On Computing Maximal Independent Sets of Hypergraphs
in Parallel

loana O. Bercea
Department of Computer
Science
University of Maryland
College Park, MD, USA

ioana@cs.umd.edu

Navin Goyal
Microsoft Research India
Bangalore, India
navingo@microsoft.com

David G. Harris
Department of Applied
Mathematics
University of Maryland
College Park, MD, USA
davidgharris29@hotmail.com

Aravind Srinivasan
Department of Computer
Science and UMIACS
University of Maryland
College Park, MD, USA
srin@cs.umd.edu

ABSTRACT

Whether or not the problem of finding maximal indepen-
dent sets (MIS) in hypergraphs is in (R)NC is one of the
fundamental problems in the theory of parallel computing.
Unlike the well-understood case of MIS in graphs, for the
hypergraph problem, our knowledge is quite limited despite
considerable work. It is known that the problem is in RNC
when the edges of the hypergraph have constant size. For
general hypergraphs with n vertices and m edges, the fastest
previously known algorithm works in time O(y/n) with

poly(m,n) processors. In this paper we give an EREW
PRAM algorithm that works in time n°®) with poly(m,n)

log(2) n

processors on general hypergraphs satisfying m < n8tez® n)2

where log® n = loglogn and log® n = logloglogn. Our
algorithm is based on a sampling idea that reduces the di-
mension of the hypergraph and employs the algorithm for
constant dimension hypergraphs as a subroutine.

Categories and Subject Descriptors

G.2.2 [Discrete Mathematics|: Hypergraphs—Indepen-
dent Sets; F.1.2 [Computation by Abstract Devices]:

Parallelism and concurrency; F.2.2 [Analysis of Algorithms

and Problem Complexity]: Computations on discrete
structures; 6.1.0 [Numerical Analysis]: Parallel algorithms

Keywords

hypergraphs; independent sets;randomized algorithms; par-
allel algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

SPAA’14, June 23-25 2014, Prague, Czech Republic.

Copyright 2014 ACM 978-1-4503-2821-0/14/06.
http://dx.doi.org/10.1145/2612669.2612670 ...$15.00.

1. INTRODUCTION

Fast parallel algorithms for constructing maximal inde-
pendent sets (MIS) in graphs are well studied and very ef-
ficient algorithms are now known (see, e.g., [3] for a brief
survey). These algorithms serve as a primitive in numer-
ous applications. The more general problem of fast parallel
MIS in hypergraphs is also well studied but is not so well
understood. Let us first formally state the problem before
describing what is known about it.

A hypergraph H = (V, E) is a set of vertices V and a col-
lection of edges e € E such that e C V. The dimension of a
hypergraph is the maximum edge size. Let n be the number
of vertices, m the number of edges and d the dimension of
the hypergraph. A subset of vertices of H is called indepen-
dent in H if it contains no edge. We call an independent
set mazimal if it is not contained in a larger independent
set. Karp and Ramachandran [3] asked whether the prob-
lem of finding an MIS in hypergraphs is in NC. While the
general problem remains open, progress has been made on
some special classes of hypergraphs. We now briefly survey
some of the previous work; further references can be found
in the papers mentioned below.

In a seminal paper, Beame and Luby [2] gave an algorithm
(called the BL algorithm henceforth) and showed that the
problem is in RNC for hypergraphs with edges of size at
most 3 ([2] claimed that their algorithm was in RNC for all
constant dimension hypergraphs; this however turned out
to be erroneous). This algorithm is similar to some of the
MIS algorithms for graphs and is based on independently
marking vertices and unmarking if all vertices in an edge
get marked. Kelsen [5] extended the analysis of the BL algo-
rithm to hypergraphs with constant dimension (the dimen-
sion can actually be super-constant; we state the precise
bound later in the paper where we use this fact). Luczak
and Szymanska [7] showed that the problem is in RNC for
linear hypergraphs (linear hypergraphs satisfy e Ne'| < 1
for all distinct edges e,e’). Beame and Luby [2] also gave
another appealing algorithm based on random permutations
which they conjectured to work in RNC for the general prob-
lem. Shachnai and Srinivasan [9] made progress towards the

analysis of this algorithm. For general hypergraphs, Karp,
Upfal and Wigderson [4] gave an algorithm with running
time O(y/n) and poly(m,n) processors (their algorithm ac-
tually works in a harder model of computation where the
hypergraph is accessible only via an oracle, but it can be
adapted to run in time O(y/n) - (logn + logm) with high
probability on mn processors).

Our contribution.

We give a parallel algorithm that we call the SBL (sampling
BL) algorithm. The algorithm works on hypergraphs that
do not have too many edges but no other restrictions and
works in time O(n°1). This is the first parallel algorithm
that works on general hypergraphs with a relatively weak
restriction on the cardinality of the edge set and a running
time of o(y/n).

More precisely,

THEOREM 1. The SBL algorithm finds a maximal inde-

pendent set in hypergraphs with n vertices and m edges and
1og(?) n
m < n8tos®)2 [t runs in time O(n2/10g<3> ") on EREW

PRAM with poly(m,n) processors.

The parameters above have been chosen to keep the compu-
tation in the analysis simple and there is some flexibility in
their choice.

