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Abstract. We consider the problem of merging two sorted sequences oma c
parator network that is used repeatedly, that is, if the wuip not sorted, the
network is applied again using the output as input. The ehglhg task is to
construct such networks of small depth. The first constouastiof merging net-
works with a constant period were given by Kutytowski, Learid Oesterdikhoff
[7]. They have given 3-periodic network that merges two ebrsequences of
N numbers in time 12loly and a similar network of period 4 that works in
5.67logN. We present a new family of such networks that are based on Can
field and Williamson periodic sorter|[4]. Our 3-periodic rgiery networks work

in time upper-bounded by 61d¢ The construction can be easily generalized to
larger constant periods with decreasing running time, ¥angple, to 4-periodic
ones that work in time upper-bounded by 4kbgMoreover, to obtain the facts
we have introduced a new proof technique.

Keywords: parallel merging, comparison networks, merging netwopksjodic net-
works, comparators, oblivious merging.

1 Introduction

Comparator networks are probably the simplest parallelehibt is used to solve such
tasks as sorting, merging or selectihg [6]. Each networkesmts a data-oblivious al-
gorithm, which can be easily implemented in hardware. Meegsorting networks can
be applied in secure, multi-party computation (SMC) protscThey are also strongly
connected with switching networks [9]. The most famous troietions of sorting net-
works are Odd-Even and Bitonic networks of deétlmgzN due to Batcher]2] and
AKS networks of depttO(logN) due to Ajtai, Komlos and Szemeredi [1]. The long-
standing disability to decrease a large constant hiddemtehe asymptotically op-
timal complexity of AKS networks to a practical value [15]sheesulted in studying
easier, sorting-related problems, whose optimal netwioake small constants.

A comparator network consists of a setMfregisters, each of which can contain
an item from a totally ordered set, and a sequence of compastges. Each stage
is a set of comparators that connect disjoint pairs of reggsand, therefore, can work
in parallel (a comparator is a simple device that takes aetdstof two registers and
performs a compare-exchange operation on them: the minimypat into the first
register and the maximum into the second one). Stages arerri@fter another in
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synchronous manner, hence we can consider the number ekstadhe running time.
The size of a network is defined to be the total number of coatpes in all its stages.

A networkA consisting of stageS;, S, ...,y is calledp-periodic if p < d and for
eachi, 1 <i <d-p, stagesS andS_p are identical. A periodic network is easy to
implement, especially in hardware, because one can usashp §tages in a cycle: if
the output ofp-th stage is not correct (sorted, for example), the sequehpetages is
run again. We can also definepgperiodic network just by giving the total number of
stages and a description of its fisstages. A challenging task is to construct a family
of small-periodic networks for sorting-related problemritwvthe running time equal to,
or not much greater than that of non-periodic networks.

Dowd et al. [5] gave the construction of Iblgperiodic sorting networks dfl reg-
isters with running time of logN. Kutytowski et al. [8] introduced a general method
to convert a non-periodic sorting network into a 5-perioalie, but the running time
increases by a factor @(logN) during the conversion. For simpler problems such as
merging or correction there are constant-periodic netatitit solve the corresponding
problem in asymptotically optimal logarithmic timel[7|13h particular, Kutytowski,
Lorys and Oesterdikhoff[7] have given 3-periodic netwtrlat merges two sorted se-
quences oN numbers in time 12loly and a similar network of period 4 that works in
5.67logN. They have also sketched a construction of merging netwoitksperiods
larger than 4 and running time decreasing asymptoticalf/25 logN.

In this paper, we introduce a new family of constant-pedadeérging networks that
are based on the Canfield and WilliamgoflogN)-periodic sorter([4] by a certain pe-
riodification technique. Our 3-periodic merging networksrkvin time upper-bounded
by 6logN and 4-periodic ones - in time upper-bounded by Nodhe construction can
be easily generalized to larger constant periods with @esimg running time.

The advantage of constant-periodic networks is that theg peetty simple patterns
of communication links, that is, each node (register) ofhsametwork can only be
connected to a constant number of other nodes. Such patteressier to implement,
for example, in hardware. Moreover, a node uses these liriksimple periodic manner
and this can save control login and simplify timing consadiens.

2 Periodic merging networks

Our merging networks are based on the Canfield and Williarfélo®(logN)-periodic
sorters. We recall now the definition of their networks: fackek > 1 let CW, =
Si,...,S denote a network o = 2 registers, where the stages are defined as fol-
lows (see also Figurés 1 apd 2):

Sl:{[Zi:2i+1]:i:O,l,...72k*1—1}, 1)
Sii1= {[2i+1:2i+2"*j]:i:O,1,...,2k*l—2k*j*1—1},j —1,... k-1 (2)

The merging and sorting properties of the networks are givére following propo-
sition.
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Fig. 1. The Canfield and Williamson |dg-periodic sorter, wherll = 32. Registers and compara-
tors are represented by horizontal lines and arrows, régplc Stages are separated by vertical
lines.

Proposition 1. (1) For each k> 1, if two sorted sequences of leng@hr! are given in
registers with odd and even indices, respectively, thep SV merging network. (2)
For each k> 1, CW is a k-pass periodic sorting network.
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Fig. 2. Another view ofCW 5-pass 5-periodic sorter. Registers and comparators piresented
by dots and edges, respectively. Stages are separatedticaManes.

We would like to implement a version of this network as a cansperiodic com-
parator network. Consider first the most challenging 3quici implementation. We
start with the definition of a temporally constructiBpwhich structure is similar to the
structure ofCW,. Then we transform it to 3-periodic netwolkk. The idea is to replace
each registerin CW, (except the first and the last ones) with a sequendée-o2 con-
secutive registers, move the endpoints of long comparat@segister further or closer
depending on the parity @ind insert between each pair of stages containing long com-



parators a stage with short comparators joining the endpoirthose long ones. The
result is depicted in Fid.]3. In this way, we obtain a netwarkvhich each register is
used in at most three consecutive stages. Therefore therkeBycan be packed into
the first 3 stages and used periodically to get the desiregti®gic merging network.
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Fig. 3. Ps as an implementation @\Ws. Registers and comparators are represented by dots and
edges, respectively. Stages are separated by vertical tages with short horizontal compara-
tors are inserted between stages with long comparators.

Let [i : j] denote a comparator connecting registeesd j. A comparatofi : j]
is standardif i < j. For anN-register networlA = $§,S,..., &, where$, S, ..., &
denote stages, and for an integer {1,...,N}, we will use the following notations:

fst(j,A) =min{1<i<d:jeregqS)} 3)
Ist(j,A) =max{1<i<d:jeregyS)} 4)
delayA) = max {Ist(j,A) —fst(j,A)+ 1} (5)
je{1,...,N}
whereregq{[i1: j1],.--,[ir : jr]}) denotes the s€iy, j1,...,ir, jr }-

Let us define formally the new family of merging networks. Eachk > 3 we
would like to transform the netwoi®W into a new network.

