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Abstract. We consider the problem of merging two sorted sequences on a com-
parator network that is used repeatedly, that is, if the output is not sorted, the
network is applied again using the output as input. The challenging task is to
construct such networks of small depth. The first constructions of merging net-
works with a constant period were given by Kutyłowski, Lory´s and Oesterdikhoff
[7]. They have given 3-periodic network that merges two sorted sequences of
N numbers in time 12logN and a similar network of period 4 that works in
5.67logN. We present a new family of such networks that are based on Can-
field and Williamson periodic sorter [4]. Our 3-periodic merging networks work
in time upper-bounded by 6logN. The construction can be easily generalized to
larger constant periods with decreasing running time, for example, to 4-periodic
ones that work in time upper-bounded by 4logN. Moreover, to obtain the facts
we have introduced a new proof technique.

Keywords: parallel merging, comparison networks, merging networks,periodic net-
works, comparators, oblivious merging.

1 Introduction

Comparator networks are probably the simplest parallel model that is used to solve such
tasks as sorting, merging or selecting [6]. Each network represents a data-oblivious al-
gorithm, which can be easily implemented in hardware. Moreover, sorting networks can
be applied in secure, multi-party computation (SMC) protocols. They are also strongly
connected with switching networks [9]. The most famous constructions of sorting net-
works are Odd-Even and Bitonic networks of depth1

2 log2N due to Batcher [2] and
AKS networks of depthO(logN) due to Ajtai, Komlos and Szemeredi [1]. The long-
standing disability to decrease a large constant hidden behind the asymptotically op-
timal complexity of AKS networks to a practical value [15] has resulted in studying
easier, sorting-related problems, whose optimal networkshave small constants.

A comparator network consists of a set ofN registers, each of which can contain
an item from a totally ordered set, and a sequence of comparator stages. Each stage
is a set of comparators that connect disjoint pairs of registers and, therefore, can work
in parallel (a comparator is a simple device that takes a contents of two registers and
performs a compare-exchange operation on them: the minimumis put into the first
register and the maximum into the second one). Stages are runone after another in

http://arxiv.org/abs/1401.0396v1


synchronous manner, hence we can consider the number of stages as the running time.
The size of a network is defined to be the total number of comparators in all its stages.

A networkA consisting of stagesS1,S2, . . . ,Sd is calledp-periodic if p< d and for
eachi, 1≤ i ≤ d− p, stagesSi andSi+p are identical. A periodic network is easy to
implement, especially in hardware, because one can use the first p stages in a cycle: if
the output ofp-th stage is not correct (sorted, for example), the sequenceof p stages is
run again. We can also define ap-periodic network just by giving the total number of
stages and a description of its firstp stages. A challenging task is to construct a family
of small-periodic networks for sorting-related problems with the running time equal to,
or not much greater than that of non-periodic networks.

Dowd et al. [5] gave the construction of logN-periodic sorting networks ofN reg-
isters with running time of log2N. Kutyłowski et al. [8] introduced a general method
to convert a non-periodic sorting network into a 5-periodicone, but the running time
increases by a factor ofO(logN) during the conversion. For simpler problems such as
merging or correction there are constant-periodic networks that solve the corresponding
problem in asymptotically optimal logarithmic time [7,13]. In particular, Kutyłowski,
Loryś and Oesterdikhoff [7] have given 3-periodic networkthat merges two sorted se-
quences ofN numbers in time 12logN and a similar network of period 4 that works in
5.67logN. They have also sketched a construction of merging networkswith periods
larger than 4 and running time decreasing asymptotically to2.25logN.

In this paper, we introduce a new family of constant-periodic merging networks that
are based on the Canfield and WilliamsonO(logN)-periodic sorter [4] by a certain pe-
riodification technique. Our 3-periodic merging networks work in time upper-bounded
by 6logN and 4-periodic ones - in time upper-bounded by 4logN. The construction can
be easily generalized to larger constant periods with decreasing running time.

The advantage of constant-periodic networks is that they have pretty simple patterns
of communication links, that is, each node (register) of such a network can only be
connected to a constant number of other nodes. Such patternsare easier to implement,
for example, in hardware. Moreover, a node uses these links in a simple periodic manner
and this can save control login and simplify timing considerations.

2 Periodic merging networks

Our merging networks are based on the Canfield and Williamson[4] O(logN)-periodic
sorters. We recall now the definition of their networks: for each k ≥ 1 let CWk =
S1, . . . ,Sk denote a network ofN = 2k registers, where the stages are defined as fol-
lows (see also Figures 1 and 2):

S1 =
{

[2i : 2i +1] : i = 0,1, . . . ,2k−1−1
}

, (1)

Sj+1 =
{

[2i +1 : 2i +2k− j ] : i = 0,1, . . . ,2k−1−2k− j−1−1
}

, j = 1, . . . ,k−1. (2)

The merging and sorting properties of the networks are givenin the following propo-
sition.
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Fig. 1.The Canfield and Williamson logN-periodic sorter, whereN = 32. Registers and compara-
tors are represented by horizontal lines and arrows, respectively. Stages are separated by vertical
lines.

Proposition 1. (1) For each k≥ 1, if two sorted sequences of length2k−1 are given in
registers with odd and even indices, respectively, then CWk is a merging network. (2)
For each k≥ 1, CWk is a k-pass periodic sorting network.

Fig. 2. Another view ofCW5 5-pass 5-periodic sorter. Registers and comparators are represented
by dots and edges, respectively. Stages are separated by vertical lines.

We would like to implement a version of this network as a constant-periodic com-
parator network. Consider first the most challenging 3-periodic implementation. We
start with the definition of a temporally constructionPk which structure is similar to the
structure ofCWk. Then we transform it to 3-periodic networkMk. The idea is to replace
each registeri in CWk (except the first and the last ones) with a sequence ofk−2 con-
secutive registers, move the endpoints of long comparatorsone register further or closer
depending on the parity ofi and insert between each pair of stages containing long com-



parators a stage with short comparators joining the endpoints of those long ones. The
result is depicted in Fig. 3. In this way, we obtain a network in which each register is
used in at most three consecutive stages. Therefore the network Pk can be packed into
the first 3 stages and used periodically to get the desired 3-periodic merging network.

Fig. 3. P5 as an implementation ofCW5. Registers and comparators are represented by dots and
edges, respectively. Stages are separated by vertical lines. Stages with short horizontal compara-
tors are inserted between stages with long comparators.

Let [i : j] denote a comparator connecting registersi and j. A comparator[i : j]
is standardif i < j. For anN-register networkA = S1,S2, . . . ,Sd, whereS1,S2, . . . ,Sd

denote stages, and for an integerj ∈ {1, . . . ,N}, we will use the following notations:

fst( j,A) = min{1≤ i ≤ d : j ∈ regs(Si)} (3)

lst( j,A) = max{1≤ i ≤ d : j ∈ regs(Si)} (4)

delay(A) = max
j∈{1,...,N}

{lst( j,A)− fst( j,A)+1} (5)

whereregs({[i1 : j1], . . . , [ir : jr ]}) denotes the set{i1, j1, . . . , ir , jr}.
Let us define formally the new family of merging networks. Foreachk ≥ 3 we

would like to transform the networkCWk into a new networkPk.

Definition 1. Let nk = 2k−1−1 be one less than the half of the number of registers in
CWk and bk = 2(k−2). The number of registers of Pk is defined to be Nk = nk ·bk+2.
The stages of Pk = Sk,1∪{[0 : 1], [Nk−2 : Nk −1]},Sk,2, . . . ,Sk,2k−3 are defined by the

following equations, where j= 1, . . . , bk
2 :

Sk,1 = {[bki : bki +1] : i = 1, . . . ,nk−1} (6)

Sk,2 j =
{

[bki + j : bk(i +2k− j−1−1)+ (bk− j +1)] : i = 0, . . . ,nk−2k− j−1
}

(7)

Sk,2 j+1 = {[bki + j : bki + j +1], (8)

[bki +(bk− j) : bki +(bk− j +1)] : i = 0, . . . ,nk−1} (9)

The networkP5 is depicted in Figure 4.

Fact 1 delay(Pk) = 3 for k≥ 3. ⊓⊔
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Fig. 4. The traditional drawing ofP5 network

Let A= S1,S2, . . . ,Sd andA′ = S′1,S
′
2, . . . ,S

′
d′ beN-input comparator networks such

that for eachi, 1≤ i ≤ min(d,d′), regs(Si)∩ regs(S′i) = /0. ThenA∪A′ is defined to be
(S1∪S′1),(S2∪S′2), . . . ,(Smax(d,d′)∪S′max(d,d′)), where empty stages are added at the end
of the network of smaller depth.