Our algorithm crucially uses BL as a subroutine. However,
we need to use it on hypergraphs with slightly superconstant
dimensions. Kelsen’s original analysis [5] of BL is formulated
for constant dimension hypergraphs. A slight modification
of this analysis, specifically in the potential function used
to describe progress being made in each round, allows it to
be applicable without the assumption that the dimension is
O(1). We present this modification. We also discuss two ad-
ditional improvements that can be made to Kelsen’s analysis
of the BL algorithm, which could be of independent interest:
(1) Kelsen developed concentration inequalities for polyno-
mials in independent random variables. Since then much
stronger versions of such inequalities have become available
[6, 8]. We employ one such inequality and obtain an im-
proved upper bound which we later use in the analysis. (2)
We also show that a significantly larger marking probability
can be employed, without affecting the runtime negatively.
Unfortunately, both of the above modifications do not lead
to a significant improvement in the final running time of
the algorithm. Nevertheless, we hope that this identifies the
main bottlenecks in Kelsen’s approach and will be useful for
the future work.

Organization.

The next section is devoted to the SBL algorithm. Sec-
tion 3 delves into Kelsen’s analysis of the BL algorithm. We
note that there is a large overlap with Kelsen’s paper in
Sec. 3 owing to the fact that we are mainly talking about
modifications to his analysis and this requires us to restate
many of his results and proofs to make the paper somewhat
self-contained.

2. ssL ALGORITHM

We now explain the SBL algorithm which mainly uses the
BL algorithm as a subroutine. Denote the input hypergraph
by H = (V, E). Intuitively, we can think of the BL algorithm
as iteratively coloring the vertices in V red or blue; at the

end of the run of the algorithm the blue vertices will form the
final MIS. The idea of our algorithm is to randomly sample a
subset V' of vertices by independently marking each vertex
in V with probability p (to be carefully chosen). With high
probability, the hypergraph H' = (V', E’), where E' = {e €
E : e C V'} is the set of edges with all vertices marked,
has dimension at most d, where d is suitably small (if H’
has an edge with size more than d then we declare failure
and start over). We then apply the BL algorithm to H' to
get a red-blue coloring of its vertices, where blue vertices
form an MIS in H’. This coloring will be the permanent
coloring of the vertices of H'. Going back to H, we remove
the edges of H that have a red vertex as these edges cannot
be all blue in any completion of the coloring of H’. For the
remaining edges, we remove their blue vertices and thus get
a hypergraph on V\V’. We repeat the above process on this
updated hypergraph until the number of edges becomes at
most 1/p2. At this point we can just use the algorithm that
takes time linear in the number of vertices or alternatively
the Karp-Upfal-Wigderson algorithm [4] which we shall call
KUW. The vertices in the MIS returned by this last call will
again be colored blue, while the rest will be colored red.

Algorithm 1 SBL
Input: A hypergraph H = (V, E)
Output: A maximal independent set I C V'

1: Let p = 1/n® and d = o n here n = |V] and

4log(3) n
a=1/log® n.

2: T+ 0

3: if maxccp |e| > d then

4: while |V| > 1/p? do

5: Invariant: If I’ is an IS in H', then I U I’ will be
an IS in H.

6: Select vertices independently at random with prob-
ability p

7 Let V' be the collection of such selected vertices,
E' ={e€E:eCV'}and H = (V' E').

8: if max, cp |€/| > d then

9: FAIL

10: else

11: Run I’ =BL(H’)

12: Update I=TUI', V=V\V’

13: for all e € E do

14: ifen(V'\I') # 0 then

15: E + E\e.

16: for all e € E do

17: e«—e\I

18: Run I' = KUW(H).
19: Update I =TUT'.
20: else

21: Run I =BL(H).
22: Return I.

2.1 Correctness of ssL

We claim that in the final coloring produced by the SBL
algorithm, the set of blue vertices forms an MIS in the orig-
inal hypergraph H. Let H; be the hypergraph being colored
in round ¢, where by round we mean one iteration of the
while loop or the last call we make either to BL or KUW. We
use the fact that the set I’ returned either by BL or KUW is

indeed an MIS in H;, so every violation of independence or
maximality in H; leads to a contradiction.

If the final set of blue vertices is not independent then
there is some round ¢ of SBL in which some edge e became
fully blue. This means that a nonempty subset ¢’ of e must
be an edge in the hypergraph H;, since e \ € is fully blue
and €’ is not yet colored. But now round i cannot color €’
fully blue because it finds an MIS in H;—a contradiction.

If the final set of blue vertices is not maximal, then it
means that some red vertex can be recolored blue without
violating independence. Let v be such a vertex and suppose
that it was colored red in round i. Then in H;, there exists
a hyperedge ¢’ such that recoloring v blue will make it fully
blue which in turn would lead to some edge e in H being
fully blue—a contradiction.

2.2 Analysis of sBL

We use the BL algorithm as a subroutine and use the fol-
lowing theorem about its performance:

THEOREM 2. On hypergraph with n wvertices, m edges,

. . log(® n
and dimension d < 25 Toa®

O(logn) ' time with probability at least 1—1/n®(1°g"1°g(2)
It uses poly(m,n) processors and can be implemented on
EREW PRAM.

BL algorithm terminates after

The above result is essentially the same as the correspond-
ing statement in [5] when d = O(1). As mentioned before,
the proof follows from a slight modification of the potential
function of [5]; it appears in Section 3.1.

