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Abstract

Security and safety critical devices must undergo penetration test-
ing including Side-Channel Attacks (SCA) before certification. SCA are
powerful and easy to mount but often need huge computation power, es-
pecially in the presence of countermeasures. Few efforts have been done
to reduce the computation complexity of SCA by selecting a small sub-
set of points where leakage prevails. In this paper, we propose a method
to detect relevant leakage points in side-channel traces. The method is
based on Normalized Inter-Class Variance (NICV). A key advantage of
NICV over state-of-the-art is that NICV does neither need a clone de-
vice nor the knowledge of secret parameters of the crypto-system. NICV
has a low computation requirement and it detects leakage using public
information like input plaintexts or output ciphertexts only. It is shown
that NICV can be related to Pearson correlation and signal to noise ratio
(SNR) which are standard metrics. NICV can be used to theoretically
compute the minimum number of traces required to attack an implemen-
tation. A theoretical rationale of NICV with some practical application
on real crypto-systems are provided to support our claims.

Keywords: Cryptography, side-channel analysis, leakage detection, correla-
tion power analysis (CPA), ANOVA, NICV, TVLA, SNR, AES, linear regression
analysis (LRA).

1



1 Introduction

Security-critical devices must undergo a certification process before being launched
into the public market. One of the many security vulnerabilities tested in the
certification process is Side-Channel Attacks (SCA [4, 5]). SCA pose a serious
practical threat to physical implementation of secure devices by exploiting un-
intentional leakage from a device like the power consumption, electromagnetic
emanation or timing. Several certification/evaluation labs are running SCA
daily on devices under test to verify their robustness.

The certification process is expensive and time-consuming which also in-
creases the overall time-to-market for the device under test. It worsens when
the desired security level increases. For instance, it is usually considered that
a Common Criteria (CC [7]) evaluation at highest assurance level for penetra-
tion attacks (AVA.VLAN.5) requires the device to resist attacks with 1 million
traces. Similarly, the draft ISO standard 17,825 [12] (application note for in-
ternational standard ISO/IEC 19 790, sibling to NIST / FIPS 140-2) demands
resistance against side-channel analysis with 10,000 traces (level 3) and with
100,000 traces (level 4). The traces can have millions of points and thus run-
ning SCA on these traces can be really time consuming. Also several attacks
must be tested on the same set of traces before certifying a device. To accelerate
the evaluation process, a methodology should be deployed which compresses the
enormous traces to a small set of relevant points.

1.1 Related Works

The compression of SCA traces which results in reduced time complexity of
the attacks, can be achieved by selecting a small subset of points where leakage
prevails. This issue of selecting relevant time samples have been dealt previously
by some researchers. Chari et al. [5] use templates to spot interesting time
samples. The method involves building templates T on n different values of the
subkey. Interesting time samples can then be found as points which maximizes∑n
i,j=1(Ti − Tj). In this equation, Ti is the average of the traces when the

sensitive variable belongs to the class i. Two further improvements were then
proposed by Gierlichs et al. [14]. The first improvement, also called as Sum Of
Squared pairwise Differences (SOSD), simply computes

∑n
i,j=1(Ti−Tj)2. SOSD

avoids cancellation of positive and negative differences. SOSD can be further
improved by normalizing it by some variance. This normalized SOSD is called
SOST (Sum Of Squared pairwise T-differences [14], where a T-difference means
a Student T-test) and computed as

n∑

i,j=1


 Ti − Tj√

σi
2

mi
+

σj
2

mj




2

, (1)

where σi is the variance of T in class i, and mi is the number of samples in class
i. If m is the total number of traces, we have

∑n
i=1mi = m, and mi is also m
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times the estimated probability for the traces to belong to class i. When the
classes are equally populated (i.e., ∀i, mi = m/n), the SOST rewrites as:

m

n

n∑

i,j=1

(Ti − Tj)2
σi2 + σj2

,

Similar ideas were also sketched earlier in [9].
A practical problem with template-based detection techniques comes from

the computation of templates. First of all, templates require an access to a
clone device. Secondly, templates need two sets of traces: one for profiling with
random keys and another for attacking with an unknown but fixed key. An
alternative to the latter limitation is model-based templates which can exploit
the same set of traces as proposed in [1]. Although model-based templates can
be really efficient, they are relevant for the chosen power model only.

Another method proposed in this context is the Principal Components Anal-
ysis (PCA [20]). PCA is used for dimensionality reduction. It yields a new basis
of the time samples in which the inter-class variance is greater. This basis takes
into account the covariance of the samples. In side-channel analysis, the goal
of PCA is to gather all the information in a single (or few) component(s) [2].
Eventually, other empirical methods use chosen plaintext attacks, such as the
differences between plaintexts 0x00 . . . 0000 and 0x00 . . . 00ff. This technique
requires many requests to check for all the bytes, not only the least significant
byte. Furthermore, it is not always possible to choose the plaintext messages
(e.g., when modes of operations with initial vectors are used).

