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ABSTRACT
The doubling of cores every two years requires programmers
to expose maximum parallelism. Applications that are de-
veloped on today’s machines will often be required to run on
many more cores. Thus, it is necessary to understand how
much parallelism codes can expose. The work and depth
model provides a convenient mental framework to assess the
required work and the maximum parallelism of algorithms
and their parallel efficiency. We propose an automatic anal-
ysis to extract work and depth from a source-code. We do
this by statically counting the number of loop iterations de-
pending on the set of input parameters. The resulting ex-
pression can be used to assess work and depth with regards
to the program inputs. Our method supports the large class
of practically relevant loops with affine update functions and
generates additional parameters for other expressions. We
demonstrate how this method can be used to determine work
and depth of several real-world applications. Our technique
enables us to prove if the theoretically maximum parallelism
is exposed in a practical implementation of a problem. This
will be most important for future-proof software develop-
ment.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: general

General Terms
Theory

Keywords
Loop iterations; Polyhedral model; Work and depth analysis

1. INTRODUCTION
Parallelism in today’s computers is still growing exponen-

tially, currently doubling approximately every two years.
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This implies that programmers need to expose exponen-
tially growing parallelism to exploit the full potential of the
architecture. Parallel programming is generally hard and
practical implementations may not always expose enough
parallelism to be considered future-proof. This is exagger-
ated by continuous application development and the fact
that applications are developed on systems with significantly
lower core counts than their production environment. Thus,
it is increasingly important that programmers understand
bounds on the scalability of their implementation.

Parallel codes are manifold and numerous programming
frameworks exist to implement parallel versions of sequen-
tial codes. We define the class of explicitly parallel codes as
applications that statically divide their workload into sev-
eral pieces which are processed in parallel. Explicitly par-
allel codes are the the most prevalent programming style
in large-scale parallelism using the Pthreads, OpenMP, the
Message Passing Interface (MPI), Partitioned Global Ad-
dress Space (PGAS), or Compute Unified Device Architec-
ture (CUDA) APIs. Many high-level parallel frameworks
(e.g., [18]) and domain-specific languages (e.g., [16]) com-
pile to such explicitly parallel languages.

The work and depth model is a simple and effective model
for parallel computation. It models computations as vertices
and data dependencies as edges of a directed acyclic graph
(DAG). The total number of vertices in the graph is the total
work W and the length of a longest path is called the depth
D (sometimes also called span). We will now describe more
properties of the model and possible analyses.

1.1 Work and depth and parallel efficiency
In practice, analyses are often not used to predict exact

running times of an implementation on a particular archi-
tecture. Instead, they often determine how the running
time behaves with regards to the input size. The work and
depth model links sequential running time and parallelism
elegantly. The work W is proportional to the time T1 re-
quired to compute the problem on a single core. The depth
D is the longest sequential chain and thus proportional to a
lower bound to the time T∞ required to compute the prob-
lem with an infinite number of cores.

Work and depth models are often used to develop parallel
algorithms (e.g., [33]) or to describe their properties (e.g.,
in textbooks [22, 23]). Those algorithms are then often
adapted in practical settings. We propose to use the same
model, somewhat in the inverse direction, to analyze exist-
ing applications for bounds on their scalability and available
parallelism. Our results can also be used to prove an imple-
mentation asymptotically optimal with regards to its paral-



lel efficiency if bounds on work and depth of the problem
are known. In our analysis we use the assumption from [13]
that all operations are performed in unit time and the time
required for accessing data, storing results, etc., is ignored.

Brent’s lemma [13] bounds running times on p cores with
W
p
≤ Tp ≤ W

p
+ D. D measures the sequential parts of

the calculation and is equivalent to time t needed to per-
form an operation with sufficient number of processes, W
is equivalent to the number of operations q in Brent’s nota-
tion and B = D

W
is a lower bound of the sequential fraction

that limits the returns from adding more cores. Applying
Amdahl’s law [2] shows that the speedup is limited to Sp =
T1
Tp
≤ 1

B+ 1−B
p

. If we consider the parallel efficiency Ep =
Sp

p
,

then we can bound the maximally achievable efficiency us-
ing the work and depth model as Ep = T1

pTp
≤ 1

1+B(p−1)
. We

observe that for fixed B, limP→∞Ep = 0 such that every
fixed-size computation can only utilize a limited number of
cores efficiently, i.e., Ep ≥ 1− ε.

This observation allows us to define available parallelism
and good scaling in terms of ε as the maximum number of
processes p for which Tp may decrease. Bounds on work and
depth for certain problems also allow us to differentiate be-
tween a problem that is hard to parallelize (e.g., depth first
search (DFS)) and a suboptimal parallelization; we can also
define the distance of a given parallel code to a parallelism-
optimal solution.

Work and depth are typically functions of the input size.
In structured programming [17], loops and recursion are the
only techniques to increase the work depending on program
input parameters. Here, we focus on loops only and we as-
sume that each program can be abstracted as a set of loops
that determine the number of executions for each statement.
We model each statement as a work item that takes unit
time. To simplify the explanation further, we also assume
that there is only one statement in each loop (since all state-
ments will have identical iteration counts). Now, the prob-
lem of determining the work is equivalent to determine the
loop iteration counts for each statement. The depth is rela-
tive to a special parameter p that represents the number of
processes. We now discuss a simple motivating example:

Example I: Parallel sorting skeleton.
Assume the following loop is executed by p > 0 processes1

(p equally divides n, n>0 and n is a power of 2):

for(x=0; x<n/p; x++)
for(y=1; y<n; y*=2) S1;

All variables that are not changed in the loop but influence
the iteration counts are called parameters. The parameter
n represents size of the input problem. S1 is an arbitrary
computation statement that models one work item. We now
analyze work and depth for this explicitly parallel loop.