For any comparator networkA= S1, . . . ,Sd andD = delay(A), let us define a net-
workB=T1, . . . ,TD to be acompact formof A, whereTq =

⋃{

Sq+pD : 0≤ p≤ (d−q)/D
}

,
1≤ q≤D. Observe thatB is correctly defined due to the delay ofA. Moreover,depth(B)=
delay(B) = delay(A).

Definition 2. For k ≥ 3 let Mk denote the compact form of Pk with the first and the
last registers deleted. That is, the network Mk = Tk

1 ,T
k
2 ,T

k
3 is using the set of registers

numbered{1,2, . . . ,Nk}, where Nk = (2k−1−1) ·2(k−2), and Tk
j = {Sk, j+3i : 0≤ i ≤

2k− j−3
3 }, j = 1,2,3.

It is not necessary to delete the first and the last registers of Pk but this will simplify
proofs a little bit in the next section. The networkM5 is given in Fig. 5.

Theorem 2. There exists a family of 3-periodic comparator networks Mk, k≥ 3, such
that each Mk is a 2k− 5-pass merger of two sorted sequences given in odd and even
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Fig. 5. TheM5 network

registers, respectively. The running time of Mk is 6k−15≤ 6logNk, where Nk = (2k−
2)(k−2) is the number of registers in Mk.

The proof is based on the observation thatMk mergesk−2 pairs of sorted subse-
quences, one after another, in pipeline fashion. Details are given in the next section.

In a similar way, we can convertCWk into a 4-periodic merging network. Assume
that k is even. We replace each register (except the first and the last ones) with a se-
quence of(k−2)/2 consecutive registers, move the endpoints of long comparators in
such a way that exactly two long comparators start or end at each new register and in-
sert after each pair of stages containing long comparators astage with short comparators
joining the endpoints of those long comparators. The resultis depicted in Fig. 6.

3 Proof of Theorem 2

The first observation we would like to make is that we can consider inputs consisting
of 0’s and 1’s only. The well-known Zero-One Principle states that any comparator
network that sorts 0-1 input sequences correctly sorts alsoarbitrary input sequences
[6]. In the similar way, we can prove that the same property holds also for merging:



Proposition 2. If a comparator network merges any two 0-1 sorted sequences,then it
correctly merges any two sorted sequences. ⊓⊔

Therefore we can analyze computations of the networkMk, k ≥ 3, by describing
each state of registers as a 0-1 sequencex=(x1, . . . ,xNk), wherexi represents the content
of registeri. If x is an input sequence for 2k−5 passes ofMk, then byx(i) we denote the
content of registers afteri passes ofMk, i = 0, . . . ,2k−5,, that is,x(0) = x andx(i+1) =
Mk(x(i)). SinceMk consists of three stagesTk

1 , Tk
2 andTk

3 , we extend the notation to
describe the output of each stage:x(i,0) = x(i) andx(i, j) = Tk

j (x
(i, j−1)), for j = 1,2,3. For

other values ofj we assume thatx(i, j) = x(i+ j div 3, j mod 3). We will use this superscript
notation for other equivalent representations of sequencex.

Now let us fix some technical notations and definitions. A 0-1 sequence can be rep-
resented as a word overΣ = {0,1}. A non-decreasing (also calledsorted) 0-1 sequence
has a form of 0∗1∗ and can be equivalently represented by the number of ones (orze-
ros) in it. For anyx ∈ Σ∗ let ones(x) denote the number of 1 inx. If x ∈ Σn thenxi ,
1 ≤ i ≤ n, denotes thei-th letter ofx andxA, A = {i1, . . . , im},1 ≤ i1 < .. . ,< im ≤ n
denotes the wordxi1 . . .xim. We say that a 0-1 sequencex = (x1, . . . ,xNk) is 2-sortedif
both(x1,x3, . . . ,xNk−1) and(x2,x4, . . . ,xNk) are sorted.

3.1 Reduction to Analysis of Columns

For anyk ≥ 3 let nk = 2k−1−1, bk = 2(k−2) (thusNk = nk ·bk). The set of registers
Regk = {1, . . . ,Nk} can be analyzed as annk×bk matrix withCk

j = { j+ ibk : 0≤ i < nk},
j = 1, . . . ,bk, as columns. A content of all registers in the matrix, that isx ∈ ΣNk , can
be equivalently represented by the sequence of contents of registers inC1, C2, . . . ,Cbk,
that is(xC1, . . . ,xCbk

). Sincebk is an even number, the following fact is obviously true.

Fact 3 If x ∈ ΣNk is 2-sorted then each xCj , j = 1, . . . ,bk, is sorted. ⊓⊔

That is, the columns are sorted at the beginning of a computation of 2k−5 passes
of Mk. The first lemma we would like to prove is that columns remain sorted after each
stage of the computation. We start with a following technical fact:

Fact 4 Let A= {a1, . . . ,an} and B= {b1, . . . ,bn} be subsets of{1, . . . ,Nk} such that
a1 < b1 < a2 < b2 < .. . < an < bn. Let h≥ 0 and SA,B,h = {[ai : bi+h] : 1≤ i ≤ n−h}.
Then for any x∈ ΣNk such that xA and xB are sorted, the output y= SA,B,h(x) has the
following properties:

(i) yA and yB are sorted.
(ii) Let m1 = ones(xA) and m2 = ones(xB). Then ones(yA) = min(m1,m2 + h) and

ones(yB) = max(m1−h,m2).

Proof. To prove (i) we show only thatyai ≤ yai+1 for i =1, . . . ,n−1. If 1≤ i < n−h then
yai =min(xai ,xbi+h)≤ min(xai+1,xbi+h+1) = yai+1 since min is a non-decreasing function
and bothxA andxB are sorted . Ifi = n−h thenyai = min(xai ,xbi+h)≤ xai+1 = yai+1. For
i > n−h we haveyai = xai ≤ xai+1 = yai+1.



To prove (ii) letm′
1 = min(m1,m2+h) andm′

2 = max(m1−h,m2). We consider two
cases. Ifm1 ≤ m2+h thenm1−h≤ m2 and we getm′

1 = m1 andm′
2 = m2. In this case

no comparator fromSA,B,h exchanges 0 with 1. To see this assume a.c. that a comparator
[ai : bi+h] exchangesxai = 1 with xbi+h = 0. Theni > n−m1 and i +h ≤ n−m2 hold
because of the definitions ofm1 and m2. It follows that n−m1 < n− m2 − h, thus
m1−h> m2 — a contradiction. Ifm1 > m2+h thenm′

1 = m2+h andm′
2 = m1−h. In

this case let us observe that a comparator[ai : bi+h] exchangesxai = 1 with xbi+h = 0 if
and only ifm2+h≤ n− i < m1. Thereforeones(yA) = m1− (m1−m2−h) = m2+h
andones(yB) = m2+(m1−m2−h) = m1−h. ⊓⊔

According to the definition ofMk, it consists of three stagesTk
1 ,T

k
2 ,T

k
3 , whereTk

i =

∪{Sk,i+3 j : 0≤ j ≤ ⌊2k−i−3
3 ⌋} (setsSj are defined in Def. 1). Using the notation from

Fact 4, the following fact is an easy consequence of Definition 1.

Fact 5 Let Li =Ci and Ri =Cbk−i+1 denote the corresponding left and the right columns

of registers, and hi = 2k−i−1−1, i = 1, . . . , bk
2 . Then

(i) regs(Sk,1)⊆ L1∪R1 and Sk,1 = SR1−{Nk},L1−{1},0

(ii) regs(Sk,2 j)⊆ L j ∪Rj and Sk,2 j = SL j ,Rj ,h j , for any j= 1, . . . , bk
2

(iii) regs(Sk,2 j+1) ⊆ L j ∪ L j+1 ∪Rj+1 ∪Rj and S2 j+1 = SL j ,L j+1,0 ∪SRj+1,Rj ,0, for any

j = 1, . . . , bk
2 −1

(iv) regs(Sk,2k−3)⊆ Lk−2∪Rk−2 and Sk,2k−3 = SLk−2,Rk−2,0

(v) if (L j ∪Rj)∩ regs(Sk,i) 6= /0 then2 j −1≤ i ≤ 2 j +1, for any j= 1, . . . , bk
2 −1

⊓⊔

Lemma 1. If the initial content of registers is a 2-sorted 0-1 sequence x then after
each stage of multi-pass computation of Mk = Tk

1 ,T
k
2 ,T

k
3 the content of each column Cj ,

j = 1, . . . ,bk, is sorted, that is, each(x(p,i))Cj is of the form0∗1∗, p= 0, . . ., i = 1,2,3.