Definition 1. Let nc =21 — 1 be one less than the half of the number of registers in
CW, and h = 2(k— 2). The number of registers of 5 defined to be N=ny - by + 2.
The stages of = Sc1 U{[0: 1], [N« —2 : Nk — 1]}, Sc2, ..., Sc2k—3 are defined by the

- ; ; by .
following equations, where= 1,..., =%:

SK,]_:{[bkiZbki—i—l]ii:l,...,nk—l} (6)
Sc2j = {[bki+j (i 2T 1) 4 (b — 4+ )] < :o,...,nk_zkﬂ'*l} 7)
Sk2j+1 = {[bwi+j :byi+j+1], (8)
[ogi + (be— J) s bd + (o — j+1)] i =0,...,m— 1} 9)

The networkPs is depicted in Figurgl4.
Fact 1 delayP) = 3fork > 3. O



o ~ O

12 : 3 :
16 E :
20 = 3 :
24 - ;
28 : T
32 = ; -
36 . ; :
40 - :
44 : ;
48 : : :
52 : :
56 = ; -
60 . ; :
64 : :
68 = : ;
72 : ;
76 : ;
80 : 3 :
84 - ; :

88 ¥ ¥
91 5 :

Fig. 4. The traditional drawing oPs network

LetA=S1,S,...,SyandA' =S,,S,,..., S, beN-input comparator networks such
that for each, 1 <i <min(d,d’), reggS)NregqS) = 0. ThenAUA' is defined to be
(S1US), (SUS,), - - -, (Smaxd,d) ugnax(d‘d,)), where empty stages are added at the end
of the network of smaller depth. '

For any comparator network= S, ...,S andD = delayA), let us define a net-
workB =Ty, ..., Tp to be acompact fornof A, whereTq = {Sy4pp: 0< p < (d—0q)/D},
1< g<D.ObservethaBis correctly defined due to the delayAfMoreoverdepthB) =
delayB) = delayA).

Definition 2. For k > 3 let My denote the compact form of; ®ith the first and the
last registers deleted. That is, the network M T, TX, TX is using the set of registers
numbered(1,2,...,N}, where N = (21— 1)-2(k—2), and T¥ = {Sj;3:0<i <

&3 =123

It is not necessary to delete the first and the last regisfeRs but this will simplify
proofs a little bit in the next section. The netwdvk is given in Fig[5.

Theorem 2. There exists a family of 3-periodic comparator networkg K> 3, such
that each M is a 2k — 5-pass merger of two sorted sequences given in odd and even
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Fig. 5. The Mg network

registers, respectively. The running time of 6k — 15 < 6logNk, where N = (2K —
2)(k— 2) is the number of registers in M

The proof is based on the observation thatmergesk — 2 pairs of sorted subse-
guences, one after another, in pipeline fashion. Detadlgaen in the next section.

In a similar way, we can conve@\\ into a 4-periodic merging network. Assume
thatk is even. We replace each register (except the first and thenas) with a se-
guence oflk — 2) /2 consecutive registers, move the endpoints of long conuari
such a way that exactly two long comparators start or endcit Baw register and in-
sert after each pair of stages containing long comparasiegy@ with short comparators
joining the endpoints of those long comparators. The résaléepicted in Fig.16.

3  Proof of Theorem[2

The first observation we would like to make is that we can aersinputs consisting
of 0's and 1's only. The well-known Zero-One Principle stathat any comparator
network that sorts 0-1 input sequences correctly sorts alsitrary input sequences
[6]. In the similar way, we can prove that the same propertg$also for merging:



Proposition 2. If a comparator network merges any two 0-1 sorted sequetites,it
correctly merges any two sorted sequences. O

Therefore we can analyze computations of the netwdgkk > 3, by describing
each state of registers as a 0-1 sequ@&reéxy, . . ., Xy, ), wherex; represents the content
of registeri. If Xis an input sequence fok2- 5 passes ofly, then byx() we denote the
content of registers aftépasses oMy, i =0,...,2k—5,, that isx(© = x andx(+1) =
Mk(x1)). SinceMy consists of three stagd¥, TX and T, we extend the notation to
describe the output of each stagé? =x" andx(-}) = T*(x1=)), for j = 1,2,3. For
other values of we assume that)) = x(i+idiv3,jmod3) \we will use this superscript
notation for other equivalent representations of sequence

Now let us fix some technical notations and definitions. A @juence can be rep-
resented as a word ovEr= {0,1}. A non-decreasing (also calledrted 0-1 sequence
has a form of 01* and can be equivalently represented by the number of ones{or
ros) in it. For anyx € * let onegx) denote the number of 1 ir If x € 2" thenx;,

1 <i < n, denotes thé-th letter ofx andxa, A= {i1,...,im},1<i1 <...,<im<n
denotes the wordi, ... x;,,. We say that a 0-1 sequenke= (xi,...,Xn,) is 2-sortedif
both(xg,X3, ..., XN—1) and(X, Xa, ..., Xy, ) are sorted.

3.1 Reduction to Analysis of Columns

Foranyk>3letng=2¢1—-1 b = 2(k—2) (thusNk = ng - by). The set of registers
Reg ={1,...,N¢} can be analyzed as apx by, matrix withC'j‘ ={j+ibx:0<i<ng},
j=1,...,by, as columns. A content of all registers in the matrix, that s>, can
be equivalently represented by the sequence of conten¢gjisters irC,, Cy, ..., Cy,,
that is(xc,,. . ,xcbk). Sinceby is an even number, the following fact is obviously true.

Fact 3 If x € N« is 2-sorted then eactex, j=1,...,b, is sorted. a

That is, the columns are sorted at the beginning of a comipuataf 2k — 5 passes
of M. The first lemma we would like to prove is that columns remainex] after each
stage of the computation. We start with a following techhfiaet:

Fact4 Let A= {as,...,an} and B= {b,...,b,} be subsets of1,...,Nx} such that
ap<bi<ax<by<..<ay<bhleth>0and S gh={[a:bin:1<i<n—h}.

Then for any xc =™ such that x and x are sorted, the output ¥ Sagh(X) has the
following properties:

(i) ya and y are sorted.
(i) Let my = onegxa) and m = onegxg). Then onel/a) = min(my, M, + h) and
onesys) = max(m; — h, ny).

Proof. To prove (i) we show only that, <y, , fori=1,...,n—1.1f1<i<n—hthen

Ya = MiN(Xa, Xo;, 1) < MiN(Xa, 1, X0, 1,1) = Ya,1 SINCE Min is a non-decreasing function
and botfxa andxg are sorted . If = n—htheny, = min(Xq , X)) < Xa.; = Ya.,- FOr

i >n—hwe haveyy =Xa < Xa.; = Ya1-



To prove (i) letm), = min(my¢, Mz + h) andm, = max(m; — h, my). We consider two
cases. lfiy < mp+hthenmy —h < mp and we getr; = my andnt, = mp. In this case
no comparator fronsa g h exchanges 0 with 1. To see this assume a.c. that a comparator
[ : bin] exchanges, = 1 with Xy, = 0. Theni > n—mg andi+h < n—m hold
because of the definitions @fy, and m,. It follows thatn — my < n—my — h, thus
my —h > mp — a contradiction. ling > mp +hthenm; = my+handn, =m;—h. In
this case let us observe that a compar@orb;, n| exchanges, = 1 with x,,, = 0 if
and only ifmp+h < n—i < my. Thereforeonegya) =m — (M —mp—h) =mp+h
andonegyg) =mp+ (M —mp—h) =m —h. O

According to the definition oMy, it consists of three stagd’, T), T, where Tk =
U{Sci+3j:0< ] < L%J} (setsS; are defined in Def.]1). Using the notation from
Fac{3, the following fact is an easy consequence of Definlio

Fact5 Letl; =Cjand R =Cy, i1 denote the corresponding left and the right columns
of registers, andh=2""1-1,i=1,...,% Then

() regs(S1) € L1URiand K1 = Sz, (N} L1—{1}.0
(i) regs(Sc2j) CLjURj and &2j = § R h;, forany j= 1,...,%
(iii) regs(Sczj+1) € LjULj+1UR41URj and $j1 = Sy ,5,0U SR, 4.r; 0, fOr any
j=1...,%-1
(iv) reggScok-—3) C Lxk2URk—2 and K 2x-3 =S, ,R¢ ».0
(v) if (LjURj) Nregq i) # 0then2j —1<i<2j+1,forany j= 1,...,b—2k -1
0

Lemma 1. If the initial content of registers is a 2-sorted 0-1 sequemcthen after
each stage of multi-pass computation of MTF, TX, TX the content of each column C
j=1,...,by is sorted, that is, eacfx(P)c, is of the form0*1*, p=0,...,i=1,2,3.