In this paper, we propose a new method for leakage detection relying on a
metric called “Normalized Inter-Class Variance” (NICV). This NICV method
allows to detect interesting time samples, without the need of a profiling stage
on a clone device. Hence the SCA traces can be compressed and the analysis
could be greatly accelerated. The main characteristics of the proposed method
are:

• NICV operates without the need of a clone device, i.e., it requires no
profiling stage and use the same set of traces which are to be analyzed,

• it uses only public information like plaintext or ciphertext,

• the method is leakage model agnostic, it is not an analysis tool but a
helper to speed up the analysis, but

• it can serve to evaluate the accuracy of various leakage models and choose
which is the best applicable.

Compared to PCA, the purpose of NICV is to return the total variation
of the traces at each time sample, so as to test which leakage model causes
inter-class variation.

Our Contributions: Our contributions in this paper is three-fold. Firstly,
we develop the theoretical background of NICV for leakage-detection. We relate
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NICV with existing side-channel metrics like Pearson Correlation Coeffi-
cient and Signal to Noise Ratio (SNR). NICV is also compared against
other leakage detection techniques like SOST and SOSD. Secondly, we provide
the theoretical lower bound of number of traces to recover the key. Finally,
we apply NICV to real implementations on FPGA and smartcards to show its
ability of leakage detection and other related applications.

The rest of the paper is organized as follows. General background to SCA is
recalled in Sec. 2. The rationale of NICV to select SCA relevant time samples is
detailed in Sec. 3. We also derive in this section a lower bound on the number of
traces to recover the key. This is followed by some practical use cases applied on
real devices like FPGA and smartcards in Sec. 4. Finally, Sec. 5 draws general
conclusions. In appendix A, we provide with a comparison between NICV and
TVLA (Test Vector Leakage Analysis [15]), two leakage detection metrics.

2 General Background

Side-channel analysis consists in exploiting dependencies between the manip-
ulated data and the analog quantities (power consumption, electromagnetic
radiation, . . . ) leaked from a CMOS circuit. Suppose that several power
consumption traces, denoted Y , are recorded while a cryptographic device is
performing an encryption or decryption operation. An attacker predicts the
intermediate leakage L(X), for a known part of the ciphertext (or plaintext) X
and key hypothesis K. Next, the attacker uses a distinguisher like Correlation
Power Analysis (CPA [4]), to distinguish the correct key k? from other false
key hypotheses. CPA is a computation of the Pearson Correlation Coefficient
ρ between the predicted leakage L(X) and the measured leakage Y , which is
defined as:

ρ [L(X);Y ] =
E [(L(X)− E [L(X)]) · (Y − E [Y ])]√

Var [L(X)] · Var [Y ]
,

where E and Var denote the mean and the variance respectively. We notice that
ρ [L(X);Y ] ∈ [−1; +1].

Various distinguishers have been proposed in literature. It is shown in [24]
that customary statistical distinguishers eventually turn out to be equivalent
when the signal-to-noise ratio gets high. The differences observed by an at-
tacker are due to statistical artifact which arises from imprecise estimations due
to limited numbers of observations. In the rest of the paper without loss of
generality, we use CPA as a distinguisher.

Authors of [24] also show that a proper estimation of leakage model L(X)
can define the efficiency of the attack. Therefore a detection technique is needed
which can pinpoint the relevant leakage points and the most efficient leakage
model. In the following, we introduce NICV as a leakage detection technique
and its power to evaluate estimated leakage models. As shown later, NICV
is not a SCA channel distinguisher itself. NICV works in co-ordination with
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any SCA distinguishers like CPA to enhance their performance. Even variance-
based distinguishers as introduced in [35, 3, 27] can be made more efficient using
NICV. As a preprocessing step, NICV can leverage metrics and distinguishers
based on Linear Discriminant Analysis (LDA) [21] or on Principal Component
Analysis (PCA) [16, 21, 34] are also using some kind of L2 distance between
classes (as does the NICV, see next section).

3 Leakage Detection using NICV

In this section, we first describe our normalized inter-class variance (NICV)
detection technique. We provide the mathematical background of NICV and
then discuss its behavior in a side-channel context. The practical application of
NICV is covered in the next section.

3.1 Rationale of the NICV Detection Technique

Let us call X one byte of the plaintext or of the ciphertext (that is, the domain of
X is X = F8

2), and Y ∈ R the leakage measured by the attacker1. Both random
variables are public knowledge. Then, for all leakage prediction function L of
the leakage knowing the value of x taken by X (as per Proposition 5 in [28]),
we have:

ρ2 [L(X);Y ] = ρ2 [L(X);E [Y |X]]︸ ︷︷ ︸
0≤ · ≤1

×ρ2 [E [Y |X] ;Y ] . (2)

Again in Corollary 8 of [28], the authors derive:

ρ2 [E [Y |X] ;Y ] =
Var [E [Y |X]]

Var [Y ]
, (3)

which we refer to as the normalized inter-class variance (NICV). It is an ANOVA
(ANalysis Of VAriance) F-test, as a ratio between the explained variance and
the total variance (see also the recent articles [6, 10]). The NICV is also used
for linear regression analysis, where it is called the coefficient of determination
and usually denoted by the symbol “R2”. Eventually, NICV has also the de-
nomination correlation ratio [31]; for instance, it is employed in the context of
side-channel analysis in [33], where it is used as a distinguisher and as a linearity
metric.