For any loop, the elements that determine the number of
iterations can be split into three classes:

1. Initial assignment: x=0, y=1

2. Loop guards: x<n/p, y<n

3. Loop updates: x++, y*=2

1We use typewriter font to denote source code variables

The number of iterations of statement S1 in this loop (de-
pending on the parameters n and p) can be counted as

N(n, p) = Tp = n/p · log2(n).

From N(n, p), we can determine that the total work and
depth is

W (n) = N(n, 1) = T1 = n · log2(n)

D(n) = N(n,∞) = T∞ = log2(n).

The parallelization is work-conserving and the parallel ef-
ficiency Ep = 1. If this loop implements parallel sorting,
then our analysis shows that it is asymptotically optimal
in work and depth [25], and thus exposes maximum par-
allelism. In this paper, we will show how to perform this
analysis automatically.

Example II: Parallel reductions.
Our second example illustrates a common problem in par-

allel shared memory codes: reductions. Programmers of-
ten employ inefficient algorithms because efficient tree-based
schemes are significantly harder to implement. A sequential
reduction would be implemented as follows (addition oper-
ations on the variable sum are performed atomically):

sum=0; for(i=0; i<n; i++) sum=sum+a[i];

A simple parallelization (assuming n > p) would be

for(i=id*n/p; i<min((id+1)*n/p,n); i++)
s[id]+=a[i];

for(i=0; i<p; i++) sum=sum+s[i];

where id is the thread number and s is an array of size p for
keeping the partial sums of each thread. The total number
of iterations of the most loaded process is N(n, p) = Tp =
dn/pe + p and the efficiency Ep = (n + 1)/(p dn/pe + p2).
This implementation is not work-efficient because the lower
bound is Tp = Ω(n/p + log2(p)) and the efficiency decreases
with p2. The lower bound can be achieved if we combine
partial results of the sum in a tree structure

for(i=id*n/p; i<min((id+1)*n/p,n); i++)
s[id]+=a[i];

for(i=1; i<p; i*=2) combine_partial_sums(s);

with the iteration count of the most loaded processN(n, p) =
Tp = dn/pe + dlog2(p)e. The work of this solution is
W (n) = T1 = n and the depth D(n) = T∞ = ∞ be-
cause the parallelization is not work-conserving (more work
is created as threads are added). The parallel efficiency is
Ep = n/(p dn/pe+ p dlog2(p)e) which decreases slowly be-
cause log2(p) work is added per process. From Ep, we can
derive that the available parallelism is n.

This example shows that it is crucial to catch loop behav-
ior in the analysis of parallel programs. Different implemen-
tations solving the same problem may have different work
and depth, some of which resulting in limited scalability. Ex-
periments at small scale may not expose those limitations as
the constants are often rather small. However, our analysis
enables us to find those issues early during the development.

The main contributions of this work are:

• We develop a mechanism to symbolically bound the
number of iterations in program loops depending on
the input parameters and the number of processes.



• We show how to interpret the iteration counts in terms
of work and depth. This allows the user to determine
the parallel efficiency of a given code.

• We briefly outline how our method can be implemented
in a compiler or code analysis tool.

• We demonstrate the applicability of our method and
analyze a set of real-world applications for their paral-
lel work and depth and efficiencies.

2. PROBLEM DESCRIPTION
Counting numbers of loop iterations of arbitrary codes is

impossible because even termination of arbitrary loop nests
cannot be decided [34]. In our work, we focus on the class
of loops where all loop update functions and loop guards
are affine functions of iteration variables, i.e., variables that
change during loop execution. It was shown in previous
works that a subset of this class covers many important
codes in parallel computing [9].

Our method is strictly more powerful than other iteration
counting approaches (e.g., [6]) that require that loop up-
date functions are valid expressions in Presburger arithmetic
(which supports only addition and subtraction of symbolic
values and constants). We refer the reader to Section 8 for a
more detailed differentiation. In this paper we focus on the
extraction of work and depth for affine loop nests. To do so,
we need to find the number of iterations of the program as
a function of the number of processes.

Affine loop. Let x ∈ Zm be an integer-valued iteration
variable vector and x0 its initial assignment right before
entering the loop. We call a loop affine if we can present it
in the form2 :

x← x0 // Initial assignment
while(cTx < g) // Loop guard

x← Ax+ b // Loop update

Listing 1: Affine Loop

The loop guard cTx < g is determined by the constant vector
c ∈ Rm and bounded by a scalar constant g. The loop
update function Ax + b, consisting of a real matrix A ∈
Rm×m and a constant vector b ∈ Rm, determines how the
iteration variables are updated during each iteration. Each
constant may represent a symbolic loop parameter.