Proof. By induction it suffices to prove that for each sequegcee =™ with sorted
columnsC;j, j = 1,...,by, the outputsg; = Tik(y), i = 1,2,3 have also the columns
sorted. Since eacTi’r‘S as amapping, is a composition of mappéigs;,0< j < L%J,
each of which, due to Fadis 4 did 5, transforms sorted colimmsorted columns, the
lemma follows. a

From now on, instead of looking at 0-1 sequences with sortdgntns, we will an-
alyze the computations d#l, on sequences of integets= (cy,...,Cy, ), Whereg,

t =1,...,bx, denote the number of ones in a sorted coluBanTransformations of
0-1 sequences defined by sBisj = 1,...,2k— 3 will be represented by the following
mappings:

Definition 3. Let k>3, hh =21 _1fori=1,....k—2and bk = 2(k—2). The
functions def, moy and cy& over sequences ofieals are defined as follows. Let
T=(C1,...,Cp) andte {1,... by}

min(ci,Coy,—i+1+h) ift =i
(deg(T)); = { max(ci — hi,cpir1) ift =b—i+1 (10)
Gt otherwise



min(c, 1) ift=iort =by—i
(mo¥(T)): = { maxc_1,¢) ift =i+lort=hbc—i+1 (11)

Gt otherwise
max(C1,Cp, — 1) ift =1

(cyc (@) = { min(c+1,0p,) ift =by (12)
Gt otherwise

Fact 6 Let xe X"k be a 0-1 sequence with sorted columas.C ,Ch,, letg =onesgxc,)
andtT = (cy,...,Cp,). Let yj = S j(x), djj = oneg(yj)c;) anddj = (dj1,...,djp,),
wherei=1,....,byand j=1,...,2k— 3. Then

(i) 1= cyd(t)

(i) Oz =ded (o), forany j=1,...,%
(iii) o1 =mok(T), forany j=1,....%
Proof. Generally, the fact follows from Falkt 5 and the part (ii) otHd We prove only
its parts (i) and (ii). Part (iii) can be proved in the similaay.

(i) Observe thays = Sc1(X) = Sr;—{N}.L,—{1},0(X) due to FadiKii) . It follows that
only the content of columnis; = C; andR; = C;, can change, but they remain sorted
(according to Lemm@l1). Using Fddt(#) we haverm = onesxg,(n,}) = Co, — XN
My = onesx, (1) = €1 — X and

d1,1 = max(mg, mp) + X1 = MaxCp, — Xn, +X1,C1),

d1 b, = Min(my, M) + Xy, = MIN(Cp, , C1 + X, — X1).
Now let us consider the following three cases of valieandxy, :
Casex =0 and », =1.Thend; ; = maxcp, —1,¢1) = cyd‘(é)l anddy p, = min(Cy, ,C1+
1) = cyd<(c)1.
Case x = 1. Thency = n, cp, < Nk and cp, — XN, < Nk — 1. In this cased;; =
max(Nk, Cp, — XN + 1,) = Nk = max(Cy,Cyp, — 1) anddyp, = min(ng — 14 Xy, Co, ) =
Cp, = Min(cy+1,cp, ).
Case x, = 0. Thency, = 0 andcy — x1 > 0. In this cased; 1 = max(Ci,x1) = €1 =
max(Cy, Cy, — 1) anddy p, = min(cy — X1, Cp, ) = Cp, = Min(cz + 1,Cp, ).

(i) We fixanyj € {1,..., %} and observe thabj = $j(X) = S r; h; (X) due to
Fact[5(ii). It follows that only the content of columns = ¢; andR;j = ¢y, —j+1 can
change, but they remain sorted (according to Lefnma 1). Usind4(ii) we have:

daj j = oneg(yzj)L;) = Min(cj, Cp,j 41+ hj) = (ded(T));,
daj by j+1 = ONeg(y2j)r;) = Maxcj — hj, o j 1) = (ded(T))p,j 1.

Definition 4. Let k> 3. Let &, Q5 and G denote the following sets of functions.

0t = {eve} Ufdeds 1} U fmog) a3)

0% - {deds ) * U {mot 1} (14)
Q5= {aed} 1 fmok )| a9



Let us observe that each function @f i =1,2,3, can only modify a few positions
in a given sequence of numbers. Moreover, different functio Qik can only modify
disjoint sets of positions. For a functidn R™ — R™ let us define

argy(f)={ie{1,....m}: Jecrm(f(T))i # (T)i}
The following facts formalize our observations.

Fact 7 args(cyc) = {1,by}, arggdec) = {i,bx — i+ 1}, arggmoy) = {i,i +1,bx—
i,bk—i+1}, wherei=1,... k—2.

O
Fact 8 For each pair of functions g € Qik, f#9,i=1,23 we have
(i) args(f)nargs(g) = 0;
(ii) foranyT= (c1,...,0p,) and je {1,... by}
((0)); if j € args(f)
(f(9()))j = { (9(C)); if j € args(g) (16)
Cj otherwise
O

Corollary 1. Each set (}? i =1,2,3, uniquely determines a mapping, in which func-
tions from ¢ can be apply in any order. Moreover, ifdf QX, t € R% and j € argy(f)
then(QK(©)); = (f(2));-

We would like to prove that the result of applyi@f, i=1,23, to a sequence=
(C1,...,Cn,) Of numMbers of ones in columig, ..., Cy, is equivalent to applying the set
of comparatorﬂ'ik to the content of registers, if each column is sorted.

Lemma 2. Let xe =™ be a 0-1 sequence with sorted columns.C,GCy,, let g =
onegxc; ) andc= (Cy,...,Cp, ). Lety, :Tjk(x), dji=oneg(yj)c;) anddj = (dj 1,...,djp,),
where i=1,...,bcand j=1,2,3. Then ¢j(c) = d;.