Proof. By induction it suffices to prove that for each sequencey ∈ ΣNk with sorted
columnsCj , j = 1, . . . ,bk, the outputszi = Tk

i (y), i = 1,2,3 have also the columns
sorted. Since eachTk

i , as a mapping, is a composition of mappingSi+3 j ,0≤ j ≤⌊2k−i−3
3 ⌋,

each of which, due to Facts 4 and 5, transforms sorted columnsinto sorted columns, the
lemma follows. ⊓⊔

From now on, instead of looking at 0-1 sequences with sorted columns, we will an-
alyze the computations ofMk on sequences of integersc = (c1, . . . ,cbk), wherect ,
t = 1, . . . ,bk, denote the number of ones in a sorted columnCt . Transformations of
0-1 sequences defined by setsSj , j = 1, . . . ,2k−3 will be represented by the following
mappings:

Definition 3. Let k≥ 3, hi = 2k−i−1 − 1 for i = 1, . . . ,k− 2 and bk = 2(k− 2). The
functions decki , movki and cyck over sequences of bk reals are defined as follows. Let
c= (c1, . . . ,cbk) and t∈ {1, . . . ,bk}.

(decki (c))t =







min(ci ,cbk−i+1+hi) if t = i
max(ci −hi,cbk−i+1) if t = bk− i +1
ct otherwise

(10)



(movki (c))t =







min(ct ,ct+1) if t = i or t = bk− i
max(ct−1,ct) if t = i +1 or t = bk− i +1
ct otherwise

(11)

(cyck(c))t =







max(c1,cbk −1) if t = 1
min(c1+1,cbk) if t = bk

ct otherwise
(12)

Fact 6 Let x∈ΣNk be a 0-1 sequence with sorted columns C1, . . . ,Cbk, let ci = ones(xCi )

and c = (c1, . . . ,cbk). Let yj = Sk, j(x), dj ,i = ones((y j)Ci ) and d j = (d j ,1, . . . ,d j ,bk),
where i= 1, . . . ,bk and j= 1, . . . ,2k−3. Then

(i) d1 = cyck(c)
(ii) d2 j = deckj(c), for any j= 1, . . . , bk

2

(iii) d2 j+1 = movkj(c), for any j= 1, . . . , bk
2

Proof. Generally, the fact follows from Fact 5 and the part (ii) of Fact 4 We prove only
its parts (i) and (ii). Part (iii) can be proved in the similarway.

(i) Observe thaty1 = Sk,1(x) =SR1−{Nk},L1−{1},0(x) due to Fact 5(ii) . It follows that
only the content of columnsL1 =C1 andR1 = Cbk can change, but they remain sorted
(according to Lemma 1). Using Fact 4(ii) we have:m1 = ones(xR1−{Nk}) = cbk − xNk,
m2 = ones(xL1−{1}) = c1− x1 and

d1,1 = max(m1,m2)+ x1 = max(cbk − xNk + x1,c1),

d1,bk = min(m1,m2)+ xNk = min(cbk,c1+ xNk − x1).

Now let us consider the following three cases of valuesx1 andxNk:
Case x1= 0 and xNk = 1. Thend1,1=max(cbk−1,c1)= cyck(c)1 andd1,bk =min(cbk,c1+
1) = cyck(c)1.
Case x1 = 1. Then c1 = nk, cbk ≤ nk and cbk − xNk ≤ nk − 1. In this case:d1,1 =
max(nk,cbk − xNk + 1,) = nk = max(c1,cbk − 1) andd1,bk = min(nk − 1+ xNk,cbk) =
cbk = min(c1+1,cbk).
Case xNk = 0. Thencbk = 0 andc1 − x1 ≥ 0. In this case:d1,1 = max(c1,x1) = c1 =
max(c1,cbk −1) andd1,bk = min(c1− x1,cbk) = cbk = min(c1+1,cbk).

(ii) We fix any j ∈ {1, . . . , bk
2 } and observe thaty2 j = S2 j(x) = SL j ,Rj ,h j (x) due to

Fact 5(ii) . It follows that only the content of columnsL j = c j andRj = cbk− j+1 can
change, but they remain sorted (according to Lemma 1). UsingFact 4(ii) we have:

d2 j , j = ones((y2 j)L j ) = min(c j ,cbk− j+1+h j) = (deckj (c)) j ,

d2 j ,bk− j+1 = ones((y2 j)Rj ) = max(c j −h j ,cbk− j+1) = (deckj(c))bk− j+1.

Definition 4. Let k≥ 3. Let Qk
1, Qk

2 and Qk
3 denote the following sets of functions.

Qk
1 =

{

cyck
}

∪
{

deck3i−1

}⌊ k−1
3 ⌋

i=1
∪
{

movk3i

}⌊ k−2
3 ⌋

i=1
(13)

Qk
2 =

{

deck3i−2

}⌊ k
3⌋

i=1
∪
{

movk3i−1

}⌊ k−1
3 ⌋

i=1
(14)

Qk
3 =

{

deck3i

}⌊ k−2
3 ⌋

i=1
∪
{

movk3i−2

}⌊ k
3⌋

i=1
(15)



Let us observe that each function inQk
i , i = 1,2,3, can only modify a few positions

in a given sequence of numbers. Moreover, different functions in Qk
i can only modify

disjoint sets of positions. For a functionf : Rm 7→ Rm let us define

args( f ) = {i ∈ {1, . . . ,m} : ∃c∈Rm( f (c))i 6= (c)i}

The following facts formalize our observations.

Fact 7 args(cyck) = {1,bk}, args(decki ) = {i,bk− i +1}, args(movki ) = {i, i +1,bk−
i,bk− i +1}, where i= 1, . . . ,k−2.

⊓⊔

Fact 8 For each pair of functions f,g∈ Qk
i , f 6= g, i= 1,2,3, we have

(i) args( f )∩args(g) = /0;
(ii) for any c= (c1, . . . ,cbk) and j∈ {1, . . . ,bk}

( f (g(c))) j =







( f (c)) j if j ∈ args( f )
(g(c)) j if j ∈ args(g)
c j otherwise

(16)

⊓⊔

Corollary 1. Each set Qki , i = 1,2,3, uniquely determines a mapping, in which func-
tions from Qk

i can be apply in any order. Moreover, if f∈ Qk
i , c∈ Rbk and j∈ args( f )

then(Qk
i (c)) j = ( f (c)) j .

We would like to prove that the result of applyingQk
i , i = 1,2,3, to a sequencec =

(c1, . . . ,cbk) of numbers of ones in columnsC1, . . . ,Cbk is equivalent to applying the set
of comparatorsTk

i to the content of registers, if each column is sorted.

Lemma 2. Let x∈ ΣNk be a 0-1 sequence with sorted columns C1, . . . ,Cbk , let ci =

ones(xCi ) andc=(c1, . . . ,cbk). Let yj =Tk
j (x), dj ,i = ones((y j)Ci ) andd j =(d j ,1, . . . ,d j ,bk),

where i= 1, . . . ,bk and j= 1,2,3. Then Qk
j(c) = d j .

Proof. Recall thatTk
j =

⋃
{Sk, j+3i : 0≤ i ≤ 2k− j−3

3 }. For a set of comparatorsS let us
define

cols(S) = {i ∈ {1, . . . ,bk} : regs(S)∩Ci 6= /0} .

From Fact 5(i–iv) it follows thatcols(Sk,1) = {1,bk} and fori =1, . . . ,k−2cols(Sk,2i)=
{i,bk− i+1} andcols(Sk,2i+1) = {i, i+1,bk− i,bk− i+1}. From Fact 5(v) we get that
cols(Sk, j+3i)∩ cols(Sk, j+3i′) = /0 if i 6= i′. Thus we can observe a 1-1 correspondence
between a functionf in Qk

j and a set of comparatorsSk, j+3i ⊆ Tk
j such thatargs( f ) =

cols(Sk, j+3i) Then for eacht ∈ args( f ) (Qk
j (c))t = ( f (c))t = (d j)t , as the consequence

of Corollary 1 and Fact 6. ⊓⊔

Definition 5. We say that a sequence of numbersc = (c1, . . . ,c2m) is flat if c1 ≤ c2 ≤
. . . ,c2m ≤ c1+1. We say that a sequencec is 2-flat if subsequences(c1,c3, . . . ,c2m−1)
and (c2,c4, . . . ,c2m) are flat. We say thatc is balanced if ci + c2m−i+1 = c1+ c2m, for
i = 2, . . . ,m. For a balanced sequencec define height(c) as c1+ c2m.



Proposition 3. Let k≥ 3, x∈ ΣNk , c= (c1, . . . ,cbk), where ci = ones(xCi ) (Ci is as usual
a column in the matrix of registers), i= 1, . . . ,bk. Then

1. x is sorted if and only if columns of x are sorted andc is flat;
2. x is 2-sorted if and only if columns of x are sorted andc is 2-flat;

⊓⊔
Now we are ready to reduce the proof of Theorem 2 to the proof offollowing lemma.

Lemma 3. Let k≥ 3. If for each 2-flat sequencec = (c1, . . . ,cbk) of integers from
[0,2k−1−1] the result of application(Qk

3 ◦Qk
2◦Qk

1)
2k−5 to (c) is a flat sequence, then

Mk is a 2k−5-pass merger of two sorted sequences given in odd and even registers,
respectively.