Perfectly Nested Loops. We extend our definition to
a program consisting of r nested affine loops:

1. Each loop guard cTk x < gk at level k is an affine predi-
cate of the iteration variables from levels 1 . . . k.

2. Each loop body at levels 1 . . . r − 1 consists of three
elements:

(a) initial assignment - Akx+ bk
(b) nested loop(s)

(c) loop update - Ukx+ vk

We require well-structured programs [17]: For a loop at
level k, the initial assignment, loop guard and loop update
may only use variables defined at the same or higher levels
1 . . . k. Iteration variables of any parent loop at level 1 . . . k−
1 may not be changed in nested loops at levels k . . . r. Such
loops can thus be expressed in the general form

2We use an arrow (←) symbol to denote an assignment in
math notation

while(cT1 x < g1) {
x← A1x+ b1
while(cT2 x < g2) {
. . .
x← Ak−1x+ bk−1

while(cTk x < gk) {
x← Akx+ bk
while(cTk+1x < gk+1) {. . .}
x← Ukx+ vk }

x← Uk−1x+ vk−1}
. . .

x← U1x+ v1}

where Ak, Uk ∈ Rm×m, bk, vk, ck ∈ Rm, gk ∈ R and k =
1 . . . r. Furthermore, ∀i < k, i 6= j : Ak,i,j = Uk,i,j = 0,
∀i < k, i = j : Ak,i,j = Uk,i,j = 1 and ∀i > k : gk,i = 0.

Note that even though all the assignments and loop guards
are affine, the number of iterations of such a nested loop
may not be affine. For example the following affine loop will
iterate dlog2(n)e times:

x=1;
while(x<n) x=2*x;

Perfectly nested loops are rare and loops often contain
multiple loops at the same level. We now outline how our
scheme also supports multipath loops.

Multipath Loops are loops that may contain multiple
nested loops in one parent loop body. The example in List-
ing 2 shows such a loop: Inside the outer loop body we have
two inner loops. How multiple loops are combined to fit the
model description is covered in Section 4.5.

x=1;
while(x<n/p+1) {

y=x;
while(y<m) {S1; y=2*y;}
z=x;
while(z<m) {S2; z=z+x;}
x=2*x;}

Listing 2: Complex Multipath Loop Nest

It is time-consuming and error-prone for humans to derive
work and depth of complex loops like the one shown in List-
ing 2. Our algorithm computes work and depth for each
statement automatically. For example, the number of exe-
cutions N of the statement S2 is bounded by

2m

(
1−

⌈
n

p
+ 1

⌉−1)
− log2

(⌈
n

p
+ 1

⌉)
≤ N ≤ m

(
2−

⌈
n

p
+ 1

⌉−1)
.

This bounds the work W on a single process

2m
(
1− (n + 1)−1)− log2(n + 1) ≤W ≤ m

(
2− (n + 1)−1)

and the depth D

0 ≤ D ≤ m.

3. SKETCH OF THE ALGORITHM
We first introduce the concept of a closed-form affine rep-

resentation. The affine representation of a single affine loop
consists of two elements:



1. A single affine statement, which represents the value
of the vector x after i iterations of the loop

x(i) = L(i) · x0 + p(i), and

2. the counting function n(x0) that states how many
times the loop will iterate before the loop guard
cTx(i) < g is violated.

The variable i represents the current iteration step. We will
refer to i as the iteration counter ; x0 is the value of the
vector x before entering the loop.

We now provide an intuitive sketch of our algorithm:
Given r perfectly nested affine loops, starting from the inner
loop, we replace each loop with its affine representation. For
r nested loops the result is

x(i1, . . . , ir) = Afinal(i1, . . . , ir)x0 + bfinal(i1, . . . , ir) (1)

where ik = 0 . . . nk(x0,k), matrix Afinal and vector bfinal

are the compositions of all Lk and pk, k = 1 . . . r.
The function nk(x0,k) represents the number of iterations

in the kth loop with the starting conditions x0,k. The start-
ing conditions depend on iteration counters of all the loops
at higher levels, i.e., x0,k = φk(i1, . . . , ik−1).

Number of iterations. We can compute the total num-
ber of iterations of the innermost loop using the counting
function of each loop:

N =

n1(x0,1)∑
i1=0

n2(x0,2)∑
i2=0

. . .

nr−1(x0,r−1)∑
ir−1=0

nr(x0,r). (2)

To solve Equation (2), we need to compute:

1. the affine representations for all the loops together
with their counting functions nk(x0,k),

2. the starting conditions for all loops as functions of it-
eration counters x0,k = φk(i1, . . . , ik−1), and

3. all the sums in Equation (2).

Work and depth analysis. The number of processes in
explicitly parallel programs is always available as a special
variable which we call p. In parallelized codes, p is used
in loop guards or loop update functions to divide the work
into p pieces. Our algorithm determines the number of it-
erations as a function of all program parameters. We can
then define the work of a program as W = N |p=1 and depth
D = N |p→∞. Parallel efficiency and exposed parallelism can
be computed as described in Section 1.1.

4. ALGORITHM DESCRIPTION
We now describe all the steps and approximations needed

to solve Equation (2) which determines the final loop count.

4.1 Affine representation of nested loops
We now explain how we transform a perfectly nested loop

into a single affine statement. This statement can then be
combined with the initial assignments and the original loop
update function of the parent loop into a new loop update
function that represents the whole loop nest.