Proof. Recall thaﬂ'jk =U{&j3:0<i < W}. For a set of comparato&let us
define

cols(S) ={i e {1,...,bx} :reg{S) NG # 0} .
From Factb(i—iv) it follows thatols(S¢ 1) = {1,bx} and fori=1,... , k—2colg(S2) =
{i,bx—i+1} andcols(Scai+1) = {i,i +1,bx—i,bx—i+1}. From Factb(v) we get that
cols(Scj+3i) Ncols(Scjiar) = O if i #i’. Thus we can observe a 1-1 correspondence
between a functiod in Q‘J‘ and a set of comparato® j 3 C Tjk such thatrgs(f) =
colg(S¢ j+3i) Then for each € args(f) (Q‘J?(C))t = (f(T)) = (dj), as the consequence
of Corollary1 and Fadil6. O

Definition 5. We say that a sequence of numbees (cy,...,Com) is flatif c; < cp <
...,Com < 1+ 1. We say that a sequentas 2-flatif subsequenceg,cs,...,Com-1)
and (cy,Ca,...,Com) are flat. We say theg is balanced if ¢+ com—i+1 = €1+ Com, for
i =2,...,m. For a balanced sequencalefine height) as ¢ + com.



Proposition 3. Letk> 3, xe =™, t=(cy,... ,Ch, ), Where ¢= onesgxc,) (G is as usual
a column in the matrix of registers)= 1,...,bx. Then

1. xis sorted if and only if columns of x are sorted anid flat;
2. xis 2-sorted if and only if columns of x are sorted a@rid 2-flat;
O
Now we are ready to reduce the proof of Theokém 2 to the prdoflofving lemma.

Lemma 3. Let k> 3. If for each 2-flat sequence= (cy,...,cp,) of integers from
(0,241 — 1] the result of applicatior{Q¥ o Qo Q%)% to (t) is a flat sequence, then
My is a 2k — 5-pass merger of two sorted sequences given in odd and evistersy
respectively.

Proof. Assume that for each 2-flat sequenice (cy,...,cp,) the result of application
(Q0Q50Q¥)%5 to (T) is a flat sequence. Late = be a 2-sorted sequence and
T=(Cy,...,Cn,), Wherec; = onegXg, ) (G is as usual a column in the matrix of registers),
i=1,...,bx. Thentis 2-flat due to Propositidﬂ 3 and eaghe [0,2 1 —1], because
the height of columns isk2* — 1. Recall thak}) = (My)! (X) and letc;; = ones{?Q )

Using LemmdR and easy induction we get that the equ ﬁ]é/ onQ1
(Cj1s---,Cjp) is true forj = 1,...,2k — 5. Since(Q o Q5o Q)2 ) is a flat se-
quence, the sequeng& 5 is sorted. 0

3.2 Analysis of Balanced Columns

Due to Lemma&al we can only analyze the results of periodidegpdn of the functions
Q‘{, QS and Q§ to a sequence of integers representing the numbers of oneschn
register column. We know also that an initial sequence iaR-Tb simplify our analysis
further, we start it with initial values restricted to be &ated 2-flat sequences. Then we
observe that the functions are monotone and any 2-flat sequ=m be bounded from
below and above by balanced 2-flat sequences whose heiéfbtsodily by one.

Lemma4. Let k> 3 andT = (cy,...,0p,) be a balanced sequence of numbers. Let
s= height(T) and let f be a function from ¥ Q5 U Q. Then f(T) is also balanced
and heightf(t)) =s

Proof. Lett andsbe as in Lemma and I6t(T) = (di,...,dp, ). The functionf € QXU
Q5 U QK can be eithecyc or one ofmoV, ded;, j = 1,...,k—2, according to Definition
M. Each of the functions can only modify one or two pairs ofipass of the form
(i,bx —i+1) in ¢ (see Definitiod B). The other pairs are left untouched, sctme of
their values cannot change. In casecpf the modified pair ig1, by) andd1+dkJk
max(Cy,Cp, — 1) +min(cy + 1,¢, ) = S. In case ofdec# the pair is(j,bx — j + 1) and
dj +do,—j+1=min(cj, Gy, j+1+h;j) +max(cj —hj, Gy j11) = min(cj —hj, Cy—j1) +
hj +max(cj — hj,Cy—j+1) = s Finally, if f = m0\}< then we have two pair§j, bk —
j+1)and(j+1,bx—j). Thendj+dy_j11= m|n(cJ,c,+1) + max(Co,—j,Co—j+1) =
min(cj,Cj+1) + maxs—cj;1,5—¢j) = sand in case of the second péjr.1 + dp,—j =
maxCj,Cj+1) + Min(Cp,—j,Ch,—j+1) = MaxCcj,Cj+1) + MiN(s—cj;1,s—¢j)=s. 0O



It follows from Lemmd# that if we start the periodical appliion of the functions
QX, Q5 andQ¥ to a balanced 2-flat initial sequence then it remains bathafter each
function application and its height will not changed. Ttere, we can only trace the
values in the first half of generated sequences. If needed|ug in the second half
can be computed from the height and the corresponding valtineifirst half. To get a
better view on the structure of generated sequences, weastibalf of the height from
each element of the initial sequence and proceed with suclifiem sequences to the
end. At the end the subtracted value is added to each elerithetfinal sequence. The
following fact justifies the described above procedure.

Fact9 Let f be a function from QUQ5UQX. Then f is monotone and for eack iR
and(cy, ..., Cp,) the following equation is true

f(co—t,....Ch —t) = f(Cy,...,Cn) — (t,... 1) .

Proof. The fact follows from the similar properties of min and mardtions: they are
monotone and the equations: rpinr-t,y —t) = min(x,y) —t and maxx—t,y—t) =
max(x,y) —t are obviously true. Eacti in Q¥ UQ5u Q¥ is defined with the help of
these simple functions, thdsinherits the properties. a

Corollary 2. Let f= fiofi_jo...o f, where f € {QX,Q Q5}, 1<i<I. Then fis
monotone and for any¢ R and(cy,...,Cp,) € RO

f(co—t,....Ch —t) = f(Cy,...,Cn) — (t,... 1) .
O

Definition 6. LetT = (c1,...,Cy ) € R* be a balanced sequence and=sheight(T).

We call(ci— 3,c2—3,...,ck2—3) € RP/2 the reduced sequence ®Bnd denote it
by reducét). For a sequencd = (dy, ...,d_») € R<2 we define s-extended sequence
ext(d,s) as

Ss s

S
"adk72+_ __dkfza__dkfi%"'aé_dl) .

S
(ch+ 5, d2+ 22 2

S
2"
For any te R and a function £ R* — R% that maps each balanced sequence to a
balanced one and preserves its height let redfigg denote a function on 'R? such
that (reducé f,t))(d) = reduce f (ext(d,t))) for anyd € R<2,

Observe that for a balanced sequetieéth heightsthe sequencext(reduc€t),s)
is equal toc. Moreover, for any € Rand a sequenade Ry the sequencext(d,t) is
balanced and its heightisthusreducéext(d,t)) = d. Note also that function®¥, Q
andQ':ﬁ, preserve the property of being balanced and the sequergte (ete Lemmia4),
so we can analyze a periodical application of their reduoet$ to a reduced balanced
2-flat input.

Fact10 Let f = fio fi_10...0 f1, where fe {QX Q5 Q5}, 1<i<I. Lett e R* be
balanced and s- height(c) Let fi = reducé fi,s), 1 <i <. Then f(c) =ext((fio fi_10
...of1)(reduc€t)),s). O



Definition 7. LetMinMax(x,y) = (min(x,y), max(x,y)), Min(x) = min(x, —x), Cyax) =
maxx, —x— 1) and Deg(x) = min(x, —x+ H;), where H=2' —1,i = 1,.... Moreover,
let us define the following sequences of functions:

=~

145°

w\

& = (cyg @ D (Deq_a, MinMax) @ (Ff) 17)
i=1
1A
5 = @D (Deqsis1,MinMax) & (F§) (18)
i=1
s
Qs = (MinMax, Deqc_zi_1) & (F§) , (19)

=

where® denote concatenation of sequences and ferli 2

0 if k =2i +1 (mod3) 0 if k =2 (mod3)
FX { (Decy) if k = 2i + 2 (mod3) F& { (Min) if k = 0 (mod3)
(Deg, Min) if k = 2i (mod3) (MinMax) if k =1 (mod3)

Lemma5. Let k> 3 and te R. Then redud@Xt) = ®QK, where i=1,2,3 and ®
denotes the Cartesian product of a sequence of functions.

