.51 2.00 38.00

Fig. 2. Benchmark application blackscholes controlled via core allocation.

engine exploits the knowledge gathered up to this point so far in order to drive the ap-
plication heart rate in a predefined window/range (please notice that this window does
not have any specific semantic), we call this phase optimization. We chose to split the
two phases in 2 learning iterations and 8 optimization iterations because we wanted
to show that our framework is capable of learning with a limited amount of data. How-
ever, we believe it is still important to have two different samples, so that behaviors
that might be only episodic would not be learned unless they repeat in consecutive
iterations.

When our framework is able to choose the number of cores allocated to the applica-
tions from the PARSEC benchmark suite and the operating frequency so that, since
iteration 3, the application heart rate falls inside the pre-defined window, we say the
learning was successful and the control is effective. Figures from 2 to 7 show our results
as pairs of plots. In each figure, the top plot shows the heart rate of the application,
the bottom one shows the number of cores the application can be scheduled on and the
operating frequency. Vertical bars are used to separate the ten consecutive runs.

Figure 2 shows how the machine learning engine can easily learn which is the right
number of cores6 on which the the blackscholes application has to be mapped in order to
keep its heart rate in the desired window. However, Figure 3 bring another interesting

6Experiments where only core allocation is enabled were carried out with the system frequency fixed to its 
maximum.



Fig. 3. Benchmark application blackscholes controlled via core allocation and frequency scaling.

result. Using the Q-learning algorithm, a machine learning engine capable of exploiting
both the core allocation and the frequency scaling finds a different solution to keep the
same application in the same heart rate window. Here, the application is scheduled
on four cores but the operating frequency is kept at the lowest step. The resulting
heart rate is lower than in Figure 2, but still inside the desired window. One of the
advantages of using a machine learning solution over a control theory one lies in this
multiple optimal choice, that a control theoretical approach would not find. One of the
main disadvantages, however, is the absence of formal guarantees that this solution
will be found. In practical cases, we experienced that our machine learning engine has
always been able to find a viable solution. More details about qualitative comparisons
among different decision making techniques can be found in Maggio et al. [2012].

Figures 4 and 5 show how, similarly, the heart rate of the application canneal can be
kept inside the desired window. Again, it is worth noting that the experiment in which
the machine learning engine uses both the core allocator and the frequency scaler
results in a slightly different solution. By using only the core allocator, the application
is scheduled on three cores; when using also the frequency scaler, the learning algorithm
discovers that the application can be scheduled on only two cores if the frequency is kept
at the highest step. Moreover, notice how, on iteration 3 of the experiment using both
the core allocator and the frequency scaler, the learning framework is trying to exploit
another, different, configuration: four cores but the lowest frequency. This results in a
strongly oscillating heart rate. Because of the fact that the learning process continues
even after the end of the pure exploratory phase, the algorithm converges to a better
solution before the end of the third iteration.

Figure 6 shows the experiment with application dedup. We used the Q-learning
algorithm and the two control loops core allocator and frequency scaler. Even though,
these results are only fairly good (the heart rate is inside the desired window most of
the time in iterations from three to six and in the last one, but it shows an oscillating
behavior), it is worth noting that the learning algorithm is able to recover from its
own errors (errors that may always arise because of the intrinsic stochasticity in an
MDP). To clarify why the heart rate can be outside the desired window, we want to
stress that during the iteration the heart rate depends on the application execution. An
application that has phases might have a phase when the application is faster and a



Fig. 4. Benchmark application canneal controlled via core allocation.

Fig. 5. Benchmark application canneal controlled via core allocation and frequency scaling.

phase when the application is slower. However, in iterations 7, 8 and 9, our framework 
starts to incorrectly assume that the application should be scheduled on all four cores. 
However, by the time of the tenth iteration, the heart rate is led back inside the desired 
window.

Figure 7 shows another example of an application (swaptions, in this case) controlled 
via core allocator and frequency scaler. As a remark, in this experiment, when only the 
core allocator is active, the machine learning algorithm ends up providing the same 
solution in both cases: always scheduling the application on two cores.



Fig. 6. Benchmark application dedup controlled via core allocation and frequency scaling.

Fig. 7. Benchmark application swaptions controlled via core allocation and frequency scaling.

4.1. Comparison with Previous Work

Maggio et al. [2012] dealt with the same problem of controlling the behavior of an appli-
cation instrumented with heartbeat calls through operating system level parameters,
using the PARSEC benchmark suite as well. The objective of Maggio et al. [2012] is to
compare decision making strategies—control theory, machine learning and heuristic
methods. Therefore, the solutions adopted in Maggio et al. [2012] for each of these
domains are well assessed. On the other hand, in this work, we evaluate a novel frame-
work and the focus is on the performance and flexibility achieved by it.

On the implementation side, the PARSEC benchmark suite is here instrumented
with HRM [Sironi et al. 2012], while Application Heartbeat [Hoffmann et al. 2010a]
was used in Maggio et al. [2012]. It is worth noticing that the usage of different



Table II.
Mean squared error normalized to the user-defined performance goal for every combination of
reinforcement learning algorithms and dynamic knobs.