Each loop update statement x ← Ax + b is a recursive
formula for the value of the vector x in the current step,
given the value in the previous step. The closed form of that

formula for vector x after i iterations and with the starting
value x0 can be written as

x̂(i, x0) = Ai · x0 +

i−1∑
j=0

Ajb. (3)

Using x(i, x0), we compute the number of iterations d after
which the loop guard is not satisfied

n(x0) =

⌈
argmin

d
(cT · x(d, x0) ≥ g)

⌉
. (4)

Equation (4) defines the counting function n(x0). Let

L = Ai and p =
∑i−1

j=0A
jb from Equation (3). After we

have obtained the closed affine form of a loop at level k+ 1,
we can transform the loop nest at level k to

while(cTk x < gk) {
x← Akx+ bk // Initial assignment (x0,k+1)
x← Lkx+ pk // Nested loop (aff. rep.)
x← Ukx+ vk} // Loop update

where x = Lkx+ pk is the closed-form representation of the
(k+ 1)st loop. Furthermore, the three affine statements can
be combined to one

x← Uk(Lk(Akx+ bk) + pk) + vk. (5)

We can then use it to form the affine representation of
the parent loop. Applying this procedure recursively for
all k loop nests will produce the final affine representation
x = Afinalx0 + bfinal that expresses the whole loop nest (cf.
Equation (1)).

Example of an affine representation.
The following example illustrates how to transform a loop

into its affine representation. Consider the following loop

y=y0; z=z0;
while(y<z) {y+=2; z--;}

that we can write in matrix form as

x0 =

(
y0
z0

)
, x(i+ 1) =

(
1 0
0 1

)
x(i) +

(
2
−1

)
, c =

(
1
−1

)
and g = 0. Using Equation (3), we get the affine represen-
tation of that loop

x(d, x0) =

(
1 0
0 1

)
x0 +

(
2d
−d

)
.

Equation (4) results in⌈
argmin

d

((
1 −1

)
·
((

1 0
0 1

)
x0 +

(
2d
−d

))
≥ 0

)⌉
,

that can be simplified to dargmind(z0 − y0 ≤ 3d)e. A sym-
bolic solver (e.g., MuPAD[10]) will determine the solution
for dd = (z0 − y0)/3e, which leads to the counting function
n(x0) = d(y0 − y0)/3e.

4.2 Starting conditions
The starting conditions x0,k+1 for a loop at level k+1 are

determined by the value of the vector x before entering the
loop. For each loop, at depths k = 1, . . . , r, let x̂k denote the
corresponding function defined in equation (3), giving the
ikth initial assignment at level k, for ik = 1, . . . , nk(x0,k),

x0,k+1 = Ak · x̂k(ik, x0,k) + bk. (6)



We can now count the starting conditions recursively un-
til we reach the top level, where x0,1 = x0. In general, the
starting condition at level k are compositions of affine repre-
sentations and initial assignments of all the loops from level
1 . . . k − 1, treating all iteration variables i1, i2, . . . , ik−1 as
parameters.

Example for the starting condition.
We now show a small example to illustrate the compu-

tation of the starting conditions for inner loops. Given the
two nested loops

y=y0; z=z0;
while(y<m) {

z=y;
while(z<m) {z++;}
y*=2;}

Listing 3: Nested Loop

The affine representation for the inner loop with iterator i2
and starting conditions x0,2(i1) depending on the outer loop

x(i2) =

(
1 0
0 1

)
x0,2(i1) +

(
0
i2

)
, n2 = m−

(
0 1

)
· x0,2(i1),

and for the outer loop with iterator i1 and starting condi-
tions x0

x(i1) =

(
2i1 0
2i1

2
0

)
x0 +

(
0
i2

)
, n1 =

⌈
log2

(
m(

1 0
)
· x0

)⌉
.

The initial assignment for the outer loop is

A1 =

(
1 0
1 0

)
; b1 =

(
0
0

)
; x0 =

(
y0
z0

)
.

Starting conditions for the inner loop using Equation (6) are

x0,2(i1) = A1x(i1) + b1 =

(
2i1 0
2i1 0

)
x0 =

(
2i1y0
2i1y0

)
.

Using Equation (2) leads to the exact number of iterations.

4.3 Counting the number of iterations
All counting functions and starting conditions can be

combined into a final symbolic iteration count. First,
we compute all r starting conditions x0,1, x0,2, . . . , x0,r
in the form x0,1 = x0, x0,2 = f2(i1, x0), . . ., x0,r =
fr(i1, i2, . . . , ir−1, x0). Then, we compute all counting func-
tions in the form n1(x0,1), n2(x0,2), . . ., nr(x0,r). This en-
ables us to calculate the sums of Equation (2) and solve for
the final loop iteration count and derive work and depth
from this. We use a symbolic solver to simplify and solve
the equations.

In some cases, it is not possible to symbolically determine
the exact solution from Equation (2). We differentiate two
cases:

1. The counting function contains a ceiling, e.g.,∑dn
2
e

i=1 i =

{
(n+2)n

8
if n is even

(n+3)(n+1)
8

if n is odd

2. The symbolic solver cannot find a closed form, e.g.,∑n
i=1 i · log2(i).

In both cases, we derive lower and upper bounds of the re-
spective sum.

Bounded Sum Approximation (BSA) Algorithm.
We now show our BSA algorithm that tightly approximates
lower and upper bounds of Equation (2) in the two cases
where the exact solution cannot be determined.

Obtaining bounds in the first case is simple. For a function
df(n)e, we determine the upper bound as f(n) + 1 and the
lower bound as f(n).

For the second case, with no symbolic solution for a sum,
we approximate the sum with an integral [28]. For a non-
decreasing function f1(i)∫ n+1

0

f1(x− 1) dx ≤
n∑

i=0

f1(i) ≤
∫ n+1

0

f1(x) dx,

and for a non-increasing function f2(i)∫ n+1

0

f2(x− 1) dx ≥
n∑

i=0

f2(i) ≥
∫ n+1

0

f2(x) dx.