Proof. Letk > 3,i € {1,2,3} andt € R Letd € R"2. By Def.[@ l (reduciQ t))(d) =

reduce{Qk(ext(a t))). Lete=ext(d,t) = (d1+5,....0k 2+ 5~k 2+35,...,— i+
5). The sequenc@ is balanced andeight(e) =t. To get the lemma we Would like to
prove thatforj = 1,... k— 2 the equalitie$Q¥(e)); — & = ((®Q¥)(d)); hold. The proof

is by case analysis of valuesiadndj. In the foIIowing equations we use Definitidds 3,

[4,[8 and¥.

1. (Casei = 1 andj = 1) Then(Qf(8))1 = (cyc(8))1 = maxX(dy + 5, —di + 5 — 1)
max(dy, —di — 1)+ 5 = CyO(dl) 5= ((®@Q)(d))1+5.

2. (Casei+j > 2 andi + j = 0(mod3)). Letl be such thaf = 3| —i. Then(QX(®));
(ded,_;(®))ai—i =min(dg_i+ 5, —dg_i+ 5+ 25 G021 _1) = min(dg_i, —dg_i +
Hi_(aii)-1) + 5 = Deacaii—1(da—i) + 5 = (®Q)(d)); + 5.

3. (Casei+j >2, j<k—2andi +j = 1(mod 3)). Let | be such thaf = 3I —
i+1. Then(QX(®)); = (Mo _; 1(€))31-ir1 = min(dg_i11+ 5,032+ 5) =
min(da_i+1,ds—i+2) + 5. Starting from the other side we g Q) (d))a_i+1 =
(MinMax(d3|,i+l,d3|,i+2))1 =min(ds_i;1,d3-i+2) and we are done.

4. (Casei+j>2,j=k— 2 andi+j = 1(mod3)) Letl be as in previous case. Then
(QK(®))k—2 = ( mO\& ))k—2 = Min(dc_2+ 5, — 2+ 5) = min(dg_, —dx_2) +

= Min(dk2)+ 5 = ((®Qk)( Nk—2+5-

5. (Casei+ j > 2 andi+ j = 2(mod 3)). Let| be such thaf = 3l —i+ 2. Then
(QK(®)31-i+2 = (MO _ 41 (®)a—ir2 =maxX(da_it1+ 5,032+ 5) =
max(dz _iy1,d3_ii2) + . Starting from the other side we g(é@Qk)( ))3l—it2 =
(MinMax(d3|,i+1,d3|,i+2))2 = max(ds _j+1,d3-i;+2) and we are finally done.O



Instead of tracing individual values in reduced sequenftes@ach application of a
function from{®(§‘{, ®Q'§, ®Q§} we will trace intervals in which the values should be
and observe how the lengths of intervals are decreasinggltlie computation. So let
us now define the intervals and show a fact about computatiotisem.

Definition 8. Let k>3, Hj =2/ — 1 for 1 < i < k— 1. Let I(0) denote the interval
[1,0] and, in similar way, let (i) = [-3, %], 1 <i <k—1, 1(-k) = [-T1 0]
and I(£k) = [— H"Zl,m] Moreover, we will write (wl,wz, w;) for the Carte5|an
product I(wy) x 1 (w2) x ... x (W), where each we {0,1,2,. k— 1,—k, +k}.

Fact 11 The following inclusions are true:

1. Deg(I(i+1)) CI(i) and Deg(l (w)) C I(w), for 1 <i < k—2andwe {0, —k,+k};
2. Cydl(—k)) CI(k—1) and Cydw) C Cyqw), forwe {0,k—1};

3. Min(1(£k))  I(~k) and Min(1(1)) C I(0);

4. MinMax( (+k,—k)) C (1(—k,£k));

5. MinMax(1(i,w)) C (I(w,i)), for 1 <i <k—1andwe {0,—k}.

Proof. The proof of each inclusion is a straightforward conseqaariche definitions
of a given function and intervals. Therefore we check ongfugions given in the first
item. Letx e I (i+1) = -3, %3], If xe 1(i) = [-3, 5. thenDeg (x) = min(x, —x+
Hi) = x since X < H;. Otherwisex must be |n(H2' ; M] but thenx > —x+H; and
Deg(x) = —x+Hi € [-3, %) sinceHi 1 = 2H + 1.

To proof the second |nclu5|on f@reg let us observe that ¥ < 0 thenDeg(x) = x.
It follows that Deg(1(0)) C 1(0) andDeg(I(—K)) C I(—Kk). In case ofx € | (£k) we
only have to check the positive valuesxofsuch thak > —x+ H;. But thenDeg (x) =

—X+ Hj > —xand bothx, —x € | (£K). O

Now we are ready to define sequences of intervals that aretagibcribe states
of computation after each periodic application of functi@¥, Q5 andQ¥ to a reduced
sequence of numbers of ones in columns.

Definition 9. Let k> 3. By Z We denote the sequen(®0, O)f%‘z] and, in the similar
1

way, US = (+k, £k, k)fk 31, Uk = (dk, —k, £k)F°T and U = (—k, +k, £K)[3
Next, let \f = @/ 7 ](k— 3 +2,k—3,—k), V& = @] T | (k-3 +1,—k k— 3i)
andlet\k = @/ 7| (—k k—3i + 1,k— 31— 1).
Finally, let We — @/ | (k—3i + 2,k— 3i,0), W& = @' T | (k—3i + 1,0,k— 3i)
and letW = @7 (0,k—3i+1,k—3i—1).

Note that all sequences defined above are of |eng¥1523 > k—2 and their ele-
ments are interval descriptors as defined in Definftion 8.

Definition 10. Let k> 3. Leta= (az,...,an) aDdt_) = (bg,...,bn) be any sequences,
where n> k—2. For0<i < k-—2let joink(i,a,b) denote(ay, ..., &,bit1,...,bk_2).



Definition 11. Let k> 3. Let >§k denote a state sequence after i stages and be defined

as:
k joink(gk%1 K amUK 4 fori=1...,2k-5
% iy

joink( — i,V g3 WK g3) fori=2k—4,...,3k—7
joing(

(k61 ZK Wk o) fori=3k—86,...,5k—12

For example, to creatéf we take the first element &< and the rest of elements
from Uf obtaining the sequendé — 1, +k, —k, +k, +k, —k, £k, £k, —k;...) of length
k— 2. In the next lemma we claim thxﬁ really describes the state after the first stage
of computation, where input is a balanced 2-flat sequence.

Lemma 6. Letk> 3 and letc = (cy,...,Cy, ) be a balanced 2-flat sequence of integers
from [0,2¢"1 — 1]. Let s= height(T) and letd = reducet). Then(@QX)(d) € 1(X¥).