Once combined, equations (2) and (3) yield that for all prediction function
L : F8

2 → R (realistic or not), we have:

0 ≤ ρ2 [L(X);Y ] ≤ Var [E [Y |X]]

Var [Y ]
= NICV ≤ 1 . (4)

1In general, Y can be continuous, but X must be discrete (i.e., X is of finite cardinality).
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Therefore, the NICV is the envelop or maximum of all possible correlations
computable from X with Y . As a consequence of the Cauchy-Schwarz theorem,
there is an equality in (4) if and only if L(x) = E [Y |X = x], which is the optimal
prediction function2.

In practice, the (square) CPA value does not attain the NICV value, owing
to noise and other imperfections. This is illustrated in Fig. 1. The difference
can come from various reasons like:

• The attacker knows the exact prediction function, but as usual not the
actual key. For instance, let us assume the traces can be written as
Y = wH(S(X ⊕ k?)) + N , where k? ∈ F8

2 is the correct key, S : F8
2 → F8

2

is a substitution box, wH is the Hamming weight function, and N is
some measurement noise, that typically follows a centered normal dis-
tribution N ∼ N (0, σ2). In this case, the optimal prediction function
L(x) = E [Y |X = x] is equal to: L(x) = wH(S(X ⊕ k?)) (the only hy-
pothesis on the noise is that it is centered and mixed additively with the
sensitive variable). This argument is at the base of the soundness of CPA:
∀k 6= k?, ρ [wH(S(X ⊕ k));Y ] ≤ ρ [wH(S(X ⊕ k?));Y ]
≤
√

Var [E [Y |X]] /Var [Y ].

• The CPA is smaller than NICV when the attacker assumes a wrong model,
for instance L(x) = wH(x⊕ k?), when Y = wH(S(x⊕ k?)) +N .

• Eventually, the attacker can have an approximation of the leakage model,
for instance L(x) = wH(S(x⊕k?)), whereas actually Y =

∑8
i=1 βi ·Si(x⊕

k?) + N , where βi ≈ 1, but slightly deviate from one (a.k.a. stochastic
model [32]).

The distance between CPA and NICV is, in non-information theoretic attacks
(i.e., attacks in the proportional / ordinal scale, as opposed to the nominal
scale [37]) similar to the distance between perceived information (PI) and mu-
tual information (MI) [29]. Like CPA, NICV also achieves an asymptotically
constant value, once the measurement set has reached a representative sample
size.

It can also be noted that NICV is considered as the relevant distinguisher
for the Linear Regression Analysis (LRA) [19, 22], which acts as the CPA but
with a parametric leakage model.

Now, if X is uniformly distributed, the NICV in itself is not a distinguisher.

2Rigorously: if and only if L(x) is an affine function of E [Y |X = x].
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L(X) = wH(X ⊕ k⋆)

L(X) = wH(X ⊕ k), k 6= k⋆ (ghost peaks, printed with dashed lines)

L(X) = wH(S(X ⊕ k⋆))
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ut
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ou
tp
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0

(envelop)

|ρ [L(X);Y ] | |ρ [L(X);Y ] |

√
NICV =

√
Var[E[Y |X ]]

Var[Y ]

time

Figure 1: Illustration on NICV metric when Y =
∑8
i=1 βi · Si(x⊕ k?) +N , and

correlation coefficient for some prediction functions plotted against time
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Indeed, if we assume that Y = wH(S(X ⊕ k?)) +N , then:

Var [E [Y |X]] =
∑
x∈X P[X = x]E [Y |X = x]

2 − E [Y ]
2

= 1
28

∑
x∈X E [wH(S(x⊕ k?)) +N ]

2

−
(∑

x∈X E [wH(S(x⊕ k?)) +N ]
)2

= 1
28

∑
x′=x⊕k?∈X E [wH(S(x′))]

2

−
(∑

x′=x⊕k?∈X E [wH(S(x′))]
)2

= Var [wH(S(X))] .

On the other hand, Var [Y ] = Var [wH(S(X))] + Var [N ]. All in one:

NICV =
Var [E [Y |X]]

Var [Y ]
=

1
1

SNR + 1
, (5)

where the signal-to-noise ratio SNR is the ratio between:

• the signal, i.e., the variance of the informative part, namely Var [wH(S(X ⊕ k?))],
and

• the noise, considered as the variance Var [N ].

Clearly, Eqn. (5) does not depend on the secret key k? as both Y and X are
public parameters known to the attacker. Moreover, this expression is free
from the leakage model L(X), which means that NICV does not depend on
the implementation. Thus, NICV searches for all linear dependencies of public
parameterX with available leakage traces Y independant of the implementation.
In case of protected implementation, if the countermeasure removes all linear
leakages related to X, then the NICV should also eventually suppress. On
the other hand, NICV can detect accidental linear leakage from a protected
implementation.

Remark 1 In the binary case (n = 2) when both classes are equally probable,

the expression of NICV simplifies to: NICV = Var[E[Y |X]]
Var[Y ] =

( E[Y |X=0]−E[Y |X=1]
2 )

2

Var[Y ] .

It is similar to Cohen’s d metric.

Now comparing NICV with other leakage detection techniques like SOST
and SOSD we can give the following remarks.