In the analysis of the running time below we will focus on
the number of rounds of SBL algorithm. The time for each
round of SBL is dominated by the time for running BL in
that round. Specifically, notice that the only other call we
make is to KUW(H) when the number of vertices in H is less

than 1/p? = n2/1°8 " 1 the worst case, the runtime of
the algorithm is linear in the number of vertices, so we get

an additional factor of O(n?/ log®) ™) in our overall runtime.
We begin by setting values of the parameters used in the
algorithm:
e p:=1/n%,
o m:=n",

o a:=1/log®

o [:=
We will use the following form of the Chernoff bound (see,

e.g., [1]).

LEMMA 1. Let X be a random variable taking value 1 with
probability p € [0,1] and value 0 with probability 1 —p. Then
the sum X1+...+ X, of i.i.d. copies of X for a > 0 satisfies

log(2) n
8(log(®) n)2 "

Pr[(X1 +...+ Xn) <pn—a] < e * /%",

There are three kinds of events (A4, B, and C) that can
happen during the execution of the SBL algorithm resulting
in failure or high running time. We will show that the union
of these events has small probability by upper bounding each
event separately and then applying the union bound. We use
Pr[B] < Pr[A] + Pr[B|—A] and similarly for Pr[C], resulting
in the bound

Pr[AV BV C] < 3Pr[A] + Pr[B|-A] + Pr[C|-4]. (1)

n).

1. With high probability in each round, the fraction of
vertices colored is substantial and thus the number of
rounds is small.

2. The probability that a large hyperedge is ever fully
marked in a round is small and thus all our applications
of BL algorithm are valid.

3. The probability that a run of BL algorithm fails in some
round is small.

We now prove these three claims.

(1) Denote the number of marked vertices in round ¢ of
SBL by n;; thus n1 = n, and in round 4, the BL algorithm is
invoked on a hypergraph with n; — n,41 vertices (the set of
marked vertices). Then, for each 4, by Lemma 1 we have:

Pr[(n; — nit1) < pn;/2] < e P/ < o1/ Br)

The inequality above holds because SBL algorithm maintains
that n; > 1/p® and so pn; > 1/p for all 4. If the above
event holds in each round, then the smallest r satisfying
(1-p/2)" < —5— is an upper bound on the number of rounds.

Setting r := 21"%" gives an upper bound on the number of
rounds. Then the probability of the event not holding in
some round becomes 21(’# cem 1/ < for sufficiently
large n.

(2) Conditioning on the number of rounds being upper
bounded by r, the probability that an edge of size at least
d + 1 is fully marked in some round is at most rmp(®t1) . If
we want this probability to be upper bounded by 1/n then
we can take

log, no

_ log(rmn) B
log(1/p)

Substituting the values of 7, p, m as chosen above we get:

log2 + log® n logm logn
T logl/p log1/p ' log1/p
_ (log2+ log® n)log® n n Blog® n)(logn) . log® nlogn
logn logn logn
<243 log(3) n
log®
4 log® n’

where the inequality holds for all sufficiently large n.
(3) Theorem 2 gives that the probablhty of failure of BL

algorithm in round ¢ is at most ——————+——. Using n; >
@(log ng lorf() n

1/p?, this probability is at most 1og — for suﬂi(nently large n.
Hence, conditioning on the number of rounds being upper
bounded by r, the probablhty of any one round failing is
upper bounded by 7 - 1Ogn < W

Thus the total probablhty of failure using (1) is at most
nlc’% + % + m < 2/n, for sufficiently large n.

Now we account for the time taken by the algorithm. The
first round takes time at most (log pn)dd (with high prob.),
and the subsequent rounds have the same upper bound.
Thus the total time is bounded by r(logpn)dd (here we are
upper bounding (d+4)! somewhat crudely by d? which holds
for all sufficiently large n). For our choice of d above we can
upper bound this by

,)L/ 21 /
r(logn)dd < r(log n)(log’">1 ‘o 7Ogn(logn)(1°g")1 t o
p

2n1/ log(®) n()(log n)1/4+1 < n2/ log(®) n

logn

I

for sufficiently large n.
This completes the analysis.

3. ANALYSIS OF 5L

In this section, we present a streamlined analysis of BL and
show that it can accommodate for a larger d while maintain-
ing the running time of O(logn)(@+4*,

Before we describe the improvements in the analysis, we
give a brief overview of the algorithm. In the first step, each
vertex is marked independently at random with some prob-
ability p. After the marking step, for any edge that is fully
marked, we unmark all its vertices. We add the remaining
marked vertices to the independent set and perform the a
cleanup operation in which we update the vertex and edge
set (by trimming them), remove singleton edges and discard
all edges that now contain smaller edges as subsets. We
then recurse on this new hypergraph. For a pseudocode of
the algorithm we refer the reader to Appendix A.

Like usual, the general strategy in upper bounding the
number of rounds necessary for the algorithm to finish, is
to define an appropriate quantity and show that progress
is being made in each round. Intuitively, we can pick one
of several such quantities (the number of vertices, the max-
imum degree of a vertex, the number of edges etc.) and
show that it is reduced by a constant fraction every couple
of rounds. The trouble comes from the fact that, in the
case of hypergraphs and of the BL algorithm in particular,
none of these quantities are easy to track. For example, the
probability that a vertex gets discarded in one round de-
pends on whether it was marked and never participated in a
fully marked edge. When it comes to the degree of a vertex,
more evolved measures are needed than in the classical graph
case, since now, several vertices can participate together in
multiple edges. In this context, we define some essential no-
tation. Let H = (V, E) be a hypergraph with dimension d.
For) # x C V and an integer j with 1 < j < d — |z|, we
define the number of edges of size |z| + j that include z as
a subset:

Nj(z,H)={yCV:zUye EAxzNy=0Aly| =3}

We also define the normalized degree of x with respect to
dimension |z| + j edges

d;(z, H) = (IN; (z, H))"/7.