Proof. Recall thatH; = 2 — 1. Letd = (dy,...,dx_») By Definitions[% and& = ¢; +
Co,—i+1and eactt =¢; — 5 = & Cbk L Observe that eadh € | (+k) = [— Pt o],
It follows from the following sequence of |nequallt|e5.HkT1 < bkz < o C"Zk <
% < % Moreover, the sequenckis 2-flat, becauseis 2-flat. That means thaly <
d3<ds<...<dy <dy+landd, <ds<ds<...<dy <dp+1, wherek =2[¥2]—
1andk” = 2| ¥2].

Fact 12 Either—3 < dyand d» <0or -1 <d,and dv < 0.

To prove the fact we consider three cases of the valuk.of
Case d > 0: In this case we only have to prove tltht < 0. But it is true sincel =
C.i1 —C — . . .

W Bl o BB _ gy < 0. The last inequality holds, becausis 2-flat and both
k" andby are even.

Cased < —1: Thendy <d;+1<0. Thuswe have only to prove thayt > —%. Similar

. Co—Cp, _ Cp, —1—(c1+1
to the previous case, we observe that x> > 2( D _ —d;—1>0.

Case d = —3: Thendy < d; +1= 3 and from—% = Cl;Cbk we getcy +1=cp, <

Co+1. Sincec, > ¢, we haved, > d; = —%. If de <0, we are done. Otherwisky = 5

and we have to show thdf» < 0. To this end let us notice thgt: ci—di=c + %

andcy, k1 =5—0C¢ =S— (d¢ +3) = 5 — 3 = c1. It follows thatc, = ¢; sincec; <

C2 < Cgr < Cp—k+1 = C1. Thusdyr = dy = —% and this concludes the proof of Faci 12.
From FacfIP and sinais 2-flat we can immediately get the following corollary.

Corollary 3. del((k—1,—kk—1,—k,...)Ul(—k k-1 —k k—1,...).

To finish the proof of the lemma we need one more fact:
Fact 13 (@Q)(1((k—1,—k k—1,—k,...) Ul (—k k—1,—k k—1,...)) C I(XK).
To prove this fact let us firstly represe)ﬂif in the same form aé'{ is.

1553

Xf=(k-1) @ @ (£k —k k) @ (Yf),
i=1



whereYf is empty ifk = 0 (mod 3, Yf = (£K) if k=1 (mod 3 andYy = (£k,—k)
if k=2 (mod 3. Looking now at both representations we can see that theubafp
Cycfunction should be im(k— 1), the output of eacbeg function should be in(+k)
and the output oMinMax should be inl (—k) x I (£Kk). If Min function is used, then
its output should be ih(—k). The input toCycis either froml (k— 1) or from | (—K).
In both cases we get desired output according to Edct 11.thersimilar way, the
input to eachDeg function is either from (k— 1) C I(+k) or from I (—k) C I(£Kk).
But Deg (I (+k)) C I(+k) by Fac{T1.1. From FaEf1l1.3 we havén(I (£k)) C I (—k).
Finally, the input toMinMax function is either from (k— 1) x 1 (—k) or from(—Kk) x
I (k—1). For this function the result follows from Fdcfl11.4. O

Lemma 7. Fork > 3and eachi=1,2,...,5k— 13the following inclusion holds:

(R Amoaz1) (1069) S1(X).

Proof. We have to prove that fok > 3 andx = 1,2,3 the following inclusions are
true: (@ Q) (1(Xk 1))  1(XK,,), wherej =1,2,...[#13] for x=1 andj =
0,1,2,...| ¥=12X| for x = 2,3. The sequence@, x = 1,2,3, are built of functions
Cyc Dec., MinMax and Min introduced in Definitiori]7. We consider these function
one after another analysing which positions in state sezpseare modified by them
and what values are in that positions before and after apglyfunction. In the follow-
ing, we denote by j the j-th element of a sequenée.

The functionCycis used only in the definition o@k and is applied to position 1
of state sequencd$x3j) wherej = 1,2,...[¥513|. Thus it is enough to show the
inclusionCyd(l (X3J 1) € I(X3J+1 1)- By Deﬂmhon[ﬂ the argument @yc- | can be:
X3L1 _VO’1 =—kfor3j <3k-9 orxsj,1 _WO’1 =0for3j=3k—-6 orxsj,1 =27, =0for
3j > 3k—6. The corresponding value of the next state sequen@;@’l :Vl‘f1 =k-1
for3j+1<3k—-8 orX3 411 =21 =0for 3j+1>3k—5. Using FacL I1, inclusions
Cydl(—k)) € 1(k—1) andCyc(I( )) C 1(0) are true and we are done.

In the sequenc@1 we have severdDeq._3 functions, eaclDeq._3 is on the
corresponding positionI3-1 and it is applied to the state seque|1¢x3]) where
I=1..., [%J. Similarly, in Q'g we have severddeq_3 1 functions, eactbeq 3,1
is on the corresponding positioh-32 and it is applied to the state sequeh@é§j+l),
wherel =1,..., L%J. Finally, in (55 we haveDeq,_3_1 functions, eactbeq._3_1 is
on the corresponding positioth 8nd it is applied to the state sequem(jégHz), where

l=1,..., L%J Assuming Fhatj'(‘) also denote®¥, we can rewrite our proof goal for
that functions as the following fact.

Fact 14 For k > 3 and x= 0,1,2 the set Deg 3 x_1(! (X§j+xfl,3l _,)) is a subset of
|(X§  xa_x)» Where |= 1, [X25], j= 1,2, [*F2X] for x=0,1and j=

0,1,2,... %14 forx_2

The sequenceXX are defined with the help of sequentds VK, WK andz,, therefore
we prove the fact by considering all possible cases in thieviahg table. In it we
assume that k| = U, VK, =VXandwk, =Wk,



Cases of Cases of || Value of | Value of Why
S= X§j+xfl,3l—x t= X?lfj+x,3l -X S t Degeai4x-1(1(s) S1(t)?
S= U>I<( 13—x t_UXSI —X +k +k
s= VXK13| 1=V k—3l+x|k—3+x—1
S=V- 5, |t=W& , |[k=3I+x[k=3+x—1 Fac{1l.1
S=WS g, [t=Wg , [[k=3+x[k=3I+x-1
S:ZSI —X t =173 _x 0 0

The two remaining cases: (K§J+X713lix =UX g andX 5, =V, and (2)

K — WK
X3jx-1.31-x = W13 and X31+x a_x = Za_x are not possible, because, otherwise,

(1) 3j +x should be even an@—X 3l —x—1, which cannot hold for any integejs
xandl; (2) 3j +x— (3k— 6) should be even anﬂ%’“‘""6> =3l —x—1, which is not
true for the same reason.

Now we consider thélin function. It appears in the definition 63 (Q% or Q%
respectively) on the positida— 2 if k mod3 = 2 (k mod3 =1 ork mod3 =0, respec-
tively). Thus, to prove the lemma, it suffices to show thedwihg fact.

Fact 15 Fork>3and x=0,1,2the set Mirfl (X§; ;. ,)) isasubsetof(Xk;, . »),
where k-2=1-x(mod3) j=1,2,...| *-12X| forx=0,1and j=0,1,2,... | %314
forx=2.