If f(i) is not monotonic in the interval [0, n], then we split
it into smaller intervals in which f(i) is monotonic. For this,

we compute the first df
di

and second d2f
di2

derivatives symboli-
cally. Then we apply the approximation in each segment and
combine them to get the proper upper and lower bounds.

While solving Equation (2) we need to carry the lower
and upper bounds forward recursively. In the branch of
the lower bounds, we only consider lower bounds of parent
loops and similarly in the upper bound branch. We may
require case differentiations if some counting functions are
not monotonic. However, we rarely observed non monotonic
counting functions in practice.

Example for bounded sum approximation.
Assume the following nested loop:

k=1; l=2;
while(k>0) {

m = k;
while(m<s) m++;
k = k+l;
l--;}

We see that k0,1 = k0 = 1 and l0,1 = l0 = 2. The counting
function for the inner loop is

n2 = s− k0,2

and for the outer loop

n1 =

⌈
l0,1 +

√
4l0,12 + 4l0,1 + 8k0,1 + 1 + 1

2

⌉
= 6.

The starting conditions for the inner loop are

k0,2 = k0,1 + i1 · l0,1 −
i1 · (i1 − 1)

2
= −1

2
i21 +

5

2
i1 + 1.

The number of iterations of the loop nest, according to Equa-
tion 2 is

N =

n1∑
i1=0

n2 =

n1∑
i1=0

(s +
1

2
i21 −

5

2
i1 − 1)

We now approximate this sum with an integral. Analyz-
ing the first and second derivative of n2 shows that within
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Figure 1: Series approximation. Bars represent the series
n2(i), the red line shows the function n2(k) and the dashed
green line shows the function n2(k − 1). The function n2(k)
over-approximates the series in the interval [0, 2] and under-
approximates it in the interval [3, 6]; the dot shows the saddle
point.

the interval (0,n1) the function is decreasing in (0,2.5) and
increasing in (2.5,n1). The sum can then be bounded from
above by

U =

∫ 2

0

n2(i1 − 1) di1 + n2(2) +

∫ n1

3

n2(i1) di1 = 6s− 47

12

and from below by

L =

∫ 2

0

n2(i1) di1 + n2(2) +

∫ n1

3

n2(i1 − 1) di1 = 6s− 161

12
.

Figure 1 illustrates the example.

4.4 Correctness of the algorithm
All the steps of the algorithm except the sum approxima-

tion are proper algebraic transformations. If no approxima-
tion is needed then the algorithm produces the exact number
of iterations. For example for the loops in Listing 3 the total
number of iterations of the inner loop is exactly

N = y0 − 2

⌈
log2

(
m
y0

)⌉
y0 + m

⌈
log2(

m

y0
)

⌉
.

If approximation is required, then we need to prove that
we obtain proper upper and lower bounds and that this prop-
erty propagates further through the algorithm.

Lemma 4.1. The Bounded Sum Approximation algorithm
gives valid lower and upper bounds for Equation (2).

Proof. Ceiling upper and lower bound for type 1 approxi-
mations are correct by the definition of the ceiling function.
Let us consider type 2 sum approximations.

First we need to prove that the upper and lower bounds
for a series f(n), where n = 0, . . . , k, found by the algorithm
are correct. Let’s denote

U[a,b](x) =

{
f(x), if ∀x ∈ [a, b] : df

dx
≥ 0

f(x− 1), if ∀x ∈ [a, b] : df
dx
≤ 0

L[a,b](x) =

{
f(x− 1), if ∀x ∈ [a, b] : df

dx
≥ 0

f(x), if ∀x ∈ [a, b] : df
dx
≤ 0

as upper and lower bounds of the monotonic series f in the
interval [a, b], as stated in Section 4.3.

Let c ∈ [0, k] be the only saddle point of function f(x).
Intervals with multiple saddle points can be split to smaller
intervals where each contains a single saddle point. Then,
U and L will change from f(x − 1) to f(x) or from f(x)

to f(x − 1) at that point c. The upper bound U[0,bcc] =
U[0,c] 6= U[c,k] = U[dce,k] does not change in the intervals
[0, bcc] and [dce, k]. We can then bound the value of f(bcc)
with U[0,c](bcc). Thus,∫ bcc
0

U[0,c](x) dx ≥
bcc∑
i=0

f(i),

∫ k

dce
U[c,k](x) dx ≥

k∑
i=dce

f(i)

U[a,c](bcc) ≥ f(bcc).

From this follows that the upper bound of the non-
monotonic sum of series

∑k
i=0 f(i), with saddle point c, can

be expressed as:

U =

∫ bcc
0

U[0,c](x) dx+U[0,c](c)+

∫ k

dce
U[c,n](x) dx ≥

k∑
i=0

f(i).

The lower bounds discussion follows a similar reasoning.
We now prove propagation of this property through con-

secutive sums in Equation 2: Let fk be the kth sum from
Equation 2, and Uk and Lk upper and lower bounds of fk.
We then can present it as

nk∑
ik=0

nk+1(i1, . . . , ik−1, x0) = fk(i1 . . . , ik, x0)

and bound it with

Lk(i1 . . . , ik−1, x0) ≤ fk(i1, . . . , ik−1, x0) ≤ Uk(i1, . . . , ik−1, x0).