Remark 2 SOSD is actually proportional to the inter-class variance (this point
was not made by the authors of [14]). Indeed, with our notations, Ti

.
= E [Y |X = i].
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And thus:

∑

i,j

(Ti − Tj)2 = 2× 2n
∑

i

T 2
i − 2

(∑

i

Ti

)2

=

2× 22n
∑

x

E
[
Y 2|X = x

]
P[x]− 2

(
28E [Y ]

)2

= 22n+1Var [E [Y |X]] .

But this inter-class variance is not normalized. Therefore, the SOSD can be
large at samples where Var [N ] is large, although not containing (much) infor-
mation.

Remark 3 SOST which was proposed as an improvement over SOSD is nor-
malized. Using our notations, SOST is equal to

m
∑

(x,x′)∈X 2

(E [Y |X = x]− E [Y |X = x′])
2

√
Var[E[Y |X=x]]

P[X=x] + Var[E[Y |X=x′]]
P[X=x′]

,

where m is the number of traces. This certainly is an expression that is not
usual in statistics, and a priori cannot be simplified. At the opposite, NICV can
be meaningfully expressed as a function of the CPA attack (recall Eqn. (4)).

3.2 Estimation of NICV

The number of traces is m, and each trace is indexed by i. In the sequel,
when we sum over i, we mean i = 1, . . . ,m. Let (yi)i=1,...,m be side-channel
measurements, and (xi)i=1,...,m be plaintext bytes. We define the (empirical)
probability of a given plaintext byte:

P̂(X = x) =
1

m

∑

i s.t. xi=x

1 .

and the (empirical) per-class average, for a given class x ∈ {0, . . . , 2n − 1}:

Ê(Y |X = x) =

( ∑

i s.t. xi=x

yi

)
/

( ∑

i s.t. xi=x

1

)
=

1

mP̂(X = x)

∑

i s.t. xi=x

yi ,

The numerator of the NICV is:

V̂ar(Ê(Y |X)) =

1

2n

2n−1∑

x=0

P̂(X = x)
(
Ê(Y |X = x)

)2
−
(

1

2n

2n−1∑

x=0

P̂(X = x)Ê(Y |X = x)

)2

=

1

2nm

2n−1∑

x=0

(∑
i s.t. xi=x

yi
)2

∑
i s.t. xi=x

1
−
(

1

m

∑

i

yi

)2

.

9



Eventually, the (empirical) NICV is:

N̂ICV =
V̂ar(Ê(Y |X))

V̂ar(Y )
=

1
2nm

∑2n−1
x=0

(∑
i s.t. Xi=x yi

)2∑
i s.t. xi=x 1 −

(
1
m

∑
i yi
)2

1
m

∑
i y

2
i −

(
1
m

∑
i yi
)2 . (6)

We notice that Eqn. (6) can be estimated online using accumulators.

3.3 Lower Bound on the Number of Traces to Break the
Key (with CPA)

The success rate (0 ≤ SR ≤ 1) of an attack is the probability that is recovers the
correct key. Regarding CPA, the success rate has been computed theoretically
by Thillard, Prouff and Roche [36] (a result that extends the previous analytical
formula obtained for the “difference-of-means” test by Fei, Luo and Ding [13]).
It is related to the various factors of the experimental setup, namely:

• the signal-to-noise ratio (which is also directly related to the NICV metric
– recall Eqn. (5)),

• the sensitive variable expression, which discriminates more or less easily
the correct key (which relates to an algorithmic parameter known as the
confusion coefficient noted κ),

• the number of traces m.

The expression takes the following form:

SR = Φ(
√
mΣ−1/2µ) .

In this expression, Φ is the cumulative distribution function of the multivariate
Gaussian. Let Nk be the number of key hypotheses. Then Σ is a (Nk−1)×(Nk−
1) matrix, and µ is column of length (Nk − 1). In the worst case, the leakage
model is very discriminating. This means that the wrong key guesses are all
equivalent and yield a null value for the distinguisher. It is a strong assumption,
but for good ciphers, such as the AES, this pessimistic approximation is not
too far from the reality [23]. In this case, Σ degenerates to a 1 × 1 matrix
(a scalar), equal to: Σ = 2σ2(κ0 − κ1). This consists in the application of
the disintegration theorem, since the covariance matrix has not full rank. The
problem is projected on a smaller matrix of size rank(Σ)×rank(Σ) (in our case,
1× 1). In this equation, κ0 is a “generalized” confusion coefficient.

Also, µ is a scalar, equal to κ0 − κ1. So, we have:

SR = Φ

(√
m× κ0 − κ1

2σ2

)
. (7)

The ratio κ0−κ1

σ2 is the signal-to-noise ratio; owing to Eqn. (5), it is
equal to 1

1
NICV−1

. Confer to [18] for a similar relationship.
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So, for a given confidence level in the result of the attack, expressed as
targetted success rate SR, we have that the lower bound on the number of
traces to break the key is mSR, equal to:

mSR =
2σ2

κ0 − κ1
×
(
Φ−1 (SR)

)2
, (8)

where Φ−1 is the reciprocal function of Φ (recall that Φ is monotonic decreasing).
The function Φ can be computed from the “error function” (in C code, erf)”:

Φ(y) = 1
2

(
erf(y/

√
2) + 1

)
. It can be checked that Φ−1(0.80) ≈ 0.84.