Proof. Assume that for each 2-flat sequencec = (c1, . . . ,cbk) the result of application
(Qk

3 ◦Qk
2 ◦Qk

1)
2k−5 to (c) is a flat sequence. Letx ∈ ΣNk be a 2-sorted sequence and

c=(c1, . . . ,cbk), whereci =ones(xCi ) (Ci is as usual a column in the matrix of registers),
i = 1, . . . ,bk. Thenc is 2-flat due to Proposition 3 and eachci ∈ [0,2k−1−1], because

the height of columns is 2k−1−1. Recall thatx( j) = (Mk)
j (x) and letc j ,i = ones(x( j)

Ci
).

Using Lemma 2 and easy induction we get that the equality(Qk
3 ◦ Qk

2 ◦ Qk
1)

j(c) =
(c j ,1, . . . ,c j ,bk) is true for j = 1, . . . ,2k− 5. Since(Qk

3 ◦Qk
2 ◦Qk

1)
2k−5(c) is a flat se-

quence, the sequencex(2k−5) is sorted. ⊓⊔

3.2 Analysis of Balanced Columns

Due to Lemma 3 we can only analyze the results of periodic application of the functions
Qk

1, Qk
2 and Qk

3 to a sequence of integers representing the numbers of ones ineach
register column. We know also that an initial sequence is 2-flat. To simplify our analysis
further, we start it with initial values restricted to be balanced 2-flat sequences. Then we
observe that the functions are monotone and any 2-flat sequence can be bounded from
below and above by balanced 2-flat sequences whose heights differ only by one.

Lemma 4. Let k≥ 3 and c = (c1, . . . ,cbk) be a balanced sequence of numbers. Let
s= height(c) and let f be a function from Qk1 ∪Qk

2∪Qk
3. Then f(c) is also balanced

and height( f (c)) = s.

Proof. Let c ands be as in Lemma and letf (c) = (d1, . . . ,dbk). The functionf ∈ Qk
1∪

Qk
2∪Qk

3 can be eithercyck or one ofmovkj , deckj , j = 1, . . . ,k−2, according to Definition
4. Each of the functions can only modify one or two pairs of positions of the form
(i,bk− i +1) in c (see Definition 3). The other pairs are left untouched, so thesum of
their values cannot change. In case ofcyck the modified pair is(1,bk) andd1+dbk =
max(c1,cbk −1)+min(c1 + 1,cbk) = s. In case ofdeckj the pair is( j,bk − j +1) and
d j +dbk− j+1 =min(c j ,cbk− j+1+h j)+max(c j −h j ,cbk− j+1) =min(c j −h j ,cbk− j+1)+
h j +max(c j − h j ,cbk− j+1) = s. Finally, if f = movkj then we have two pairs( j,bk −
j +1) and( j +1,bk− j). Thend j +dbk− j+1 = min(c j ,c j+1)+max(cbk− j ,cbk− j+1) =
min(c j ,c j+1)+max(s−c j+1,s−c j ) = sand in case of the second paird j+1+dbk− j =
max(c j ,c j+1)+min(cbk− j ,cbk− j+1) = max(c j ,c j+1)+min(s− c j+1,s− c j) = s. ⊓⊔



It follows from Lemma 4 that if we start the periodical application of the functions
Qk

1, Qk
2 andQk

3 to a balanced 2-flat initial sequence then it remains balanced after each
function application and its height will not changed. Therefore, we can only trace the
values in the first half of generated sequences. If needed, a value in the second half
can be computed from the height and the corresponding value in the first half. To get a
better view on the structure of generated sequences, we subtract half of the height from
each element of the initial sequence and proceed with such modified sequences to the
end. At the end the subtracted value is added to each element of the final sequence. The
following fact justifies the described above procedure.

Fact 9 Let f be a function from Qk1∪Qk
2∪Qk

3. Then f is monotone and for each t∈ R
and(c1, . . . ,cbk) the following equation is true

f (c1− t, . . . ,cbk − t) = f (c1, . . . ,cbk)− (t, . . . , t) .

Proof. The fact follows from the similar properties of min and max functions: they are
monotone and the equations: min(x− t,y− t) = min(x,y)− t and max(x− t,y− t) =
max(x,y)− t are obviously true. Eachf in Qk

1 ∪Qk
2 ∪Qk

3 is defined with the help of
these simple functions, thusf inherits the properties. ⊓⊔

Corollary 2. Let f = fl ◦ fl−1 ◦ . . .◦ f1, where fi ∈ {Qk
1,Q

k
2,Q

k
3}, 1≤ i ≤ l. Then f is

monotone and for any t∈ R and(c1, . . . ,cbk) ∈ Rbk

f (c1− t, . . . ,cbk − t) = f (c1, . . . ,cbk)− (t, . . . , t) .

⊓⊔

Definition 6. Let c = (c1, . . . ,cbk) ∈ Rbk be a balanced sequence and s= height(c).
We call(c1−

s
2,c2−

s
2, . . . ,ck−2−

s
2) ∈ Rbk/2 the reduced sequence ofc and denote it

by reduce(c). For a sequenced = (d1, . . . ,dk−2) ∈ Rk−2 we define s-extended sequence
ext(d,s) as

(d1+
s
2
,d2+

s
2
, . . . ,dk−2+

s
2
,
s
2
−dk−2,

s
2
−dk−3, . . . ,

s
2
−d1) .

For any t∈ R and a function f: Rbk 7→ Rbk that maps each balanced sequence to a
balanced one and preserves its height let reduce( f , t) denote a function on Rk−2 such
that (reduce( f , t))(d) = reduce( f (ext(d, t))) for anyd ∈ Rk−2.

Observe that for a balanced sequencec with heights the sequenceext(reduce(c),s)
is equal toc. Moreover, for anyt ∈ R and a sequenced ∈ Rk−2 the sequenceext(d, t) is
balanced and its height ist, thusreduce(ext(d, t)) = d. Note also that functionsQk

1, Qk
2

andQk
3 preserve the property of being balanced and the sequence height (see Lemma 4),

so we can analyze a periodical application of their reduced forms to a reduced balanced
2-flat input.

Fact 10 Let f = fl ◦ fl−1 ◦ . . . ◦ f1, where fi ∈ {Qk
1,Q

k
2,Q

k
3}, 1 ≤ i ≤ l. Let c∈ Rbk be

balanced and s= height(c) Let f̂i = reduce( fi ,s), 1≤ i ≤ l. Then f(c) = ext(( f̂l ◦ ˆfl−1◦
. . .◦ f̂1)(reduce(c)),s). ⊓⊔



Definition 7. Let MinMax(x,y)= (min(x,y),max(x,y)), Min(x)=min(x,−x), Cyc(x)=
max(x,−x−1) and Deci(x) = min(x,−x+Hi), where Hi = 2i −1, i = 1, . . .. Moreover,
let us define the following sequences of functions:

Q̂k
1 = (Cyc)⊕

⌊ k−3
3 ⌋⊕

i=1

(Deck−3i ,MinMax)⊕ (Fk
1 ) (17)

Q̂k
2 =

⌊ k−2
3 ⌋⊕

i=1

(Deck−3i+1,MinMax)⊕ (Fk
2 ) (18)

Q̂k
3 =

⌊ k−2
3 ⌋⊕

i=1

(MinMax,Deck−3i−1)⊕ (Fk
3 ) , (19)

where⊕ denote concatenation of sequences and for i= 1,2

Fk
i =







() if k ≡ 2i +1 (mod3)
(Dec1) if k ≡ 2i +2 (mod3)
(Dec2,Min) if k ≡ 2i (mod3)

Fk
3 =







() if k ≡ 2 (mod3)
(Min) if k ≡ 0 (mod3)
(MinMax) if k ≡ 1 (mod3)

Lemma 5. Let k≥ 3 and t∈ R. Then reduce(Qk
i , t) = ⊗Q̂k

i , where i= 1,2,3 and⊗
denotes the Cartesian product of a sequence of functions.

Proof. Let k≥ 3, i ∈ {1,2,3} andt ∈ R. Let d ∈ Rk−2. By Def. 6,(reduce(Qk
i , t))(d) =

reduce(Qk
i (ext(d, t))). Let e= ext(d, t) = (d1+

t
2, . . . ,dk−2+

t
2,−dk−2+

t
2, . . . ,−d1+

t
2). The sequencee is balanced andheight(e) = t. To get the lemma we would like to
prove that forj = 1, . . . ,k−2 the equalities(Qk

i (e)) j −
t
2 =((⊗Q̂k

i )(d)) j hold. The proof
is by case analysis of values ofi and j. In the following equations we use Definitions 3,
4, 6 and 7.