The next sum at level k − 1 will be
nk−1∑

ik−1=0

fk(i1, . . . , ik−1, x0)

Upper and lower bounds are not changed by summing, such
that

nk−1∑
ik−1=0

fk(i1, . . . , ik−1, x0) ≥
nk−1∑

ik−1=0

Lk(i1, . . . , ik−1, x0)

and
nk−1∑

ik−1=0

fk(i1, . . . , ik−1, x0) ≤
nk−1∑

ik−1=0

Uk(i1, . . . , ik−1, x0)

implies L1(x0) ≤ f1(x0) = N ≤ U1(x0).

4.5 Multipath loops
We formalize a loop containing multiple statements as

while(cTk x < gk) {
x← Ak,1x+ bk,1
x← Ak,2x+ bk,2
. . .
x← Ak,mx+ bk,m}

where each of the statements x ← Ak,ix + bk,i may be a
simple assignment or an affine representation of a loop. We
compose them in the same way as we did in Equation (5),
forming a single affine statement.

Starting conditions. We compute the starting condi-
tions for each loop by generalizing Equation (6). For multi-
path loops the starting condition for a loop represented by
its affine representation x← Ak,ix+ bk,i is the composition
of all the affine statements that precede it:

x0,k+1,i = Ak,i−1(. . . (Ak,1 · x̂k(ik, x0,k−1)+bk,1) . . .)+bk,i−1



For illustration consider the following example loop:

while(cTk x < gk) {
x← Ak,1x+ bk,1
x← Ak,2x+ bk,2
x← Ak,3x+ bk,3
x← Ak,4x+ bk,4
x← Ak,5x+ bk,5}

Assume that in the example above, x ← Ak,2x + bk,2, x ←
Ak,3x+ bk,3 and x← Ak,4x+ bk,4 are affine representations
of three nested loops. Then, the starting condition for the
third loop x← Ak,4x+ bk,4 is

x0,k+1,4 = Ak,3(Ak,2(Ak,1 ·x̂k(ik, x0,k−1)+bk,1)+bk,2)+bk,3.

Counting the number of iterations. We solve Equa-
tion (2) using the appropriate counting function nr(x0,r) for
each loop. The series of sums is formed according to the
hierarchy of loops starting at the innermost loop.

5. PRACTICAL CONSIDERATIONS
We now briefly outline how the developed method can be

used to assess work and depth of real applications. This
paper is focusing on the fundamental techniques, yet, we
want to provide a coarse view of how we apply our method
in practical settings.

The whole mechanism can be implemented in a source-
code analysis tool or a compiler. We use the Low Level
Virtual Machine (LLVM [26]) and will outline the implemen-
tation. LLVM’s internal program representation uses Single
Static Assignment (SSA), which makes it simple to deter-
mine loops (identified by back-edges), loop guards (identified
by conditional branches with back-edges), and all dependent
variables.

From this information, we create initial assignments, loop
guards, and loop updates for each loop and apply the proce-
dure described in Section 4. While the vast majority of loops
in practical programs are affine, some loops may depend on
more complex conditions and thus do not fit our framework.
However, one of the main strengths of our method is that
we can still compute the number of iterations of loop nests
containing non-affine functions as we will describe in the
following section.

5.1 Extensions for non-affine loops
If a loop guard is not an affine function of iteration vari-

ables and constant parameters then we may not be able to
determine the exact number of iterations statically. Exam-
ples are loops with iteration counts determined by unknown
functions or complex sources like arrays that keep dynamic
data. This is often the case in applications that iterate until
a complex convergence criterion is reached, e.g., conjugate
gradient methods. If the loop exit conditions cannot be rep-
resented as affine statements, then the whole block is treated
as a symbolic value u (undefined).

A strength of our method is that it still solves the re-
maining affine loop nests symbolically as u is simply treated
as a parameter that propagates while solving Equation 2.
In addition to just treating non-affine loops as new symbolic
parameters, our tool enables the user to annotate such loops
with affine upper and lower bound functions.

We demonstrate the technique with a loop that we found
during one of our case studies. The following Fortran code
is extracted from the NAS CG benchmark.

do j=1,lastrow -firstrow +1
sum = 0.d0
do k=rowstr(j),rowstr(j+1)-1

sum = sum + a(k)*p(colidx(k))
enddo
w(j) = sum

enddo

Our tool traces the expression lastrow-firstrow+1 back
to the program parameter row size = na

nprows
or row size =

na
nprows

+1, depending on the process id. This reflects the fact

that nprows may not divide na, where na is the problem size.
However, the value of rowstr(j) cannot be determined stat-
ically because it represents the location of the first nonzero
value in row j of one of the program arrays. Our algorithm
then represents the previous loop nest as:

j=1;
while(j<= row_size) {u; j++;}

u is treated as a loop with the fixed number of iterations
u =irowstr(j+1)-rowstr(j). The total number of itera-
tions of this code fragment for the most busy process is rep-
resented as

N =

⌈
na

nprows

⌉
u.

It is possible to provide the user with information about
the exact code fragment that is the origin of u. Users can
then determine upper and lower bounds for each unknown
parameter.

6. CASE STUDIES
In this section we present our results from analyzing sev-

eral benchmarks. We compute work and depth of several
parallel programs to demonstrate the insight we gained into
the bounds on parallel efficiency of those practical codes.
Our analysis allows us to make statements about parallel
efficiency without studying the problem or implementation.

We analyzed major loops of the NAS parallel benchmarks
version 3.2 [3] and the Mantevo micro applications version
2.0 [5]. We only present an interesting subset in our case
studies due to space constraints.