So, any CPA will require more traces to recover the key than mSR.
The equation (8) has a simple interpretation in a log-log graph, where the

X axis is σ and the Y axis is mSR. It simply cuts the plan into two halves, that
are separated by a straight line (called “frontier”), of equation

log2

(
mlower bound

SR

)

= 2 log2

(
σ√

κ0 − κ1

)
+ 1 + 2 log2

(
Φ−1 (SR)

)

= 2 log2

(
σ√

κ0 − κ1

)
+ 0.497 when SR = 80%. (9)

The possible attacks require a number of traces mSR, i.e., such as mSR is above
the “frontier”. A more precise characterization follows.

In [36], the confusion coefficient for the CPA is defined as:

κδ =
1

2n

∑

x∈X
L(x⊕ k)× L(x⊕ k?) Where δ = k ⊕ k?

=
1

2n

∑

x∈X
L(x)× L(x⊕ δ) =

1

2n
(L⊗ L)(δ) , (10)

where ⊗ is the convolution function.
We consider the ideal case where L = wH(S(X ⊕ k)) − n

2 . This function
is defined to be balanced, i.e.,

∑
x∈Fn

2
L(x) = 0. In this case, for δ = 0: κ0 =

1
2n

∑
x∈X

(
wH(x)− n

2

)2
= n

4 , which does not depend on the exact S.
The approximation that all incorrect keys yield a zero value for the distin-

guisher amounts to say that ∀k 6= 0, κk = 1
2n (L⊗ L)(k) = 0.

So, κ0 = n/4 (= 2 for AES, where n = 8) and κ1 = 0, and thus Eqn. (11)
becomes:

log2

(
mlower bound

SR

)
= 2 log2 (σ)− 0.503 when SR = 80%. (11)

To illustrate the relevance of the lower bound on the number of traces to
break (mSR), we launch some simulations (cf. Fig. 2), repeated 100 times to gain
a reasonable error margin on the success probability. The values in Fig. 2 are in
fact the first time in the simulation that SR ≥ 0.8; sometimes, the experimental
curve SR(m) is increasing and then decreasing. This explains why the values
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Figure 2: Simulated mSR=80%

in the graph are sometimes “anticipated” success rates (i.e., lower than what
would have been obtained by smoothing the experimental success rate curves
before selecting the m such as SR(m) = 0.8).

We assume that the leakage is the Hamming weight of a sensitive variable,
that has the form S(X ⊕ k). The hypothesis ∀k 6= 0, 1

2n (L ⊗ L)(k) = 0 is all
the more true as S is cryptographically strong. So we investigate different types
of bijective sboxes: S(x) = a � xd ⊕ b, where a and b are the constants also
used in the AES. The operations ⊕ and � are respectively the addition and the
multiplication in the Galois field F28 . We consider three values for d:

1. d = 1, i.e., an affine function (the least non-linear),

2. d = 101, i.e., a medium function, and

3. d = 254, i.e., a good function (it is the AES SubBytes).

Those three substitution boxes are respectively noted S1, S101 and S254. In
addition, for each sbox, we compute an ideal leakage model Lno ghost peak(X⊕k),
such that:

Lno ghost peak(X ⊕ k) =

{
wH(S(X ⊕ k?))− n

2 if k = k?, or

wH(S(D))− n
2 otherwise,

whereD is a dummy random variable, independent fromX and drawn uniformly
in interval J0, 2n − 1K.
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To summarize, in Fig. 2, we compute for the three different sboxes S the
two kinds of CPA:

• With ghost peaks:
ρ (wH(S(X ⊕ k?)) +N ;wH(S(X ⊕ k)));

• Without ghost peaks:
ρ
(
wH(S(X ⊕ k?)) +N ;Lno ghost peak(X ⊕ k)

)
.

Clearly, the attacks do not depend on the sbox in this later case, because
we simply remove the rivals, which brings us to the case of distinguishing from
two keys. Quite logically, this attack reaches the theoretical minimum. And we
see that the less discriminating the sbox, the more traces are required.

Remark 4 The values κ(0)− κ(1) in Eqn. (7) are computed using the leakage
model of Eqn. (10) as: κ(0) − maxδ 6=0 κ(δ) for the three studied substitution
boxes. When n = 8 (like in the case of AES), it can be proven that whatever the
bijective substitution box, κ(0) = n/4 = 2. The value of maxδ 6=0 κ(δ) depends
on the substitution box. Namely, we have:





For S = S1: κ(0)−maxδ 6=0 κ(δ) = 0.5 ,

For S = S101: κ(0)−maxδ 6=0 κ(δ) = 1.5 ,

For S = S254: κ(0)−maxδ 6=0 κ(δ) = 1.625 .

Thus, for a given success rate (say 80%) and a given noise variance σ2, if the
number of traces to break without substitution box (that is, S = S1) is m1, then:

• the number of traces to recover the key with L(x⊕ k) = wH(S101(x⊕ k))
would be m1 × 0.5

1.5 = 1
3m1 ≈ 0.333m1, and

• the number of traces to recover the key with L(x⊕ k) = wH(S254(x⊕ k))
would be m1 × 0.5

1.625 = 4
13m1 ≈ 0.308m1.