1. (Case:i = 1 and j = 1). Then(Qk
1(e))1 = (cyck(e))1 = max(d1+

t
2,−d1+

t
2 −1) =

max(d1,−d1−1)+ t
2 =Cyc(d1)+

t
2 = ((⊗Q̂k

i )(d))1+
t
2.

2. (Case:i+ j > 2 andi+ j ≡ 0(mod3)). Let l be such thatj = 3l − i. Then(Qk
i (e)) j =

(deck3l−i(e))3l−i =min(d3l−i+
t
2,−d3l−i+

t
2+2k−(3l−i)−1−1)=min(d3l−i,−d3l−i+

Hk−(3l−i)−1)+
t
2 = Deck−3l+i−1(d3l−i)+

t
2 = ((⊗Q̂k

i )(d)) j +
t
2.

3. (Case:i + j > 2, j < k− 2 and i + j ≡ 1(mod 3)). Let l be such thatj = 3l −
i + 1. Then(Qk

i (e)) j = (movk3l−i+1(e))3l−i+1 = min(d3l−i+1 +
t
2,d3l−i+2 +

t
2) =

min(d3l−i+1,d3l−i+2)+
t
2. Starting from the other side we get((⊗Q̂k

i )(d))3l−i+1 =
(MinMax(d3l−i+1,d3l−i+2))1 = min(d3l−i+1,d3l−i+2) and we are done.

4. (Case:i+ j > 2, j = k−2 andi+ j ≡ 1(mod3)). Let l be as in previous case. Then
(Qk

i (e))k−2 = (movkk−2(e))k−2 = min(dk−2+
t
2,−dk−2+

t
2) = min(dk−2,−dk−2)+

t
2 = Min(dk−2)+

t
2 = ((⊗Q̂k

i )(d))k−2+
t
2.

5. (Case:i + j > 2 and i + j ≡ 2(mod 3)). Let l be such thatj = 3l − i + 2. Then
(Qk

i (e))3l−i+2 = (movk3l−i+1(e))3l−i+2 = max(d3l−i+1+
t
2,d3l−i+2+

t
2) =

max(d3l−i+1,d3l−i+2)+
t
2. Starting from the other side we get((⊗Q̂k

i )(d))3l−i+2 =
(MinMax(d3l−i+1,d3l−i+2))2 = max(d3l−i+1,d3l−i+2) and we are finally done.⊓⊔



Instead of tracing individual values in reduced sequences after each application of a
function from{⊗Q̂k

1,⊗Q̂k
2,⊗Q̂k

3} we will trace intervals in which the values should be
and observe how the lengths of intervals are decreasing during the computation. So let
us now define the intervals and show a fact about computationson them.

Definition 8. Let k≥ 3, Hi = 2i − 1 for 1 ≤ i ≤ k− 1. Let I(0) denote the interval
[− 1

2,0] and, in similar way, let I(i) = [− 1
2,

Hi
2 ], 1 ≤ i ≤ k− 1, I(−k) = [−

Hk−1
2 ,0]

and I(±k) = [−
Hk−1

2 ,
Hk−1

2 ]. Moreover, we will write I(w1,w2, . . . ,wl ) for the Cartesian
product I(w1)× I(w2)× . . .× I(wl), where each wi ∈ {0,1,2, . . . ,k−1,−k,±k}.

Fact 11 The following inclusions are true:

1. Deci(I(i+1))⊆ I(i) and Deci(I(w))⊆ I(w), for 1≤ i ≤ k−2 and w∈ {0,−k,±k};
2. Cyc(I(−k))⊆ I(k−1) and Cyc(w)⊆Cyc(w), for w∈ {0,k−1};
3. Min(I(±k))⊆ I(−k) and Min(I(1))⊆ I(0);
4. MinMax(I(±k,−k))⊆ (I(−k,±k));
5. MinMax(I(i,w)) ⊆ (I(w, i)), for 1≤ i ≤ k−1 and w∈ {0,−k}.

Proof. The proof of each inclusion is a straightforward consequence of the definitions
of a given function and intervals. Therefore we check only inclusions given in the first
item. Letx∈ I(i +1) = [− 1

2,
Hi+1

2 ]. If x∈ I(i) = [− 1
2,

Hi
2 ]. thenDeci(x) = min(x,−x+

Hi) = x since 2x ≤ Hi . Otherwisex must be in(Hi
2 ,

Hi+1
2 ], but thenx > −x+Hi and

Deci(x) =−x+Hi ∈ [− 1
2,

Hi
2 ) sinceHi+1 = 2Hi +1.

To proof the second inclusion forDeci let us observe that ifx≤ 0 thenDeci(x) = x.
It follows that Deci(I(0)) ⊆ I(0) andDeci(I(−k)) ⊆ I(−k). In case ofx ∈ I(±k) we
only have to check the positive values ofx. such thatx≥ −x+Hi . But thenDeci(x) =
−x+Hi >−x and bothx,−x∈ I(±k). ⊓⊔

Now we are ready to define sequences of intervals that are usedto describe states
of computation after each periodic application of functionsQ̂k

1, Q̂k
2 andQ̂k

3 to a reduced
sequence of numbers of ones in columns.

Definition 9. Let k≥ 3. By Zk we denote the sequence(0,0,0)⌈
k−2

3 ⌉ and, in the similar

way, Uk
1 = (±k,±k,−k)⌈

k−2
3 ⌉, Uk

2 = (±k,−k,±k)⌈
k−2

3 ⌉ and Uk
0 = (−k,±k,±k)⌈

k−2
3 ⌉.

Next, let Vk
1 =

⊕⌈ k−2
3 ⌉

i=1 (k− 3i + 2,k− 3i,−k), Vk
2 =

⊕⌈ k−2
3 ⌉

i=1 (k− 3i + 1,−k,k− 3i)

and let Vk
0 =

⊕⌈ k−2
3 ⌉

i=1 (−k,k−3i +1,k−3i −1).

Finally, let Wk
1 =

⊕⌈ k−2
3 ⌉

i=1 (k− 3i + 2,k− 3i,0), Wk
2 =

⊕⌈ k−2
3 ⌉

i=1 (k− 3i + 1,0,k− 3i)

and let Wk
0 =

⊕⌈ k−2
3 ⌉

i=1 (0,k−3i +1,k−3i −1).

Note that all sequences defined above are of length 3⌈ k−2
3 ⌉ ≥ k− 2 and their ele-

ments are interval descriptors as defined in Definition 8.

Definition 10. Let k≥ 3. Let a = (a1, . . . ,an) andb = (b1, . . . ,bn) be any sequences,
where n≥ k−2. For 0≤ i ≤ k−2 let joink(i,a,b) denote(a1, . . . ,ai ,bi+1, . . . ,bk−2).



Definition 11. Let k≥ 3. Let Xk
i denote a state sequence after i stages and be defined

as:

Xk
i =







joink(⌈
i+1
2 ⌉,Vk

i mod 3,U
k
i mod 3) for i = 1, . . . ,2k−5

joink(3k−6− i,Vk
i mod 3,W

k
i mod 3) for i = 2k−4, . . . ,3k−7

joink(⌈
i+1−(3k−6)

2 ⌉,Zk,Wk
i mod 3) for i = 3k−6, . . . ,5k−12

For example, to createXk
1 we take the first element ofVk

1 and the rest of elements
from Uk

1 obtaining the sequence(k− 1,±k,−k,±k,±k,−k,±k,±k,−k, . . .) of length
k−2. In the next lemma we claim thatXk

1 really describes the state after the first stage
of computation, where input is a balanced 2-flat sequence.

Lemma 6. Let k≥ 3 and letc= (c1, . . . ,cbk) be a balanced 2-flat sequence of integers
from [0,2k−1−1]. Let s= height(c) and letd = reduce(c). Then(⊗Q̂k

1)(d) ∈ I(Xk
1).

Proof. Recall thatHi = 2i −1. Let d = (d1, . . . ,dk−2) By Definitions 5 and 6s= ci +

cbk−i+1 and eachdi = ci −
s
2 =

ci−cbk−i+1

2 . Observe that eachdi ∈ I(±k) = [−
Hk−1

2 ,
Hk−1

2 ].

It follows from the following sequence of inequalities:−
Hk−1

2 ≤
−cbk−i+1

2 ≤
ci−cbk−i+1

2 ≤
ci
2 ≤

Hk−1
2 . Moreover, the sequenced is 2-flat, becausec is 2-flat. That means thatd1 ≤

d3 ≤ d5 ≤ . . .≤ dk′ ≤ d1+1 andd2 ≤ d4 ≤ d6 ≤ . . .≤ dk′′ ≤ d2+1, wherek′ = 2⌈ k−2
2 ⌉−

1 andk′′ = 2⌊ k−2
2 ⌋.

Fact 12 Either− 1
2 ≤ d1 and dk′′ ≤ 0 or − 1

2 ≤ d2 and dk′ ≤ 0.