The maximum normalized degree with respect to dimension
i edges then becomes

Ai(H) = max{d;_|z(z, H) : c CV A0 < |z] < i}
Finally, the maximum normalized degree is defined as
A(H) = max{A;(H) :2<i<d}.

At this point, notice that, as noted in [5], the main bottle-
neck in the analysis is the migration of higher dimensional
edges to lower dimensional ones. Specifically, in each round,
we need to account for the decrease in N;(z, H) due to edges
of size |z| + j decreasing in size, but also for the potential

increase due to edges of size |z| + k, k > j becoming edges
of size |z| + j. In order to upper bound such an increase,
[5] develops a bound on the upper tail of sums of dependent
random variables defined on the edges of a hypergraph. We
mention the general bound here and defer the description of
its application to later in the paper.

In order to state the result, we need to describe the proba-
bilistic setting: we consider a hypergraph H = (V(H), E(H))
with n(H) vertices, m(H) edges and dimension dim(H). We
also consider a weight function w on its edges w(e) > 0
for any edge e. The random variables C, will correspond
to each vertex being colored independently at random with
probability p for the color blue and 1 — p for the color red.
Alternatively, the random variable will take the value 1 with
probability p and value 0 with probability 1—p. The random
variable whose upper tail we will bound will be expressed
as the polynomial S(H,w,p). The terms of this polyno-
mial will correspond to an edge e being fully colored blue
Ce = [l,c. Cv- The weights w(e) will become the corre-
sponding coefficients. The polynomial S(H,w,p) then rep-
resents the sum of all the weighted edges being colored blue:

S(vaap) = ZeGE(H) w(e) : Ce«

Unlike general concentration bounds, we will not compare
S(H,w,p) just against its expectation. We will, instead,
consider the expected values of all partial derivatives of the
polynomial S(H, w,p) with respect to a subset of vertices x.
Specifically, for a given x C V(H), we will consider quanti-
ties of the form

P(H7 w, p, :E) = ZeeE(H),zge w(e) : p\e\7|z|'
Essentially, this term represents the expected sum of the
weighted edges around x that are colored all blue, given that
z is already colored blue. Notice that this is the same setting
used by more recent and considerably better concentration
inequalities (e.g. [6],[8]) to describe their results and in that
sense, Kelsen’s bound is surprisingly advanced. We then
define:

D(H,w,p) = max{P(H,w,p,z): x C V(H)}.

Notice that D(H,w,p) is greater than the expectation of
S(H,w,p). The final result follows:

THEOREM 3. (Theorem 1 in [5]) Let (H,w) be a weighted
hypergraph with dim(H) = d > 0 and n(H) = n > 3. For
0<p<1andd>1, we have

Pr[S(H,w,p) > k(H) - D(H,w,p)] < p(H)

where

od—1

k(H) = (logn + 2)2d*1 .5 and
p(H) = (2d . "logn] .m(H))dfl logn - (647761)@71)/4'

We are now ready to describe the complete analysis. In
order to prove Theorem 2, we present a succinct version
of the analysis that emphasizes the main ingredients of the
proof and our contribution. For full details on the original
analysis, we refer the reader to the papers of Beame and
Luby [2] and Kelsen [5]. In the following subsection, we
will revisit some of the tools used and show that the anal-
ysis goes through even when we consider a higher sampling
probability.

3.1 Theorem 2

The main purpose of Theorem 2 is to show that the anal-

. log(2)
ysis follows even when we allow d < 4?§g(3)nn, We start by

setting the initial sampling probability to p = 1/(aA) where
a = 291, The first crucial step is lower bounding the prob-
ability that a particular set of vertices X is added to the
independent set. We begin by defining random variables C,
for when a vertex v is initially marked (i.e. C, = 1 when
the v is marked and 0 otherwise) and F, for when a ver-
tex is unmarked later due its participation in fully marked
edges (i.e. F, = 1 when v is unmarked, 0 otherwise). We
also define the random variable A, = C, A —E, to stand for
when the vertex v gets added to the independent set. This
notion can be extended to subsets of vertices, by defining
Cx = /\UGX C, and Ex = VvGX FE,, and Ax =Cx N—-FEx.
Notice that

Pr[Ax] = Pr[Cx] - (1 — Pr[Ex|Cx]).

Lemma 1 from [2] shows that Pr[Ax] < 1/2 by proving
that Pr[Ex‘Cx} < 1/2.

LEMMA 2. (Lemma 1 in [2]) Given a hypergraph H =
(V,E) of dimension d, and a set of vertices X C V with
| X| < d such that no e C X is an edge, we have Pr[Ex|Cx] <
1/2. (Le. given that X is marked, it will be added to the IS
with probability > 1/2.)

We will use the preceding lemma to ensure that progress
is being made at each stage of the algorithm. Specifically,
we will focus our attention on those sets X that have a large
degree with respect to edges of size | X| 4 j. To this extent,
Lemmea 2 in [2]) shows that if such a large degree set exists,
then one of the edges that contains it is likely to decrease
and turn X into an edge by itself. Once that event occurs,
the degree of X becomes 0.