This means that the choice of the substitution boxes impacts the number of traces
to extract the key in a factor of about 1 to 3.

3.4 Discussion

The mathematical background of NICV as a leakage detection technique was
previously discussed. We learned that NICV has evident advantages over other
methods because all its input parameters are public like side-channel traces and
associated plaintexts/ciphertexts. Since public parameters are used for compu-
tation of NICV, there is no need for access to clone device which is a limiting
requirement in template-based detection techniques. Another interesting obser-
vation is that the expression of NICV (Eq. (2)) does not contain L(x). In other
words, NICV is leakage model agnostic. Moreover from Eq. (4), we learn that
NICV forms the envelope of all correlation coefficients for all leakage models.
NICV provides the worst case leakage of a devise and therefore estimates the
accuracy of leakage model used as illustrated in Fig. 1. Thus NICV has a clear
application in comparing various leakage models.
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4 Use Cases

We detailed the theoretical soundness and advantages of NICV as a leakage
detection technique in Sec. 3. In this section, we apply NICV in practical side-
channel evaluation scenarios. Several use cases of NICV are discussed in the
following.

4.1 Accelerating Side-Channel Attacks

The main application of NICV is to find the interesting time samples for accel-
erating SCA. A simple trace of an AES execution can have millions of points.
Therefore it is of interest for the evaluator to know few interesting points rather
than attacking the whole trace. We first apply the metric on traces of an AES-
128 implementation running on an FPGA which performs one round per clock
cycle. These traces are small and contain only 1, 000 points. The comparison of
our metric with a correlation coefficient computed with the good key is shown in
Fig. 3. The correlation is based on Hamming distance model of the state register
of the AES core. The model can be expressed as wH(vali ⊕ valf ) where vali
and valf are initial and final value of the register. This leakage model is shown
to be very efficient in CMOS technology. A relevant peak of NICV is seen at
the same moment as in correlation peak. Thus NICV is able to detect the point
of leakage in the trace. It can be noticed that NICV curve shows several other
peaks apart from the correlation peak. As shown later in Sec. 4.2, other peaks
in the NICV curve comes either from other leakage models or post-processing
of cipher in the circuit.
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Figure 3: NICV vs Correlation for a AES-128 hardware implementation

Next we apply our metric on a software implementation of AES-256 running
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Figure 4: NICV computed for a AES-128 software implementation to detect
each round operation

on an ATMEL AVR microcontroller. It is here that we can see the advantage of
NICV. A single trace of this implementation contains 7 million points and needs
roughly 5.3 Mbytes of disk space when stored in the most compressed format.
These details are in respect to a LeCroy WaveRunner 6100A oscilloscope with a
bandwidth of 1 GHz. We applied NICV on these traces to find the leakage points
related to each of the 16 bytes of the AES. Fig. 4 shows the computation of NICV
on the first round only (for better resolution of results). The computations of
Sbox #0 for round 1 takes only ≈ 1, 000 time samples. Once the interesting
time samples corresponding to each executed operation is known, the trace size
is compressed from 7, 000, 000 to 1, 000, i.e., a gain of roughly 7, 000× in attack
time.

One very interesting application of NICV that we found during our exper-
iments is to reverse engineering. We computed NICV for all the 16 bytes of
the plaintext and plotted the 16 NICV curves in Fig. 4 (depicted in different
colors). By closely observing Fig. 4, we can distinguish individual operations
from the sequence of byte execution. Each NICV curve (each color) shows all
sensitive leakages related to that particular byte. Moreover, with a little knowl-
edge of the algorithm, one can easily follow the execution of the algorithm.
For example, the execution of all the bytes in a particular sequence indicates
the SubBytes or AddRoundKey operation. Manipulation of bytes in sequence
{1, 5, 9, 13}, {2, 6, 10, 14} and {3, 7, 11, 15} indicates the ShiftRows operations.
The ShiftRows operation of AES shifts circularly 3 out of 4 rows with different
constant. This can be clearly seen is Fig. 4: only three rows are manipulated
and the bytes in the first row i.e., {0, 4, 8, 12} are not used during this time.
Similarly MixColumns can also be identified by just looking the bytes manip-
ulated together. Moreover, detecting precise leakage points of each operation
can help an attacker run collision attacks (see e.g., [27, 26]).
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4.2 Testing Leakage Models

A common problem in SCA is the choice of leakage model which directly affects
the efficiency of the attack. As shown in Sec. 3.1, the square of the correlation
between modeled leakage (L(X,K)) and traces (Y = L(X,K?) +N) is smaller
or equal to NICV, where N represents a noise. The equality exists only if the
modeled leakage is the same as the traces. We tested two different leakage
models for the state register resent before the Sbox operation of AES, i.e.,
wH(vali⊕valf ) ∈ J0, 8K (Model 1) and vali⊕valf ∈ J0, 255K (Model 2). Similar
models are built for another register intentionally introduced at the output of
the Sbox, i.e., wH(S(vali)⊕S(valf )) ∈ J0, 8K (Model 3) and S(vali)⊕S(valf ) ∈
J0, 255K (Model 4). We implemented the AES on an FPGA and acquired SCA
traces to compare the leakage models. Fig. 5 shows the square of correlation
of four different leakage models with the traces against the NICV curve. It
can be simply inferred from Fig. 5(b) that Model 4 performs the best while
Model 2 is the worst. The gap between NICV and ρ(Model 4)2 is quite large,
most probably due to reasons mentioned in Sec. 3.1. This means that there
exist other leakage models which could perform better than Model 4. However,
finding these models might not be easy because of limited knowledge of design
and device characteristics available. Methods based on linear regression [11] can
be leveraged to determine the most relevant leakage model.