To prove the fact we consider three cases of the value ofd1.
Case d1 ≥ 0: In this case we only have to prove thatdk′′ ≤ 0. But it is true sincedk′′ =
ck′′−cbk−k′′+1

2 ≤
cbk

−c1

2 =−d1 ≤ 0. The last inequality holds, becausec is 2-flat and both
k′′ andbk are even.
Case d1 ≤−1: Thendk′ ≤ d1+1≤ 0. Thus we have only to prove thatd2 ≥− 1

2. Similar

to the previous case, we observe thatd2 =
c2−cbk−1

2 ≥
cbk

−1−(c1+1)
2 =−d1−1≥ 0.

Case d1 = − 1
2: Thendk′ ≤ d1+ 1 = 1

2 and from− 1
2 =

c1−cbk
2 we getc1 + 1 = cbk ≤

c2+1. Sincec2 ≥ c1, we haved2 ≥ d1 =− 1
2. If dk′ ≤ 0, we are done. Otherwisedk′ =

1
2

and we have to show thatdk′′ ≤ 0. To this end let us notice thats
2 = c1−d1 = c1+

1
2

andcbk−k′+1 = s− ck′ = s− (dk′ +
s
2) =

s
2 −

1
2 = c1. It follows thatck′′ = c1 sincec1 ≤

c2 ≤ ck′′ ≤ cbk−k′+1 = c1. Thusdk′′ = d1 =− 1
2 and this concludes the proof of Fact 12.

From Fact 12 and sinced is 2-flat we can immediately get the following corollary.

Corollary 3. d ∈ I((k−1,−k,k−1,−k, . . .)∪ I(−k,k−1,−k,k−1, . . .).

To finish the proof of the lemma we need one more fact:

Fact 13 (⊗Q̂k
1)(I((k−1,−k,k−1,−k, . . .)∪ I(−k,k−1,−k,k−1, . . .))⊆ I(Xk

1).

To prove this fact let us firstly representXk
1 in the same form aŝQk

1 is.

Xk
1 = (k−1)⊕

⌊ k−3
3 ⌋⊕

i=1

(±k,−k,±k)⊕ (Yk
1 ),



whereYk
1 is empty if k ≡ 0 (mod 3), Yk

1 = (±k) if k ≡ 1 (mod 3) andYk
1 = (±k,−k)

if k ≡ 2 (mod 3). Looking now at both representations we can see that the output of
Cycfunction should be inI(k−1), the output of eachDeci function should be inI(±k)
and the output ofMinMax should be inI(−k)× I(±k). If Min function is used, then
its output should be inI(−k). The input toCyc is either fromI(k−1) or from I(−k).
In both cases we get desired output according to Fact 11.2. Inthe similar way, the
input to eachDeci function is either fromI(k− 1) ⊆ I(±k) or from I(−k) ⊆ I(±k).
But Deci(I(±k))⊆ I(±k) by Fact 11.1. From Fact 11.3 we haveMin(I(±k))⊆ I(−k).
Finally, the input toMinMax function is either fromI(k−1)× I(−k) or from I(−k)×
I(k−1). For this function the result follows from Fact 11.4. ⊓⊔

Lemma 7. For k≥ 3 and each i= 1,2, . . . ,5k−13 the following inclusion holds:

(
⊗

Q̂k
i mod 3+1)(I(X

k
i ))⊆ I(Xk

i+1).

Proof. We have to prove that fork ≥ 3 andx = 1,2,3 the following inclusions are
true: (

⊗
Q̂k

x)(I(X
k
3 j+x−1)) ⊆ I(Xk

3 j+x), where j = 1,2, . . .⌊5k−13
3 ⌋ for x = 1 and j =

0,1,2, . . .⌊5k−12−x
3 ⌋ for x = 2,3. The sequenceŝQk

x, x = 1,2,3, are built of functions
Cyc, Dec∗, MinMax andMin introduced in Definition 7. We consider these function
one after another analysing which positions in state sequences are modified by them
and what values are in that positions before and after applying a function. In the follow-
ing, we denote byAi, j the j-th element of a sequenceAi .

The functionCyc is used only in the definition of̂Qk
1 and is applied to position 1

of state sequencesI(Xk
3 j), where j = 1,2, . . .⌊5k−13

3 ⌋. Thus it is enough to show the

inclusionCyc(I(Xk
3 j ,1)) ⊆ I(Xk

3 j+1,1). By Definition 11 the argument ofCyc· I can be:

Xk
3 j ,1=Vk

0,1=−k for 3 j ≤ 3k−9 orXk
3 j ,1=Wk

0,1 =0 for 3j = 3k−6 orXk
3 j ,1=Z1 = 0 for

3 j > 3k−6. The corresponding value of the next state sequence isXk
3 j+1,1=Vk

1,1 = k−1

for 3 j +1≤ 3k−8 or Xk
3 j+1,1 = Z1 = 0 for 3j +1≥ 3k−5. Using Fact 11, inclusions

Cyc(I(−k))⊆ I(k−1) andCyc(I(0))⊆ I(0) are true and we are done.
In the sequencêQk

1 we have severalDeck−3l functions, eachDeck−3l is on the
corresponding position 3l − 1 and it is applied to the state sequenceI(Xk

3 j), where

l = 1, . . . ,⌊ k−1
3 ⌋. Similarly, in Q̂k

2 we have severalDeck−3l+1 functions, eachDeck−3l+1

is on the corresponding position 3l −2 and it is applied to the state sequenceI(Xk
3 j+1),

wherel = 1, . . . ,⌊ k
3⌋. Finally, in Q̂k

3 we haveDeck−3l−1 functions, eachDeck−3l−1 is
on the corresponding position 3l and it is applied to the state sequenceI(Xk

3 j+2), where

l = 1, . . . ,⌊ k−2
3 ⌋. Assuming thatQ̂k

0 also denoteŝQk
3, we can rewrite our proof goal for

that functions as the following fact.

Fact 14 For k ≥ 3 and x= 0,1,2 the set Deck−3l+x−1(I(Xk
3 j+x−1,3l−x)) is a subset of

I(Xk
3 j+x,3l−x), where l= 1, . . . ,⌊ k−2+x

3 ⌋, j = 1,2, . . .⌊5k−12−x
3 ⌋ for x = 0,1 and j =

0,1,2, . . .⌊5k−14
3 ⌋ for x= 2.

The sequencesXk
∗ are defined with the help of sequencesUk

∗ , Vk
∗ , Wk

∗ andZ∗, therefore
we prove the fact by considering all possible cases in the following table. In it we
assume thatUk

−1 =Uk
2 , Vk

−1 =Vk
2 andWk

−1 =Wk
2 .



Cases of Cases of Value of Value of Why
s= Xk

3 j+x−1,3l−x t = Xk
3 j+x,3l−x s t Deck−3l+x−1(I(s))⊆ I(t)?

s=Uk
x−1,3l−x t =Uk

x,3l−x ±k ±k

Fact 11.1
s=Vk

x−1,3l−x t =Vk
x,3l−x k−3l + x k−3l + x−1

s=Vk
x−1,3l−x t =Wk

x,3l−x k−3l + x k−3l + x−1
s=Wk

x−1,3l−x t =Wk
x,3l−x k−3l + x k−3l + x−1

s= Z3l−x t = Z3l−x 0 0

The two remaining cases: (1)Xk
3 j+x−1,3l−x =Uk

x−1,3l−x andXk
3 j+x,3l−x =Vk

x,3l−x and (2)

Xk
3 j+x−1,3l−x = Wk

x−1,3l−x andXk
3 j+x,3l−x = Z3l−x are not possible, because, otherwise,

(1) 3j + x should be even and3 j+x
2 = 3l − x−1, which cannot hold for any integersj,

x andl ; (2) 3j +x− (3k−6) should be even and3 j+x−(3k−6)
2 = 3l −x−1, which is not

true for the same reason.
Now we consider theMin function. It appears in the definition of̂Qk

1 (Q̂k
2 or Q̂k

3,
respectively) on the positionk−2 if k mod3= 2 (k mod3= 1 ork mod3= 0, respec-
tively). Thus, to prove the lemma, it suffices to show the following fact.

Fact 15 For k≥3 and x=0,1,2 the set Min(I(Xk
3 j+x−1,k−2)) is a subset of I(Xk

3 j+x,k−2),

where k−2≡ 1−x (mod3) j = 1,2, . . .⌊5k−12−x
3 ⌋ for x=0,1 and j= 0,1,2, . . .⌊5k−14

3 ⌋
for x= 2.

As in the case ofDec∗ functions we prove the fact by considering all possible cases in
the following table. In it we assume thatUk

−1 =Uk
2 , Vk

−1 =Vk
2 andWk

−1 =Wk
2 .