In all the cases presented, no approximation was needed,
so presented results give exact number of iterations (with
respect to the introduced constants). If not stated other-
wise, in the following benchmarks m represents the prob-
lem scale, n is a program parameter to NAS specifying
the number of iterations to perform, and p denotes num-
ber of processes. In some cases processes are arranged into
multiple dimensions. In those cases, p1, p2, . . . , pk repre-
sents number of processes in corresponding dimensions and
p =

∏k
i=1 pi. We also assume that the decomposition is

square, i.e., p1 ≈ p2 ≈ · · · ≈ pk. For easier work-depth anal-
ysis, presented results are simplified by replacing constant
terms with auxiliary constants ci. We use constants instead
of asymptotic notation to retain lower-order terms.

6.1 NAS Parallel Benchmarks: EP
The NAS EP benchmark represents a typical Monte Carlo

simulation and thus performs nearly no communication.
Our analysis found that only one out of seven loops could



not be resolved due to a conditional goto statement, result-
ing in a single u. The work of EP is

N =

⌈
2m−16 · (u+ 216)

p

⌉
.

The following listing shows the non-affine loop that deter-
mines u after removing all statements that do not influence
the iteration count:

u : do i=1,100
ik =kk/2
if (ik .eq. 0) goto 130
kk=ik

continue

A programmer can easily determine that u ≤ 100, which is
negligible compared to 216. Thus, we can approximate the
work using one thread W = T1 ≈ 2m and depth D = T∞ ≈
1. This shows that the the parallelization is work-optimal
and the efficiency

Ep ≈
2m

p
⌈

2m

p

⌉ .
This means that Ep ≈ 1 if p . 2m and Ep ≈ 2m/p if p & 2m.
We conclude that the maximum available parallelism in EP
is 2m, because N cannot further decrease for p & 2m. This
does not mean that the code will efficiently execute with 2m

tasks, however, it specifies an upper bound to the speedup.
This is an expected result since the code is considered “em-
barrassingly parallel”.

6.2 NAS Parallel Benchmarks: CG
The NAS CG program represents a typical conjugate gra-

dient solver. Our tool found that only 2 out of 23 analyzed
loops were not affine (cf. Section 5.1). The two undefined
loops had identical guards, resulting in a single parameter u
that can be bounded as 0 ≤ u ≤ m. This allows us to bound
the number of iterations

N . n

(
g

⌈
m

p

⌉
+ (6 + 5g)

√⌈
m

p

⌉
+ (3g + 4) log2(

√
p)

)

where g is the program parameter cgitmax. We can approx-
imate work on one thread W = T1 . (g m+

√
m(5g+ 6))n.

However, CG is not work optimal as the parallel work
is monotonically growing. This causes the depth to be
D = T∞ = ∞. If we treat the problem size m as constant,
then CG’s parallel efficiency is

Ep = c1

(
c2 p log2(

√
p) + c3

⌈
m

p

⌉
+ c4

√⌈
m

p

⌉)−1

.

This means that the work per process increases with
log2(

√
p) due to a parallel reduction among

√
p processes.

The available parallelism is m.

6.3 NAS Parallel Benchmarks: IS
The NAS IS program represents a parallel bucket sort

algorithm. In each iteration, all processes perform their
local sorting and exchange information. The communica-
tion overhead is expected to grow with the number of pro-
cesses. A total of 5 out of 15 analyzed loops were not
affine. Those five loops fall in two classes: the first class
iterates over maximum and minimum key value represented

as u1=max_key_val-min_key_val+1; the second class iter-
ates over the buckets after redistribution and is represented
as u2=bucket_distrib_ptr2[k] - bucket_distrib_ptr1[k].
Both loop iteration counts depend on the structure of the in-
put and the distribution and can thus not easily be bounded
tightly. The total number of iterations of IS is

N = n

(
3(b+ t) + 2

⌈
m

p

⌉
+ p+ 2 · u1 + 2 · u2

)
where b is the number of buckets, t is the size of the test
array, and m is the number of keys to be sorted. The total
work on one thread is

W = T1 = n(3(b+ t) + 2m+ 2u1 + 2u2 + 1).

The depth D = ∞ because the parallelization is not
work efficient which is due to the necessary inter-process
communications. The parallel efficiency of IS is Ep =

c1/
(
p2 + c2 p+ c3 p

⌈
m
p

⌉)
, which drops quickly with the

number of processes used. The reason is that each process
may need to communicate with each other process. The
available parallelism is also m in this case.

6.4 Mantevo Benchmarks: CoMD
The Mantevo CoMD benchmark represents a classical

molecular dynamics simulation. Eight out of 18 analyzed
loops contain non-affine statements. The code distributes
atoms to processes. The first class updates atoms in the par-
titions and u1 represents the number of iterations of those
loops.

u1: while(i<boxes ->nAtoms[iBox]) {
int jBox=getBox(atoms ->r[iOff+i]);
if (jBox!=iBox) moveAtom(i,iBox ,jBox);
else ++i;}

The second class u2=qsort(nAtoms[iBox]) is limited by
the data sizes to be sorted. The number of iterations of the
CoMD Benchmark is

N = n

(
g(B + 3)

⌈
m

p

⌉
+ g T

(⌈
m

p

⌉
u1 + u2

)
+

⌈
m

p B

⌉
+ 2

)
where B is the fixed amount of atoms in each box, g is the
print rate program parameter, and T is the total number
of boxes:

T = 2

(
3
√
m

p1
+ 2

)(
3
√
m

p2
+

3
√
m

p3
+ 2

)
+

3
√
m2

p2 p3
+

m

p1 p2 p3
.