LEMMA 3. (Lemma 2 in [2]) For any set of vertices X
and j such that | X|+j < d, if d; (X, H) > €A, then

Pr[3Y € N;(X,H) s.t. Ay]> L(e/a)’,
where a = 2411,

We now discuss the last ingredient of the proof: the upper
bound on the migration of edges from higher dimensions to
lower dimensions. Notice that the previous lemma is not
enough to show that the degree of X will become 0 in a
polylogarithmic number of stages. This is because over each
stage, d; (X, H) can actually increase through the migration
of edges from N (X, H) where k > j. In this context, we
employ Theorem 3. The hypergraph H' we construct con-
sists of all the vertices in H and has as edges all subsets of
size k — j of the elements in Ny (X, H), i.e all the potential
ways in which an edge of size | X |+ k can lose k — j vertices
and become an edge of size |X|+ j around X. Formally, let
X be the edge set:

Xipn={Y:YCVHIAN|Y|=k—-jATZ €
Ny (X,H"),Y C Z}.

The random variables C, correspond to the situation in
which a vertex v gets marked, with probability p. The weight
w’ of each edge Y € X represents the number of edges of
size | X |+ j around X that would be formed if Y were to be
fully added to the MIS. Formally:

W' (Y) = [N;(XUY, H)|

The polynomial S(H’, w’, p) then becomes an upper bound

on the potential increase in N; (X, H) due to edges in N (X, H).

Notice that, in our case, H' has dimension at most d — 1 <
log(2) n
4(log(®) n)’
cleaner formulation of Theorem 3 from [5]:

but by choosing § = log®n, we can arrive at a

COROLLARY 1. (Corollary 1 in [5]) Fiz a d > 0 and a real
number p, 0 < p < 1. For any weighted hypergraph (H',w)
of dimension at most d with at most n vertices,

Pr[S(H',w',p) > (logn)*""" - D(H',w',p)] <
1

n©(og n-loglogn) *

When it comes to D(H',w’, p), we can bound it by some-
thing more meaningful in our context:

LEMMA 4. (Lemma 3 in [5]) Let H',w' and p be defined
as above. Then:

D(H',w',p) < (Ajx|+x(H)).

Notice that the same bound applies when we consider
the increase in the normalized degree d;(X,H’) and since
A x+x(H) < A, we obtain the following Corollary 3 from
5]:

COROLLARY 2. (Corollary 3 in [5]) With high probability,
for 2 < j < d, the mazimum increase in d;_|x|(X, H) for
any non-empty X C V during a single stage of the algorithm
is less than

3 (ogn)® T AL(H).

k>j

Notice that this bound is meaningful in comparison with the
trivial bound we would obtain by considering the worst case
scenario of all higher dimensional edges migrating down:

(Ek>j Ak(H)k—IX\)l/(j—IXD > Ek>j Ag(H),

since Ag(H) could be as high as n.

At this point in the analysis, we can describe the be-
haviour of each individual d; (X, H) by a lower bound on the
probability that it diminishes when it is too large (Lemma
3) and an upper bound on how much it can increase in each
stage (Corollary 2). We would like to be able to somehow
compare these quantities with a universal threshold that we
can show will eventually decrease. The trouble comes from
expressing the latter of the quantities in terms of this uni-
versal threshold: if we compare each Ay (H) to the threshold
in the same way (suppose by saying that it is smaller than
1/2 of the threshold value), we obtain a trivial upper bound
on the increase in A;(H). A solution to this problem would
be to define an individual threshold for each Ay(H) sepa-
rately and relate all of these back to a universal threshold.
In this context, [5] defines the values v;(H) inductively by
ve(H) = Aq(H) and:

Vji (H) = maX{Ai (H), (1og n)f(i) . ’UH_l(H)},

for 2 < i < d, where f is a carefully chosen function (to be
defined later) that accommodates for the increase in Aj(H)
due to migration from higher edges. Essentially, v;(H) tries
to take into account the most significant term in the in-
creased A;(H): it is either the A;(H) from the previous

round or the most significant term from larger edges off-
set by a scaling factor (logn)’® - v;11(H). These individ-
ual thresholds relate to the universal threshold by consider-
ing the quantities T; = vo(H)/(logn)"Y= where F(i) =
> i_o f(§) for 2 < i < d. Notice that for any hypergraph
H', vi(H') < vo(H')/(ogn)FU=D . The rest of the analy-
sis focuses on showing that the universal threshold v (H) is
reduced by a constant fraction every several rounds.

Let H, = (V(H,), E(Hs)) be the hypergraph used in stage
s of the algorithm and let v; = v;(Hs,) be the values of
these potential functions at the start of a fixed stage of the
algorithm. Similarly, let T; be defined with respect to v;.
The main technical lemma is the following:

LEMMA 5. (Lemma 4 in [5]) Let r be an arbitrary positive
constant. Then, with high probability, at any stage s with
s0 < s < so+ (logn)”, we have

va(Hs) <wz- (14 0(1)).

In fact, [5] proves that something stronger holds with high
probability:

v (Hs) <Tj - (1+ A(n)),

where A(n) = 2-log® n/logn.