As in the case obec. functions we prove the fact by considering all possible sase
the following table. In it we assume thidt; = UX, V¥, = vk andwk; =Wk

Cases of Cases of || Value of| Value of Why
S= X§j+xfl,k72 t= X§J+x,k72 S t Min(l(s)) € I(t)?
ik t =UK +k —k
=Vl v Tk
s=V ko t:W{k—Z 1 0 Facf11.3
S— W k2 =Wk 1 0
t=2Zxk2 1 0
S=2Zk_» t=2k 0 0

The remaining Casx:g(jer—l‘k—Z = VK C1k-2 andX3J+Xk 5= ka , is not possible, be-
cause, otherwisej3f x— 1= 2k—5, that is, Zk—2) = 3j + X, butk—2=1—x(mod3)
and in the consequenge= 2(1— x) (mod3) - contradiction.

The last function we have to considerNiinMax, which appears in the definition
of all ¥, x = 1,2,3, functions. InQ¥ (Q% andQ¥, respectively) a copy dflinMax is
on positiong3,4),(6,7),...((2,3), (5,6), ...and (1,2), (4,5), ..., respectively)ughto
prove the lemma, it suffices to show the following fact.

Fact 16 For k> 3and x= 1,2, 3 the set MinMaxl (XX 3 x-131— XH,Xé‘Hx 13-x:2)) 1S
a subset Of@ 3j+x,31— X+17XCI‘3(J+X3| x+2) where |=1 v"'v Lk 4+XJ J - 1 2 LSKEBJ
forx=1and j=0,1,2,...[ %1% ] forx=2,3.



As in the case of previous functions we prove the fact by aergig all possible cases
in the following table. In it we assume thaf = UK, VX = V¥ andWk = W. To reduce
the size of the table we also use the following shortcats:3j +x, b= 3l —x+ 1 and

y =k—3l +x—2. Observe that £ y < k— 2, thereford (0) C I(y) C I(£k) and we
can also apply FaEf11.5.

Cases ofs;,s) | Cases ofty, tp) | Value of| Value of|| Why | (t1,t2) 2
Xa 161 | Xa 16 | Xab_1 | Xab si| & |t t2 |MinMax(I(s1,%))?
uk uk +k| —k [ —k[ £k
Uk uX xb-1 | “xb Fac1l.4
xTLboL b gk T 0K, [ K] —k | —k| =k —
Uk y | =k | —k| £k
kalb kafl xb
vk A B V{b y | —k[—k| y
ETHIVE L [V VX‘;? L il
' ' Wx.b y —k |-k y
WE 1 (W1 [V y| 00|y Fac{11.5
WK [ WE y| 0[]0y
WK wk xb—1]"%b
x—1b—1 X 1,b bel WXKb y 0 0 y
WX 000y
WK Zn x,.b
Zp 1 x-1b| -1 7 00|00
Zy Zn 1 |Zp ojo0|O0|O

O

Lemma 8. Letk> 3 and letc = (cy,...,Cy, ) be a balanced 2-flat sequence of integers
from [0, k-1 _ 1] and let s= height(T). Let f = fgx_150 fsk_130...0 f1, where f=
Ql(((i—l) mod3):1+1 = L-.-,5k—12 Then ft) = (3)ifsisevenor fc) = (S)k2a
(S51)k-2 otherwise.

Propf. Since eacH; maps a balanced sequence to a balanced orfeetd ucefi,s) =
®Ql(((i71) mc)d3)Jrl,_WheAre_the later equality follows from_Lemrﬁ;h 5. Let aldp=
reducec) and letd; = fi(di-1) fori=1,...,5k—12. Thend; € | (XK) by Lemmd®
and fori = 2,...,5k— 12 we get; € 1(XK) by an easy induction and Lemiih 7. 1t
denote as usual the set of integersZBl%/we will denote the sefz+ % |ze Z}. Looking

at Definitiond 6 anfl]7 observe the following fact:

Fact 17 If s is even then all elements of sequerttes = 0,...,5k — 12, are integers.
If s is odd then all elements of sequendgs =0,...,5k— 12, are inZ%.

Sincedsy_12 € | (XX ;,) = 1(0%2) andI (0)NZ = {0} andI (0) NZy= {1}, itfollows
thatds,_12 = 02 if sis even andls,_1p = %H, otherwise. Applying now the def-
inition of s-extended sequence t§ 6 and %H we get the desired conclusion of the
lemma. O

In this way, with respect to Lemnia 3, we have proved that theord My is able
to merge in kK — 12 stages two sorted sequences given in odd and even regjster
vided that the numbers of ones in our matrix columns form ar@@d sequence. If the
sequence is not balancdd;- 3 additional stages are needed to get a sorted output.



3.3 Analysis of General Columns

In a general case we will use balanced sequences as lowerpaed bounds on the
numbers of ones in our matrix columns and observe@a andQ¥ are monotone
functions (see Fafi 9).

Definition 12. Let k> 3 and letc = (cy,...,Cy, ) be a 2-flat sequence of integers from
[0,2-1 1] thatis not balanced. Since batfyg= (C1,. . . ,Ch,—1) @NATewn= (C2, ..., Ch, )
are flat sequences, let i (j, respectively) be such that < Cpi 11 (C,—2j < Co—2j+2
respectively) or leti= k— 2 (j = k—2) if Tpqq (Cevry respectively) is a constant sequence.
The defined below sequen@eand¢ we will call lower and upper bounds of If i < |
thenforl=1,... bx

c1 iflisoddand 1< 2j—1 c it lis odd
& =1 o1 iflisodd and 1> 2j+1 g = {Cbkl it ie even
¢ ifliseven B

Ifi > jthenforl=1,... by

¢, iflis odd G iflisodd
& = { Cl flisoven G =14 C2 iflisevenand < b~ 2i
2 Co, if | is evenand b by — 2i

Fact 18 For k > 3 and any not balanced 2-flat sequere: (cy,...,Cy,) Of integers
from [0,2¢"1 — 1] the sequences and¢ are balanced, heigli€) + 1 = height(¢) and
¢<t<C¢

Proof. Leti and| be defined as in Definitidn 12. We will only consider the casg;.
The proof of the other case is similar. Directly from the diifam we get thatc’is
balanced. To see thais'also balanced let us check foe 1, ..., k— 2 whether the sum
Co1_1+ Cp, 2112 is constant.

C1+ Cp—21+2 = C1+ Cp, if 1 <j

Co—1+ Cp, — =Cy_1+Cp,— = .
211+ Cp—21+2 = C21 -1+ Ch—21 42 {Cbk1+cbk2I+2:Cbk1+CZ otherwise

If j = k—2 there is no otherwise case and we are dong.<fk — 2 thency, —c2 =
Ch—1—C1 = 1, because of the definition ofand j and we are also done. Moreover
height(€) + 1 = ¢1 + ¢y, + 1 = Cy,—1 + Cp, = height(€). To prove thatc< T < € we
consider even and odd indices. For even indices from theitlefinve havery = ¢y <

Ch, = €. For odd indicesy 1 = Cy,—1 > Cz—1 > C1. If | < j we are done, otherwise,
Col—1 = Cp—1 = Co—1, becaus&yqq is flat. O

Theorem 19. Let k> 3 and letT = (cy,...,Cy, ) be a 2-flat sequence of integers from
[0,21_1]. Let f= fg_150 fex_140...0 f1, where f= Q'(‘(iil) i=1,...,6k—
15. Then f(T) is a flat sequence.

mod 3)+1’