Cases of Cases of Value of Value of Why
s= Xk

3 j+x−1,k−2 t = Xk
3 j+x,k−2 s t Min(I(s))⊆ I(t)?

s=Uk
x−1,k−2

t =Uk
x,k−2 ±k −k

Fact 11.3

t =Vk
x,k−2 ±k −k

s=Vk
x−1,k−2 t =Wk

x,k−2 1 0

s=Wk
x−1,k−2

t =Wk
x,k−2 1 0

t = Zx,k−2 1 0
s= Zk−2 t = Zk−2 0 0

The remaining caseXk
3 j+x−1,k−2 =Vk

x−1,k−2 andXk
3 j+x,k−2 = Vk

x,k−2 is not possible, be-
cause, otherwise 3j+x−1= 2k−5, that is, 2(k−2)= 3 j+x, butk−2≡ 1−x (mod3)
and in the consequencex≡ 2(1− x) (mod3) - contradiction.

The last function we have to consider isMinMax, which appears in the definition
of all Q̂k

x, x = 1,2,3, functions. InQ̂k
1 (Q̂k

2 andQ̂k
3, respectively) a copy ofMinMax is

on positions(3,4),(6,7), . . . ((2,3), (5,6), . . . and (1,2), (4,5), . . . , respectively). Thus, to
prove the lemma, it suffices to show the following fact.

Fact 16 For k≥ 3 and x= 1,2,3 the set MinMax(I(Xk
3 j+x−1,3l−x+1,X

k
3 j+x−1,3l−x+2)) is

a subset of I(Xk
3 j+x,3l−x+1,X

k
3 j+x,3l−x+2), where l= 1, . . . ,⌊ k−4+x

3 ⌋ j = 1,2, . . .⌊5k−13
3 ⌋

for x= 1 and j= 0,1,2, . . .⌊5k−12−x
3 ⌋ for x= 2,3.



As in the case of previous functions we prove the fact by considering all possible cases
in the following table. In it we assume thatUk

3 =Uk
0 , Vk

3 =Vk
0 andWk

3 =Wk
0 . To reduce

the size of the table we also use the following shortcuts:a= 3 j + x, b= 3l − x+1 and
y = k−3l + x−2. Observe that 2≤ y≤ k−2, thereforeI(0) ⊆ I(y) ⊆ I(±k) and we
can also apply Fact 11.5.

Cases of(s1,s2) Cases of(t1, t2) Value of Value of Why I(t1, t2)⊇
Xk

a−1,b−1 Xk
a−1,b Xk

a,b−1 Xk
a,b s1 s2 t1 t2 MinMax(I(s1,s2))?

Uk
x−1,b−1 Uk

x−1,b
Uk

x,b−1 Uk
x,b ±k −k −k ±k

Fact 11.4
Vk

x,b−1 Uk
x,b ±k −k −k ±k

Vk
x−1,b−1

Uk
x−1,b Vk

x,b−1
Uk

x,b y −k −k ±k

Fact 11.5

Vk
x,b y −k −k y

Vk
x−1,b Vk

x,b−1
Vk

x,b y −k −k y
Wk

x,b y −k −k y
Wk

x−1,b Wk
x,b−1 Wk

x,b y 0 0 y

Wk
x−1,b−1 Wk

x−1,b
Wk

x,b−1 Wk
x,b y 0 0 y

Zb−1 Wk
x,b y 0 0 y

Zb−1
Wk

x−1,b Zb−1
Wk

x,b 0 0 0 y
Zb 0 0 0 0

Zb Zb−1 Zb 0 0 0 0
⊓⊔

Lemma 8. Let k≥ 3 and letc= (c1, . . . ,cbk) be a balanced 2-flat sequence of integers
from [0,2k−1− 1] and let s= height(c). Let f = f5k−12◦ f5k−13◦ . . . ◦ f1, where fi =
Qk
((i−1) mod 3)+1, i = 1, . . . ,5k−12. Then f(c) = ( s

2)
bk if s is even or f(c) = ( s−1

2 )k−2⊕

( s+1
2 )k−2 otherwise.

Proof. Since eachfi maps a balanced sequence to a balanced one, letf̂i = reduce( fi ,s)=⊗
Q̂k
((i−1) mod 3)+1, where the later equality follows from Lemma 5. Let alsod0 =

reduce(c) and letdi = f̂i(di−1) for i = 1, . . . ,5k− 12. Thend1 ∈ I(Xk
1) by Lemma 6

and fori = 2, . . . ,5k−12 we getdi ∈ I(Xk
i ) by an easy induction and Lemma 7. LetZ

denote as usual the set of integers. ByZ 1
2

we will denote the set{z+ 1
2|z∈Z}. Looking

at Definitions 6 and 7 observe the following fact:

Fact 17 If s is even then all elements of sequencesdi , i = 0, . . . ,5k−12, are integers.
If s is odd then all elements of sequencesdi , i = 0, . . . ,5k−12, are inZ 1

2
.

Sinced5k−12∈ I(Xk
5k−12) = I(0k−2) andI(0)∩Z= {0} andI(0)∩Z 1

2
= { 1

2}, it follows

that d5k−12 = 0k−2 if s is even andd5k−12 =
1
2

k−2
, otherwise. Applying now the def-

inition of s-extended sequence to 0k−2 and 1
2

k−2
we get the desired conclusion of the

lemma. ⊓⊔

In this way, with respect to Lemma 3, we have proved that the network Mk is able
to merge in 5k−12 stages two sorted sequences given in odd and even registers, pro-
vided that the numbers of ones in our matrix columns form a balanced sequence. If the
sequence is not balanced,k−3 additional stages are needed to get a sorted output.



3.3 Analysis of General Columns

In a general case we will use balanced sequences as lower and upper bounds on the
numbers of ones in our matrix columns and observe thatQk

1, Qk
2 andQk

3 are monotone
functions (see Fact 9).

Definition 12. Let k≥ 3 and letc= (c1, . . . ,cbk) be a 2-flat sequence of integers from
[0,2k−1−1] that is not balanced. Since bothcodd=(c1, . . . ,cbk−1) andcevn=(c2, . . . ,cbk)
are flat sequences, let i ( j, respectively) be such that c2i−1 < c2i+1 (cbk−2 j < cbk−2 j+2,
respectively) or let i= k−2 ( j = k−2) if codd (cevn, respectively) is a constant sequence.
The defined below sequencesč andĉ we will call lower and upper bounds ofc. If i < j
then for l= 1, . . . ,bk

čl =







c1 if l is odd and l≤ 2 j −1
cbk−1 if l is odd and l≥ 2 j +1
cl if l is even

ĉl =

{

cbk−1 if l is odd
cbk if l is even

If i > j then for l= 1, . . . ,bk

čl =

{

c1 if l is odd
c2 if l is even

ĉl =







cl if l is odd
c2 if l is even and l≤ bk−2i
cbk if l is even and l> bk−2i

Fact 18 For k ≥ 3 and any not balanced 2-flat sequencec = (c1, . . . ,cbk) of integers
from [0,2k−1− 1] the sequencešc andĉ are balanced, height(č)+ 1= height(ĉ) and
č≤ c≤ ĉ.

Proof. Let i and j be defined as in Definition 12. We will only consider the casei < j.
The proof of the other case is similar. Directly from the definition we get that ˆc is
balanced. To see that ˇc is also balanced let us check forl = 1, . . . ,k−2 whether the sum
č2l−1+ čbk−2l+2 is constant.

č2l−1+ čbk−2l+2 = č2l−1+ cbk−2l+2 =

{

c1+ cbk−2l+2 = c1+ cbk if l ≤ j
cbk−1+ cbk−2l+2 = cbk−1+ c2 otherwise

If j = k− 2 there is no otherwise case and we are done. Ifj < k− 2 thencbk − c2 =
cbk−1 − c1 = 1, because of the definition ofi and j and we are also done. Moreover
height(č) + 1 = c1 + cbk + 1 = cbk−1 + cbk = height(ĉ). To prove that ˇc ≤ c ≤ ĉ we
consider even and odd indices. For even indices from the definition we have: ˇc2l = c2l ≤
cbk = ĉ2l . For odd indices ˆc2l−1 = cbk−1 ≥ c2l−1 ≥ c1. If l ≤ j we are done, otherwise,
c2l−1 = cbk−1 = č2l−1, becausecodd is flat. ⊓⊔

Theorem 19. Let k≥ 3 and letc = (c1, . . . ,cbk) be a 2-flat sequence of integers from
[0,2k−1−1]. Let f = f6k−15◦ f6k−14◦ . . .◦ f1, where fi =Qk

((i−1) mod 3)+1, i = 1, . . . ,6k−

15. Then f(c) is a flat sequence.

Proof. For a a 2-flat sequencec of integers from[0,2k−1−1] let č andĉ be its balanced
lower and upper bounds, as defined in Definition 12. Letc0 = c, č0 = č, ĉ0 = ĉ and
for i = 1, . . . ,6k−15 let us defineci = fi(ci−1), či = fi(či−1) andĉi = fi(ĉi−1). Observe
thatči ≤ ci ≤ ĉi , because of monotonicity of functionsQk

1, Qk
2, Qk

3 and Fact 18. To prove
thatc6k−15 is a flat sequence we need the following three technical facts.