The main argument is by induction on d — j and we will
not reproduce it entirely. We will, instead, give the gen-
eral intuition and focus on the parts of the argument that
could change if we allow d to be non-constant. Notice that
v;(Hs) = max{A;(H,), (logn)*¥ . v;,1(H,)}. By induc-
tion,

(logn)’) - w1 (Hs) < (logn)’ 9 - Ty - (1 4+ A(n))
<Tj-(1+ An)).
So we only need to focus on showing that
Aj(Hs) <Tj- (14 A(n)),

with high probability. The tactic is to show that, if A;(H,)
ever becomes greater than 3 - 7j - (1+ A(n)), then in g; con-
secutive stages it will decrease with high probability, taking
into account the potential migration of edges during those
stages. Specifically, suppose there exists an ¢ C V(H,) such
that

dj_jo(z, Hs) > 5 - Ty - (14 A(n)).
One can show that this implies that

A(Hs)
dj—ja)(z, Hs) > 2ogn)FG-D

At this point, we can apply Lemma 3 with ¢ =
and get that

.
2(logn)FG—1)

Prid;_ o (z, Hs41) > 0] <
1 1
~ 24(d+1) . (logn)FG-DG-D

In other words, the probability that in the next round we
still have a high normalized degree is small. Notice that if
we repeat the argument for

g; = 24D . (loglogn) - (logn) - HE—D+2

stages, we have that this remains true with probability at
most 1/n®Ueenlogloen) Thig js the first place in which we
differ from the conventional analysis in [5] since we cannot
ignore the 24d+1) factor because it is not constant any more.
The only step left missing is to guarantee that the in-
crease in d;_|,(x, Hs) during those g; stages is not large.
We apply Corollary 2 and get that the total increase is
qj -Z(log n)2kﬂ+1 -Ap(Hs). We want to show that such an
k>j
increase is smaller than A(n) - T; and since by the inductive
assumption we have that Ay (Hs) < Tk - (1 + A(n)), we are
left to show that

g -3 (ogn)* T (14 A(n)) < An) - T

k>j
After some calculation, plugging in the values of ¢; and
A(n), this can be shown to reduce itself to:

9d(d-+1) ‘Z(log‘ n)2k7j+1+F(]’71)»j—F(k71)+2 <

k>3

2
logn + 2loglogn’

It is at this point that the definition of f comes into play.
[5] define f(2) = 7 and f(i) = (i — 1) - Y12} f(i) + 7 for
i > 2. We then get that F(i) =¢- F(i — 1)+ 7 for ¢ > 2 and
F(1) = 0. Notice that this definition of F' does not allow
us to make the above argument. Consider the case when
k =37+ 1. Then

kIt L P(j—1)-j—Fk—1)+2=-1
and the claim becomes

21 < e

This is not true for the larger value of d we are considering.
Notice that this was not an issue in the original analysis,
because 24%*1) was a constant in the case they were consid-
ering.

In order for the claim to be true, a different definition of
f is required. Specifically, we define the recurrence relation-
ship to be

F@) = (—1)- 3525 f(6) + d.

In this context, we obtain that F(i) = i- F(i — 1) +d>. The
claim then becomes:

k>3

2
logn + 2loglogn’

We will now show that the claim is true for this new defini-
tion of f.

We will begin by first noticing that, for any j, the highest
term in the sum is achieved for kK = j + 1. Formally:

LEMMA 6. For any k > j+ 1 and any j > 2, we have
k=it Lo _d? + F(j) — F(k—1) <6 — d>.

The proof is done by showing that the terms are decreasing
as a function of k and therefore, the maximum is achieved
for the lowest possible value of k: 7 + 1.

As a consequence, the entire left hand side of the inequal-
ity can be upper bounded by

9d(d+1) (d—j)-

_ 1 _
(log n)‘12_6 ’

By taking 2%(4t1) < 44+ and d — j < loglogn, it would
be enough to show

A1) 1 1
(logn)d?—6 — logZn’

In other words, we can show that
d(d+1) < (loglogn) - (d* — 8).

2
One can check that this inequality holds for d < log®) n_
4 log(d) n

At this point, we have shown that the total increase in
d;_|s|(z, H,) during those stages is upper bounded with high
probability by A(n)-T;. Moreover, notice that after g; stages,
A;(H) will not exceed Tj- %’\(") and hence, after gq stages,
we have that, with high probability,

vj(Hsy) < T; - 20

for any 2 < j < d and so < s1 < s + (logn)%. In fact,

going back to the start of the algorithm, v2(H) is reduced

by a constant factor, with high probability, every g4 stages.

Hence, after O(logn - q4) stages, we have that vo(H) = 0

and therefore, V/(H) = 0 and the algorithm terminates.
Now we are left to prove that

logn - qa < (logn)@+4)",

Notice that

qa < (log®n)? - (log n) "4 1d=1+2
< (log n)Fld=D@-1)+3

< (log n)(d+4)!—1

where the last inequality can be verified by inductively prov-
ing that F(i) < d?- (i + 2)! for all i.

3.2 Larger sampling probability

In the attempt to provide insight into what happens with
BL when we consider larger dimensions, we can show that
the original lemmas from [2] hold even when the sampling
probability is considerably larger: p = 1/(5d - A) versus
/(2471 A).