If we bound u1 < B2 and u2 < B log2(B), then we can ap-

proximate work and depth: W . c1 m+c2 m
2/3 +c3 m

1/3 +
c4, and D . n(c5 + c6 B(log2(B))). The implementation
is work-optimal and the efficiency Ep . c7/ (p+ c8) is de-
creasing with number of processors, which is the result of
sequential parts of the program that cannot be parallelized.
The available parallelism is m.

Scalability Analysis.
We were able to determine bounds for work, depth, paral-

lel efficiency, and available parallelism for several real-world
applications. We see that the available parallelism in all in-
vestigated applications scales linearly with the input prob-
lem size. While this suggests good scaling, we show that for
CG and IS communication overheads increase the work with



the number of processes. For example, for IS, this overhead
grows linearly with the number of used processes.

We were able to perform those analyses by pure code in-
trospection which was guided by our tool without requiring
knowledge of the implemented methods or algorithms. If the
solved problem is known, then one could even proof opti-
mality in terms of parallel efficiency or available parallelism.
However, this is outside the scope of this paper.

7. DISCUSSION
We now discuss the limitations of our approach and briefly

outline potential additional use-cases.

Limitations.
Since our analysis only counts loop iterations and does not

account for the exact costs of each loop, we can only provide
bounds on the expected execution time on a parallel system.
However, those bounds are always asymptotically correct.
Since we limit ourselves to the work and depth model, we
cannot account for communication or synchronization over-
heads in real codes. Yet, the bounds we provide are useful
to determine the relative behavior of work and depth and
allow us to reason about exposed parallelism and parallel
efficiency just like the work and depth model.

Extending the Models.
While outside the scope of this paper, it is simple to ex-

tend our work and depth models to account for system pa-
rameters such as memory or network latency and bandwidth.
Blelloch [12] discusses further options.

Model-based Mapping to Heterogeneous Systems.
Having a model for the work and depth of each loop in a

program can be useful when the program is to be mapped to
future heterogeneous architectures. Those systems will most
likely contain Latency Compute Units (LCU, cf. today’s
CPU cores) and Throughput Compute Unites (TCU, cf. to-
day’s accelerators such as GPUs or Xeon Phi). A compiler
would need to determine the target architecture for each
loop statically. It could use the generated work/depth mod-
els to assign code pieces with low parallelism (small W/D) to
LCUs and code pieces with larger parallelism (large W/D)
to TCUs.

8. RELATED WORK
Counting loop iterations and assessing scalability of par-

allel codes are important research problems. Rodriguez-
Carbonell and Kapur [31] find polynomial loop invariants
using an algebraic approach. Sharma et al. [32] use a data
driven approach to iteratively guess the correct polynomial
loop invariant and then check its correctness, and Matringe
et al. [30] generate loop invariants also for non-linear differ-
ential systems. Loop invariants can be used to bound loop
iteration counts but the resulting bounds are often not tight.

Multiple research groups use the polyhedral model (PM)
to determine the exact number of loop iterations [1, 8, 37].
In this case, the number of iterations can be approxi-
mated by counting integer points in that polyhedron using a
polynomial-time algorithm [6]. The PM is widely used, not
only in loop analysis [9]. However, it has a serious limitation
- it requires that the loop update function can be expressed
in Presburger arithmetic and thus cannot deal with non-

constant updates such as x = 2 ∗ x. To the best of our
knowledge, no previous work handled such cases properly.
Methods like the one proposed by Blanc et al. [11] require
explicitly that loops cannot include such statements.

Other works utilize dynamic approaches to extrapolate
program performance and assess scalability in practical set-
tings. Barnes et al. [4] use regression to linear and logarith-
mic functions to predict scalability of nearly linear-scaling
HPC applications. Calotoiu et al. [14] select a scaling model
from a set of predefined candidate functions and fit the pa-
rameters with regression. Other works, such as [20, 27] use
multi-layer neural networks or statistical techniques to pre-
dict scalability.

More complex performance prediction frameworks con-
sider the effect of communication [15, 29] and extrapolate
single-node runs [36]. Partial execution [35] can improve
those techniques. Other studies provide advice for modeling
the general performance [21] and scalability [19] of parallel
applications. In addition, many application-specific studies
exist but cannot be generalized [7, 24].

We extend previous work significantly in two directions:
first, we show a technique that can tightly bound the num-
bers of iterations of arbitrary affine loop nests and second,
we show how this method can be used to assess work and
depth of parallel applications.

9. CONCLUSIONS
We show a method to symbolically count loop iterations

of practical codes in terms of their input sizes. Our method
provides either an exact solution or tight upper and lower
bounds using bounded sum approximation. It is applica-
ble to affine and non-affine loops. While it can bound all
affine loops accurately, it handles non-affine loop counts as
a symbolic constant and allows the user to provide lower and
upper bounds.

We show how to derive parallel work and depth from the
loop count models. Using the work and depth model we ap-
proximate bounds on the parallel efficiency of those codes.
This technique allows us to specify upper bounds to scalabil-
ity of practical parallel codes. In general, our method allows
a developer to quickly check how an explicitly parallel code
scales with the numbers of processes and input sizes.

We are applying a standard algorithmic analysis technique
(measuring work and depth) to real source codes. Our devel-
oped techniques pave the way to quickly and automatically
assess program scalability and will thus quickly become an
important tool for future parallel application development
and analysis.
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