Adaptive Approach
PARSEC Application

blackscholes canneal dedup raytrace swaptions x264
ADP (cores) 0.16 0.11 0.57 0.17 0.10 0.27
ADP (cores & freq.) 0.11 0.11 0.34 0.17 0.10 0.28
QL (cores) 0.12 0.12 1.02 0.14 0.11 0.47
QL (cores & freq.) 0.12 0.10 0.47 0.19 0.11 0.39

Table III. The ISEw Error Metric of the Control Approaches Proposed by Maggio et al. [2012] Compared to Our
Best Results

application
Heuristic Control Control Theory Neural Networks best MSE

cores cores & freq. cores cores & freq. cores cores & freq. in this work
blackscholes 0.70 0.20 0.37 0.64 0.27 0.15 0.11
canneal 0.16 0.37 0.21 0.19 0.43 0.30 0.10
dedup 0.02 0.03 0.03 0.03 0.04 0.04 0.34
raytrace 0.00 0.29 0.00 0.01 0.18 0.19 0.14
swaptions 0.02 0.14 0.03 0.03 0.16 0.22 0.10
x264 0.54 0.53 0.14 0.20 0.51 0.25 0.27

Note: The best control theory approach for each application among the three implemented in Maggio et al.
[2012].

instrumentation API could make any confrontation of heart rates absolute values 
meaningless. We cope with this issue by only looking at normalized error measures.

We also have to consider the fact that, while rational learning agents implemented 
in this work have reward functions assigning different values to different heart rate 
ranges, the controllers implemented in Maggio et al. [2012] have a “target value” 
computed, in this case, as the average value between the upper bound and the lower 
bound of the highest rewarded heart rate range. Because of this, when we report 
the error, this value is computed in two different way for our reinforcement learning 
approach and the controllers from Maggio et al. [2012]. In our approach, the computed 
error is the average distance from the highest rewarded heart rate range, for the other 
controllers in Maggio et al. [2012] the error is the distance from their target values.

Table II reports the mean squared error normalized to the performance level re-
quested by the user for the reinforcement learning algorithms and the actuators they 
use. These errors are quite low and most benchmarks can be controlled with each of 
these algorithms with small performance variations. The case of dedup is quite in-
teresting since the benchmark seems to be harder than the others to be controlled. 
Table III reports the ISEw error metric, as defined in [Maggio et al. 2012] to perform a 
comparison between the reinforcement learning techniques introduced in this article 
and previous work. As we can see, for blackscholes and canneal, the reinforcement 
learning techniques introduced here perform better than any previous solution, while 
for raytrace and swaptions the techniques are inline with previous results. Again, dedup 
seems to be the only case where reinforcement learning performs poorly with respect to 
existing solutions. In synthesis, we believe that the reinforcement learning techniques 
introduced in this article add a contribution to the scenario of existing solutions.

5. MULTIPLE APPLICATIONS SCENARIO

Experimental results reported so far deal with a single-application scenario. Extending 
this work in the context of multiple applications brings new challenges. Two different 
approaches are available:



Table IV.
Standard mean, standard deviation, and speed-up over the execution time of each workload run either unman-
aged or managed. Experiments were repeated 100 times

Unmanaged Execution Time Managed Execution Time
Workload Std. Mean [s] Std. Deviation [s] Std. Mean [s] Std. Deviation [s] Speed-Up

mix 1 151.25 5.10 118.00 0.70 1.28×
mix 2 176.25 2.90 142.50 1.10 1.24×
mix 3 216.00 0.20 217.00 0.20 0.99×

—A centralized adaptive system (a single MDP). Pros: the solution is the optimal global
strategy. Cons: exponential state-space explosion with the number of applications.

—A distributed adaptive system (a collection of MDPs). Pros: scalable with the number
of application. Cons: sub-optimal, need for a resource arbiter.

In order to avoid the scalability issues, the same platform described in Sections 3
was used to achieve individual (distributed) adaptiveness in four instrumented appli-
cations at the same time. Some of these applications have multiple threads contending
(i.e., lock/unlock of a critical section) a per-application shared resource, some others
execute without the need for synchronization. An ad-hoc synchronization library was
developed by exploiting HRM to measure the contention over a shared resource, the
higher the heart rate, the higher the contention (i.e., number of failed locking operating
per second). The synchronization library is responsible for providing self-monitoring
capabilities. Self-adjusting capabilities are granted by the core allocator.

The loop coordinator is expected to learn either “to force the interleaved execution of
contending threads placing them on the same core” or “to enforce the parallel execution
of noncontending threads” depending on the application and assuming that serialized
execution is advantageous in presence of fine-grain synchronization while parallel
execution of threads is advantageous in absence of synchronization.

Experimental results in Table IV were collected using two different micro-
benchmarking applications executed concurrently. The first application, sync, shows
an high degree of synchronization among its threads while the second application,
nosync, has no synchronization among its threads. Three different workloads were
devised.

—mix 1. four 4-threaded instances of sync
—mix 2. two 4-threaded instances of sync and two 4-threaded instances of nosync
—mix 3. four 4-threaded instances of nosync

It is worth noting the speed-up values of the three cases. The first and the second
workloads experience a speed-up between 1.24–1.28× since moving threads can actu-
ally improve performance due to contention reduction. On the other hand, the third
workload experiences a negligible slow-down due to the presence of the self-monitoring
and self-adjusting capabilities that take time without being actually exercised.

6. CONCLUSIONS

In this article we presented a coordination strategy, that acts as a decision engine
in a self-aware architecture capable of self-optimization and self-adaptation to un-
predictable, unknown, and unfavorable conditions. The architecture is composed by
multiple loops and a central coordinator, which learns from experience how to optimize
the performance of the whole system. The introduction of such central entity, based on
machine learning, is the main contribution of this article over previous work described
in literature.
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