Consider the extension of Lemma 1 from [2]:

LEMMA 7. Given a hypergraph H = (V, E) with dimen-
sion d, let p = 1/(aA) where a = 5d. Then for any set of
vertices X CV with |z| < d such that no e C X is an edge,
we have that Pr[Ex|Cx] < 1/2.

PrOOF. Let f(z) = Pr[Ex|Cx]. Notice that f(X) =
Pr[3e € E,enN X # 0 s.t. Ce—x]. Consider a vertex t ¢ X.
Then we have
f(XU{t}) =Pr[Be e E,en (X U{t}) # 0 s.t. Coe(xupe)]

=Pr[(Gee E,enNX # 0 s.t. Ceex)V
(FeeE,enX =0t €est. Co_gyy)]

<Pr[(Ze€ E,enX #£0st. Ceex)]+

Pr(Bec E,enX =0,t € es.t. Ce_q43)]
<f(X)+Pr[(Bec E,enX =0t €est. Coyyy)]
<f(X)+Pr[(Feec E,itcest. Cogyy)]

< 10X + J({t).

Notice that we can upper bound f({t}) using the union
bound. Specifically,

IS"

—1

d—1
FAY <30 IN(th, H)| -0 < die({t}, H) - p"

(]

k=1 k=1
d—1 d—1
1 1
<N TAFH) PP <Y =
- (H)-p" < P
k=1 k=1
Overall, we get that
| X| d 1
X) < t < —.
ST < T <ty

O

This carries over when we consider Lemma 2 in [2]:

LEMMA 8. Let a = 5d. For any set of vertices X and j
such that | X|+j < ¢, if dj(X, H) > e/, then

Pri3Y € N;(X,H)s.t.Ay] > (e/a)’.

PrOOF. Notice that we need a lower bound on Pr[3Y €
N;(X,H) s.t. Ay] and hence, we cannot use the union
bound as usual. Instead, we will lower bound this event
by another one. Specifically, we will require that there is a
unique Y € N;(X, H) such that Ay. In this context, we can
decompose the event into disjoint elements:

>

YEN;(X,H)
N; (X, H)\{Y}, Az)].

Pr[AlY € N;(X, H), Ay] = Pr[Ay A=(3Z €

We also have

Pr[Ay A ~(3Z € N;(X, H)\ {Y}, Az)] =
Pr[Ay]- (1 — Pr[(3Z € N;(X, H) \ {Y'}, Az)|Ay)).

Now we can apply the union bound and get

Pr[3Z € N;(X,H)\ {Y}, Az|Ay] <
Z Pr[Az|Ay].

ZeN; (X, H)\{Y}
Putting everything together, we get

Pr[3Y € N;(X, H), Ay] >

> PrlAy]-(1- >

YEN;(X,H) ZeN;(X,H)\{Y}

PI‘[Az|Ay])

In other words, we are left with showing an upper bound on
> Pr[Az|Ay].
ZEN;(X,H),Z£Y
Notice the following argument from [2]:
PI‘[AY A Az}
Pr[Ay]
Pr[Cy A Cz]
PI‘[Ay]
Pr[Cy A Cz]
' Pr[CY]
S 2 PI‘[CZ|C}/} =2- PT[Cny],

PI‘[Az|Ay] =

<2

where the second to last inequality uses the previous lemma
in the sense that:

PI‘[Ay] = PI‘[CY N ﬁE‘Y]
= Pr[Cy] - Pr[-Ey|CY]
=Pr[Cy]- (1 — Pr[Ey|Cy])

We therefore get that

Z PI‘[Az‘Ay} S 2 Z

ZEN;(X,H),Z#Y ZeN;(X,H),Z#Y

2y Y%

SCY ZeN;(X,H),YNZ=S

<2- 3 (1/ay"

SCY

PI‘[Cny}

<

N | —

The last inequality is true because

> (1/a) 7 = i (‘Z) (1/a)’!

SCY =0
=(1+1/a) —1
<(A+1/a)* -1
<((1+1/a))"* =1
<eMr_ 1.

For d/a < 1/5 we get that e/* —1 < 1/4 and the previous
inequality follows. At this point, we get

> Pr[Az|Ay] < 1/2.

ZEN;(X,H),Z#Y

Overall, we have

PrEY € N (X, H), Ay]> > PrAy]-(1- %)

YEN;(X,H)

Z Pr[Cy A —|Ey}

YEN;(X,H)

>

N =

Y]
N | —

YEN;(X,H)

1
> Prov](1-3)

YEN;(X,H)

Z Pr[Cy]

YEN,;(X,H)

v
N | =

\v2
AN

1 .
> LN,)
> 1 (X, Y (1/aAy

1 j
7(e/a)’.

\%

a

The next step of the proof that we are going to improve
is the bound that Kelsen gives on the maximum potential
increase in edges in one round, using the same setting as in

Pr[Cz_s]

the original analysis. We obtain an analogue of Corollary
2 in [5]:

COROLLARY 3. For X CV,and 1 <j <k <d-—|X|, we
have

Pr[S(X,j,k) > (1 + an— i *77) - (Ax 41 (H))] <
ZeZefAnkfjfl,

where ay_; = 879 (k — j)11/2,

Notice that we upper bounded the term D(H’,w’,p) by
(A|x|4+x(H)), just like [5]. Simple algebra can show that
this result follows even for the new value of a. Choosing
A = O(log? n), we get that an analogue of Corollary 3 in [5]:

COROLLARY 4. With high probability, for 2 < j < d, the
mazimum increase in d;_ | x|(X, H) for any non-empty X C
V' during a single stage of the algorithm is less than:

> (logn) 279 - Ay (H).

k>j

Notice that the bound of (logn)?*~7) is much smaller than

the one of (logn)2k_j+1 in [5].