Proof. For a a 2-flat sequena@eof integers fron{0,2<"1 — 1] let ¢ andc’be its balanced
lower and upper bounds, as defined in Definifioh 12.¢get T, ¢ = ¢, o = € and
fori=1,...,6k—15 let us defing = f;(Ti_1), ¢ = fi(Ci_1) andc = fi(¢i_1). Observe
thatc; <t < &, because of monotonicity of functio®, Q%, Q5 and Fact 8. To prove
thatTgx_15 is a flat sequence we need the following three technical.facts



Fact 20 Let s= height(¢). If sis even thel j = 5 andTip,j 1 € {3.35 + 1} for each
i =3k—6,...,5k—12and j=1,..., [ =3O fsis odd thert € {2, %L} and
Tibjr1= 5t foreachi=3k—6,...,5k—12and j=1,..., [ =30,

Proof. Since botlc'andc are balanced, we can consider reduced forms of them and use
Lemmag b andl7. For the given range’sivalues that means that

reducéc;),reducdé;) e 1 (X<) =1 (joink([WLZkank))-
It follows that for a given range offs valuesreducéc;);,reducéc); € 1 (0) = [—%,O].

From FacfIB we know thdteight¢) = s+ 1 and from Lemm@&l4 that heights are pre-
served in sequences andc. Thus, from the definition of a reduced sequergzg,c
(52, 5], G jrr €[5, 52, 6 €[5, 2] andG pj+1 € [552, £52]. Sinceci andd are
sequences of integers, for evewe getci j = Cip,j+1==Cj =5 andcp, j11= &*TZ;
for odd s we conclude thatij = 5 and¢p,_j11 = G} = Gp—j+1 = 3. Since
Gi,j <Tij <G j, the fact follows. O

The second fact extends the first fact up to the last stagerafamputation.

Fact 21 Let s= height(). If sis even thel; j = 5 andTip,—j1 € {3,354+ 1} for each
i =5k—11....6k—15and j=1,....k— 2. If s is odd therti ; € {5,551} and
Tipj+1= 35 foreachi=5k—11,...,6k—15and j=1,...,k—2.

Proof. Consider first the sequentg 12 and observe that far= 5k — 12 the value of

(W] is equal tok — 2. It follows from Fac{2D that for evesall values from
the left half oftsk_12 are equal tog and all values from the right half @1, are in
{3,5+1}. For odds all values from the left half ofs_1, are in {51, 21} and all
values from the right half ofsx_1, are equal t*52. SinceQ¥, Q% andQ¥ are built of
functionsded, mo¥ andcyd (cf. Definitionsi3 and4) observe that each functipn

i =5k—11,...,6k — 15 can only exchange values at positions frargmo¥) that
are from non-constant half of arguments (in caselet andcyc we can observe
that fora< b < a+1 and anyh > 0 we have mifa,b+h) = a, maxa—h,b) = b,
max(a,b— 1) = aand mina+ 1,b) = b, that is, the functions are identity mappings in
stages K— 11,...,6k— 15). Themoy functions can only exchange unequal values at
neighbour positions moving the smaller value to the left. a

The last fact states that unequal valwgs described in the previous two facts are
getting sorted during the computation. Observe that i§ odd (even, respectively)
then we only have to trace the sorting process in a left (righgpectively) region

of indices[1, min(k— 2, (W] )] ([max(k—1, bk — (W] +1),by], respec-
tively), wherei = 3k—6,...,6k — 15 and the values to be sorted differs at most by one.
We trace the positions of the smaller valiges- 5;21 in the left region and the greater
valuess' = 5 +1inthe rightregion. We will cal' a moving element. Far=1,... . k—2

let us defing; = 3k+ 2t — 8 to be the stage, after which the length of the region extends
fromt — 1 tot and a new element appears in it. et t for oddsandt’ = by —t + 1,



otherwise, be the position of this new element ane- c; ¢+ be its value. Finally, let
ne = [{1 <1 <t|a = g}| be the number of moving elements in the region after stage

Fact 22 Using the above definitions, fort1,... k—2,ifa; = s thenfori=0,...,6k—
15— it we have g maxi—in) = @ if sis 0dd and g min(+i,,—n.+1) = & otherwise.

Proof. We prove the fact only for odg, that is, for the left region. The proof for the
right region is symmetric. We would like to show thataf = ' appears at position
t' =t after stagd; then it moves in each of the following stages one positiorhto t
left up to its final positiom;. The proof is by induction ohandi. If t =1 anda; = §
appears at position 1 after stage= 3k — 6 thenn; = 1 anda; is already at its final
position. It never moves, because values at second positien s, by Fact§ 2D and
[21. Ift > 1 anda; = S then the basis= 0 is obviously true. In the inductive stép- 0
we assume tha ;1 maxt—i+1,n) = & and that the fact is true for smaller valued of
If max(t —i+1,n) = ny then also maft —i,ny) = n; and, by the induction hypothesis,
values at positions,1..,n, — 1 are all equas’. That means tha is at its final position
and we are done. Thus we left with the cagext —i + 1, that is, withny <t —1.

Consider the sequencgs.i—1 andg;, +i = fi,+i(Ci,+i—1). We know that, +i—1t—i+1=
s. To prove that, it = S we would like to show that, i1t =S +1 andmO\ﬁi €
fi,+i. The later is a direct consequence of an observatiomﬁmdg € fy if and only if
(a+b)=1(mod3). In our casdt —i)+ (it +1) =t + it =t + 3k+ 2t — 8= 1( mod3).
To prove the former, let us considar= <, u<t—1. Theniy <it—2andn, <n; — 1.
By the induction hypothesis, , j maxu—j,n,) = S- Settingj = it —iy+i—1 we get
j>i4+1and maxu—j,ny) <maxt—1—(i+1),n—1) <maxt—in)=t—i.
Moreover,iy+ j = it +i—1. That means that in the sequerg;g;_1 none ofr; ele-
mentss' is at positiort —i and, consequentlg, i1 =S +1. SincemO\Li switches
g with § + 1, this completes the proof of FAcil22. 0

Now we are ready to prove tha_1s is a flat sequence. By Fdci]21 dis odd then
Cok_15 € {552, S5 HK-2(S51)k2 otherwiseTsk_15 € (5)¥2{3, 5 +1}*"2 The number
of minority elements irtgx_15 has been denote oy _». If sisodd andy;, t=1,...,k—
2, is a minority elemen%l, then, by Fack 22¢e¢_15n, = 5;21 If sis even anda,
t=1,...,k—2,is aminority elemen§ +1, then, by Fadt 22615, —n+1 = % +2.1n
both cases this proves thaf_15 is flat, which completes the proof of Theorenm 190

3.4 Proof of Theoren2

Theoreni® follows directly from Theorem]19 and Lemimha 3. ket 3 andt be any
2-flat sequence of integers frojy 21 — 1]. By Theoreni 1P the result of application
(QoQkoQX)?5to (T) is a flat sequence. Then, by Lemimia 3, the netviiks a X —
5-pass merger of two sorted sequences given in odd and ayisters, respectively.

4 Conclusions

For eachk > 3 we have shown a construction of a 3-periodic merging coatpanet-
work of Nx = 2¢(k — 2) registers and proved that it merge any two sorted sequences



(given in odd and even registers, respectively) in tirke-85= 3(k — 5). A natural
question remains whether it is the optimal merging time f@e8iodic comparator net-
works.
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