4.3 Comparing Quality of Measurements

SNR is often used to estimate the quality of a measurement setup/traces to
compare different measurement setups. The problem with SNR is that it is
computed using a specific leakage model. NICV is a good candidate for quality
comparison owing to the independence from choice of leakage model.

4.4 Ghost Peaks

To further demonstrate the advantageous use of NICV, we implemented a bit-
slice implementation (i.e., a single bit of plaintext is processed per cycle) of
PRESENT algorithm on an ATMEL AVR microcontroller. Firstly we used
NICV to localize the activity of an sbox in a multi-million sample trace. Figure 6
(top) shows the result of a CPA on the least significant bit with 10, 000 traces
with an SNR of 15.8. Next we plot the NICV computed with respect to the
input plaintext byte in Fig. 6 (bottom). If we compute the success rate of an
attack on the whole trace, the ghost peak around sample 900 leads to failure of
the attack. However if we compute a success rate on a window around samples
where NICV is maximal, we are able to suppress the ghost peak. The success
rate of an attack around sample 800, where NICV is maximal is shown in Fig. 7.

4.5 Accelerating SCA on Asymmetric Key Cryptography

Asymmetric key cryptography consists in computing exponentiations. For ex-
ample, in RSA [30], the computation consists in Xd (modulo N) from X. For
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the sake of simplicity, let us consider a right-to-left exponentiation. Such ex-
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Figure 6: NICV vs Correlation depicting ghost peaks for a software implemen-
tation of PRESENT protected by DPL (Dual-rail Precharged Logic)

ponentiation is illustrated in Alg. 1, where N is the modulus (e.g., that fits on
1024 bits), and R[1] and R[2] are two 1024 bit temporary registers. Let us call
di the 1024 bits of d. We assume d0 = 1.

Hence the number X3 will be computed (in R[1]; refer to line 5) if and only
if d1 = 1. This conditional operation is at the basis of the SCA on RSA [25]: if
a correlation between the traces Y and the prediction L(X) = X3 exists, then
d1 = 1; otherwise, d1 = 0. For this alternative to be tested with NICV, one
should compute Y |X3, where X3 (modulo N) is a large number (e.g., 1, 024
bits). To be tractable, small parts of X3 like the least significant byte (LSB)
shall be used instead of X3. In this case, a leakage can be detected by com-
puting Var

[
E
[
Y |LSB(X3)

]]
/Var [Y ]. The corresponding attack would use the

prediction function L(X) = LSB(X3).
For sure, the test is relevant only if the bit d1 is set in the private key d.

But if it is not, then maybe d2 is set. In this case, a leakage can be detected by
computing
Var

[
E
[
Y |LSB(X5)

]]
/Var [Y ]. Similarly, if d1 = d2 = 0, it is plausible that

d3 = 1, and thus X9 is computed. Thus, it is sufficient, in order to detect a
leakage to compute

Var
[
E
[
Y |LSB(X2i+1)

]]
/Var [Y ] for a couple of small i > 0. Any significant

peak indicates a potential vulnerability.
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If, for example, the 10 NICV quantities Var
[
E
[
Y |LSB(X2i+1)

]]
/Var [Y ],

for 1 ≤ i ≤ 10, are computed (without knowing the key d), then a vulnerability
is detected with probability 1− 2−10 (indeed, 2−10 is the probability of having
d1 = . . . = d10 = 0). This methodology is illustrated in Fig. 8.

The methodology has been validated in practice, on RSA with an exponent
d = (. . . 111)2, i.e., finishing with three bits at 1. In Fig. 9, we have computed
NICV by partitioning on LSB(X3) ∈ {0, . . . , 255}. The NICV indeed features
a peak, which validates that d1 = 1, and that the device leaks. As the peak is
really sharp, the leak is strong (our implementation is an ATMega163 smartcard,
which is known to leak a lot). For cross-checking, we also plotted in Fig. 9:

• NICV on LSB(X5), which does not feature a peak (as expected). It would
have had a peak if the exponent would have been d = (. . . 101)2.

• NICV on LSB(X7), which has a peak, as expected.