3.3 Discussion

In context of these improvements, the natural next step is
to investigate what effect they have on the overall running
time of BL. We show that, under the current set up of the
potential function, no improvement is possible. Specifically,
we show that the function F' must be roughly exponential for
the argument to follow, despite the obvious improvements.

Notice that in our previous attempt to call BL on a hyper-
graph with super-constant dimension, the main issue was
showing that the increase in ¢; rounds was upper bounded
by T} - A(n). Incorporating all of the new improvements, we
get that the claim formally looks like:

(5d)® - Z(log p) 2= DHEG=1 G- Fk=D+2 o

k>j

2
logn + 2loglogn’

We proved this claim by showing that the largest term in

the sum was upper bounded by —X,—. We check the
(log n)d=—6

Z Pr[Cy] - (1 — Pr[Ey|Cy])minimal conditions that f must satisfy in order for the new

claim to be true by precisely looking at this largest term in
the case when k£ = j 4 1 for a fixed 2 < j < d. Notice that,
first of all, this will be the largest term when we allow F' to
satisfy Fi(k — 1) > F(j5) + 2(k — j — 2) for all k > 5. Given
that, the term will be:

(log)i+ F =13 =F(@),

Notice that, in order for the claim to be true, this term needs
to be smaller than

1 2
(5d)d " Togn+2loglogn *

In order for this to happen, we must have that

4+F(-1)i-F() <« y L
— logn

(log n)
This, in turn, requires that

F(j) > F(j—1)-j +5.

4. CONCLUSION

In this paper, we build on the RNC algorithm for com-
puting an MIS in constant dimension hypergraphs to get an
n°W algorithm on general hypergr)aphs when the number of

log(®) n

edges is upper bounded by n80z® m2 In order to perform
the analysis, we prove that the subroutine algorithm can
be adapted to run on a larger dimension while maintaining
an appropriate running time. We also present independent
improvements to the analysis of the latter and identify the
main bottleneck in the approach that affects the final run-
time most significantly. For example, notice that the factor
of j in the above expression (F'(j) > F(j—1)-j+5) originated
from Lemma 3. Specifically, [2] lower bound the probabil-
ity that d;(X) > €A becomes 0 in the next iteration, as a
function of (e/a)?. A refinement of that result could poten-
tially lead to a weaker restriction on F' and hence, a smaller
running time.

Acknowledgments.

Authors David G. Harris and Aravind Srinivasan were
supported in part by NSF Award CNS-1010789. We
thank the anonymous SPAA reviewers for useful and exten-
sive comments on a previous version of this paper.

5. REFERENCES

[1] Noga Alon and Joel Spencer. The Probabilistic Method.
John Wiley, 1992.

[2] P. Beame and M. Luby. Parallel search for maximal

independence given minimal dependence. In

Proceedings of the first annual ACM-SIAM symposium

on Discrete algorithms, pages 212—218. Society for

Industrial and Applied Mathematics, 1990.

Richard M. Karp and Vijaya Ramachandran. Parallel

algorithms for shared-memory machines. In Handbook

of Theoretical Computer Science, Volume A:

Algorithms and Complezity (A), pages 869-942. 1990.

[4] R.M. Karp, E. Upfal, and A. Wigderson. The
complexity of parallel search. J. Comput. Syst. Sci.,
36(2):225-253, 1988.

[5] Pierre Kelsen. On the Parallel Complexity of
Computing a Maximal Independent Set in a
Hypergraph. Fourth annual ACM symposium on
Theory of computing, 3:339-350, 1992.

[6] Jeong Han Kim and Van H. Vu. Concentration of
multivariate polynomials and its applications.
Combinatorica, 20(3):417-434, 2000.

[7] Tomasz Luczak and Edyta Szymanska. A parallel
randomized algorithm for finding a maximal
independent set in a linear hypergraph. J. Algorithms,
25(2):311-320, 1997.

[8] Warren Schudy and Maxim Sviridenko. Concentration

and moment inequalities for polynomials of independent

random variables. In SODA, pages 437-446, 2012.

Hadas Shachnai and Aravind Srinivasan. Finding large

independent sets in graphs and hypergraphs. SIAM J.

Discrete Math., 18(3):488-500, 2004.

(3

9

APPENDIX
A. 3. ALGORITHM

We give the pseudocode of the BL algorithm as initially
described in [2].

Algorithm 2 BL
Input: A hypergraph H = (V, E)
Output: A maximal independent set 1 C V.

Calculate A(H) as defined in Section 3.

Let d = max{|e| : e € E} and p = 1/(271 A).

H = (V',E')+ H=(V,E).

I+ 0.

while V' # () do
Select vertices independently at random with proba-
bility p.

7: Let I’ be the collection of such selected vertices.

8: for all e € E' such that e C I’ do

9: I'«TI'\e

10: T+ ITul.

11: V'« V'\TI.

12: for all e € E' do

13: e«e\TI.

14: for all e,e’ € E' do

15: if e C €’ then

16: E « E'\e.

17: for alle = {v} € E' do
18: E' + E'\e.

19: V'« V'\ {v}.

20: Return I.