Fact 20 Let s= height(č). If s is even thenci, j =
s
2 andci,bk− j+1 ∈ { s

2,
s
2 +1} for each

i = 3k−6, . . . ,5k−12and j= 1, . . . ,⌈ i+1−(3k−6)
2 ⌉. If s is odd thenci, j ∈ { s−1

2 , s+1
2 } and

ci,bk− j+1 =
s+1

2 for each i= 3k−6, . . . ,5k−12and j= 1, . . . ,⌈ i+1−(3k−6)
2 ⌉.

Proof. Since both ˇc andĉ are balanced, we can consider reduced forms of them and use
Lemmas 6 and 7. For the given range ofi’s values that means that

reduce(či), reduce(ĉi) ∈ I(Xk
i ) = I( joink(⌈

i +1− (3k−6)
2

⌉,Zk,Wk
i )).

It follows that for a given range ofj ’s valuesreduce(či) j , reduce(ĉi) j ∈ I(0) = [− 1
2,0].

From Fact 18 we know thatheight(ĉ) = s+1 and from Lemma 4 that heights are pre-
served in sequences ˇci and ĉi . Thus, from the definition of a reduced sequence, ˇci, j ∈
[ s−1

2 , s
2], či,bk− j+1 ∈ [ s

2,
s+1

2 ], ĉi, j ∈ [ s
2,

s+1
2 ] andĉi,bk− j+1 ∈ [ s+1

2 , s+2
2 ]. Since ˇci andĉi are

sequences of integers, for evenswe getči, j = či,bk− j+1 = ĉi, j =
s
2 andĉi,bk− j+1 =

s+2
2 ;

for odd s we conclude that ˇci, j =
s−1

2 and či,bk− j+1 = ĉi, j = ĉi,bk− j+1 = s+1
2 . Since

či, j ≤ ci, j ≤ ĉi, j , the fact follows. ⊓⊔

The second fact extends the first fact up to the last stage of our computation.

Fact 21 Let s= height(č). If s is even thenci, j =
s
2 andci,bk− j+1 ∈ { s

2,
s
2 +1} for each

i = 5k− 11, . . . ,6k− 15 and j = 1, . . . ,k− 2. If s is odd thenci, j ∈ { s−1
2 , s+1

2 } and
ci,bk− j+1 =

s+1
2 for each i= 5k−11, . . . ,6k−15and j= 1, . . . ,k−2.

Proof. Consider first the sequencec5k−12 and observe that fori = 5k−12 the value of
⌈

i+1−(3k−6)
2 ⌉ is equal tok− 2. It follows from Fact 20 that for evens all values from

the left half ofc5k−12 are equal tos
2 and all values from the right half ofc5k−12 are in

{ s
2,

s
2 +1}. For odds all values from the left half ofc5k−12 are in{ s−1

2 , s+1
2 } and all

values from the right half ofc5k−12 are equal tos+1
2 . SinceQk

1, Qk
2 andQk

3 are built of
functionsdeck∗, movk∗ andcyck (cf. Definitions 3 and 4) observe that each functionfi ,
i = 5k− 11, . . . ,6k− 15 can only exchange values at positions fromargs(movk∗) that
are from non-constant half of arguments (in case ofdeck∗ and cyck we can observe
that for a ≤ b ≤ a+ 1 and anyh ≥ 0 we have min(a,b+h) = a, max(a−h,b) = b,
max(a,b−1) = a and min(a+1,b) = b, that is, the functions are identity mappings in
stages 5k−11, . . . ,6k−15). Themovk∗ functions can only exchange unequal values at
neighbour positions moving the smaller value to the left. ⊓⊔

The last fact states that unequal valuesci, j described in the previous two facts are
getting sorted during the computation. Observe that ifs is odd (even, respectively)
then we only have to trace the sorting process in a left (right, respectively) region
of indices[1,min(k−2,⌈ i+1−(3k−6)

2 ⌉)] ([max(k−1,bk−⌈ i+1−(3k−6)
2 ⌉+1),bk], respec-

tively), wherei = 3k−6, . . . ,6k−15 and the values to be sorted differs at most by one.
We trace the positions of the smaller valuess′ = s−1

2 in the left region and the greater
valuess′ = s

2+1 in the right region. We will calls′ a moving element. Fort = 1, . . . ,k−2
let us defineit = 3k+2t−8 to be the stage, after which the length of the region extends
from t −1 to t and a new element appears in it. Lett ′ = t for odds andt ′ = bk− t +1,



otherwise, be the position of this new element andat = cit ,t′ be its value. Finally, let
nt = |{1≤ l ≤ t|al = s′}| be the number of moving elements in the region after stageit .

Fact 22 Using the above definitions, for t= 1, . . . ,k−2, if at = s′ then for i= 0, . . . ,6k−
15− it we have cit+i,max(t−i,nt ) = at if s is odd and cit+i,min(t′+i,bk−nk+1) = at , otherwise.

Proof. We prove the fact only for odds, that is, for the left region. The proof for the
right region is symmetric. We would like to show that ifat = s′ appears at position
t ′ = t after stageit then it moves in each of the following stages one position to the
left up to its final positionnt . The proof is by induction ont andi. If t = 1 anda1 = s′

appears at position 1 after stagei1 = 3k−6 thenn1 = 1 anda1 is already at its final
position. It never moves, because values at second positionare≥ s′, by Facts 20 and
21. If t > 1 andat = s′ then the basisi = 0 is obviously true. In the inductive stepi > 0
we assume thatcit+i−1,max(t′−i+1,nt) = at and that the fact is true for smaller values oft.
If max(t − i +1,nt) = nt then also max(t − i,nt) = nt and, by the induction hypothesis,
values at positions 1, . . . ,nt −1 are all equals′. That means thatat is at its final position
and we are done. Thus we left with the case:nt < t − i +1, that is, withnt ≤ t − i.

Consider the sequencescit+i−1 andcit+i = fit+i(cit+i−1). We know thatcit+i−1,t−i+1=
s′. To prove thatcit+i,t−i = s′ we would like to show thatcit+i−1,t−i = s′+1 andmovkt−i ∈

fit+i . The later is a direct consequence of an observation thatmovka ∈ fb if and only if
(a+b)≡ 1( mod3). In our case(t− i)+(it + i) = t+ it = t+3k+2t−8≡ 1( mod3).
To prove the former, let us considerau = s′, u≤ t −1. Theniu ≤ it −2 andnu ≤ nt −1.
By the induction hypothesis,ciu+ j ,max(u− j ,nu) = s′. Setting j = it − iu + i − 1 we get
j ≥ i + 1 and max(u− j,nu) ≤ max(t − 1− (i + 1),nt − 1) < max(t − i,nt) = t − i.
Moreover,iu + j = it + i −1. That means that in the sequencecit+i−1 none ofnt ele-
mentss′ is at positiont− i and, consequently,cit+i−1,t−i = s′+1. Sincemovkt−i switches
s′ with s′+1, this completes the proof of Fact 22. ⊓⊔

Now we are ready to prove thatc6k−15 is a flat sequence. By Fact 21, ifs is odd then
c6k−15∈ { s−1

2 , s+1
2 }k−2( s+1

2 )k−2, otherwise,c6k−15∈ ( s
2)

k−2{ s
2,

s
2 +1}k−2. The number

of minority elements inc6k−15 has been denote bynk−2. If s is odd andat , t = 1, . . . ,k−
2, is a minority elements−1

2 , then, by Fact 22,c6k−15,nt =
s−1

2 . If s is even andat ,
t = 1, . . . ,k−2, is a minority elements2 +1, then, by Fact 22,c6k−15,bk−nt+1 =

s
2 +2. In

both cases this proves thatc6k−15 is flat, which completes the proof of Theorem 19.⊓⊔

3.4 Proof of Theorem 2

Theorem 2 follows directly from Theorem 19 and Lemma 3. Letk ≥ 3 andc be any
2-flat sequence of integers from[0,2k−1−1]. By Theorem 19 the result of application
(Qk

3◦Qk
2◦Qk

1)
2k−5 to (c) is a flat sequence. Then, by Lemma 3, the networkMk is a 2k−

5-pass merger of two sorted sequences given in odd and even registers, respectively.

4 Conclusions

For eachk≥ 3 we have shown a construction of a 3-periodic merging comparator net-
work of Nk = 2k(k− 2) registers and proved that it merge any two sorted sequences



(given in odd and even registers, respectively) in time 6k− 15= 3(k− 5). A natural
question remains whether it is the optimal merging time for 3-periodic comparator net-
works.
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