5 Conclusions and Perspectives

We presented NICV as a leakage detection technique for side-channel leakage.
NICV uses public information like plaintext or ciphertext for detecting leakage
and trace compression. Therefore NICV has a low computation footprint which
can be considered as the worst case leakage analysis which envelops correlation
coefficient of all possible leakage models. However NICV cannot be used directly
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Algorithm 1: Unprotected right-to-left 1024 bit RSA implementation

Input : X ∈ ZN , d = (d1023, · · · , d0)2
Output: Xd ∈ ZN

1 R[1]← 1
2 R[2]← X
3 for i ∈ J0, 1023K do
4 if di = 1 then
5 R[1]← R[2] ·R[1] /* Multiply */

6 end
7 R[2]← R[2] ·R[2] /* Square */

8 end
9 return R[1]

Var[E[Y |LSB(X5)]]
Var[Y ]

Var[E[Y |LSB(X9)]]
Var[Y ]

Var[E[Y |LSB(X3)]]
Var[Y ]

There is peak

There is no peak

Caption: ...

Leak detected

d1 = 1

d2 = 1

d3 = 1

No leak...
...with proba
≥ 1− 2−10

R[1] = X3

R[1] = X5

R[1] = X9

X X2 X4 X8 X16 ...R[2] :

Figure 8: Illustration of the application of NICV to RSA
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Figure 9: Result of the methodology of NICV applied to RSA (first two steps
of Fig. 8)

as a distinguisher for an attack. Unlike templates, NICV can operate on the
same set of traces which are used for attack. We can also use NICV to theoreti-
cally estimate the lower bound on number of traces to attack an implementation
with CPA. We demonstrated the power of NICV in several use cases related to
SCA like detecting relevant time samples, comparing leakage models, detecting
ghost peaks, etc.

Future works can focus on extending the power of NICV in detecting higher-
order leakage and extensive application to asymmetric key cryptography.
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editors, WISTP, volume 7322 of Lecture Notes in Computer Science, pages
169–178. Springer, June 20-22 2012.

24



[34] Y. Souissi, M. Nassar, S. Guilley, J.-L. Danger, and F. Flament. First
Principal Components Analysis: A New Side Channel Distinguisher. In
K. H. Rhee and D. Nyang, editors, ICISC, volume 6829 of Lecture Notes
in Computer Science, pages 407–419. Springer, 2010.

[35] F.-X. Standaert, B. Gierlichs, and I. Verbauwhede. Partition vs. Compar-
ison Side-Channel Distinguishers: An Empirical Evaluation of Statistical
Tests for Univariate Side-Channel Attacks against Two Unprotected CMOS
Devices. In ICISC, volume 5461 of LNCS, pages 253–267. Springer, De-
cember 3-5 2008. Seoul, Korea.

[36] A. Thillard, E. Prouff, and T. Roche. Success through Confidence: Evalu-
ating the Effectiveness of a Side-Channel Attack. In G. Bertoni and J.-S.
Coron, editors, CHES, volume 8086 of Lecture Notes in Computer Science,
pages 21–36. Springer, 2013.

[37] C. Whitnall, E. Oswald, and F.-X. Standaert. The Myth of Generic DPA
. . . and the Magic of Learning. In J. Benaloh, editor, CT-RSA, volume
8366 of Lecture Notes in Computer Science, pages 183–205. Springer, 2014.

[38] D. W. Zimmerman, B. D. Zumbo, and R. H. Williams. Bias in Estimation
and Hypothesis Testing of Correlation. Psicológica, 24:133–158, 2003.

A NICV vs. TVLA

NICV and TVLA are two methods to quantify the leakage of a cryptographic
module (CM). They have been discussed recently at the first International Cryp-
tographic Module Conference (09/2013), respectively in presentations [17] and
[8].

TVLA consists in operating the CM with a fixed key (specified), exercised
under a fixed input message, and under varying messages [15, Sec. 3]. Then, a
T-test (See Eqn. (1), for n = 2 classes) is applied on both sets of measurements.

A.1 Differences

TVLA requires the definition of a set of keys and messages to be tested. This
has some side effects. First, it is not always possible to set a key or an input
message in a CM; indeed, the key is often initialized randomly or agreed by a
protocol, and in most modes of operation, the input message depends upon an
initialization vector (IV) that cannot be chosen. Second, this is restrictive as
a general method, because new or regional algorithms are created frequently,
hence the key / message database of TVLA must keep track of this evolution.
Third and the criteria for the selection of keys & inputs is delicate to explain,
hence possibly suspicious. At the opposite, with NICV, the device can be tested
with its operational key and without chosen inputs.

TVLA tests whether the leakage varies for two different input types of the
CM (hence the computation of a difference), namely varying vs fixed input
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messages, whereas NICV tests whether the leakage varies of a multiplicity of
different inputs (hence the computation of a variance). Also, NICV can focus
on each input bit (n = 1) or byte (n = 8).

A.2 Common Points

As underlined in Remark 2, SOSD and the inter-class variance are proportional.
Thus SOST (normalized version of SOSD) and NICV are related, for binary
partitionings (i.e., when there are only n = 2 classes).

Also, both NICV and TVLA can have an estimation of their bias: the con-
fidence level of NICV is discussed in [23, 38], and in [8] for TVLA.

As common drawbacks, simple countermeasures (like desynchronization) al-
most zero NICV and SOST, despite efficient preprocessing techniques (like re-
alignment) manage to undo them. Therefore NICV and TVLA do not prove
the absence of leakage, but provide a systematic way to detect obvious design
errors. We notice that both metrics can be used throughout the development
process of a CM, as a non-regression test.
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