
ar
X

iv
:1

40
1.

53
16

v1
 [

cs
.D

S]
 2

1
Ja

n
20

14

A Distributed Minimum Cut Approximation Scheme

Hsin-Hao Su ∗

University of Michigan

Abstract

In this paper, we study the problem of approximating the minimum cut in a distributed
message-passing model, the CONGEST model. The minimum cut problem has been well-studied
in the context of centralized algorithms. However, there were no known non-trivial algorithms
in the distributed model until the recent work of Ghaffari and Kuhn. They gave algorithms
for finding cuts of size O(ǫ−1λ) and (2 + ǫ)λ in O(D) + Õ(n1/2+ǫ) rounds and Õ(D +

√
n)

rounds respectively, where λ is the size of the minimum cut. This matches the lower bound they
provided up to a polylogarithmic factor. Yet, no scheme that achieves (1 + ǫ)-approximation
ratio is known. We give a distributed algorithm that finds a cut of size (1 + ǫ)λ in Õ(D +

√
n)

time, which is optimal up to polylogarithmic factors.

1 Introduction

The minimum cut problem is a fundamental problem in graph algorithms and network design.
Given a weighted undirected graph G = (V,E), a cut C = (S, V \S) where ∅ ⊂ S ⊂ V , is a partition
of vertices into two non-empty sets. The weight of a cut, w(C), is defined to be the sum of the edge
weights crossing C. The minimum cut problem is to find a cut with the minimum weight. The
exact version of the problem as well as the approximate version have been studied for many years
[6, 10, 8, 13, 12, 3, 15, 9] in the context of centralized models of computation, resulting in nearly
linear time algorithms [9, 12, 8].

Elkin [2] and Das Sarma et al. [1] addressed the problem in the distributed message-passing
model. The problem has trivial time complexity of Θ(D) (unweighted diameter) in the LOCAL

model, where the message size is unlimited. Ghaffari and Kuhn [5] recently developed approxi-
mation algorithms for this problem in the CONGEST model where each message is bounded by
Θ(log n) bits. They assume that the edges of G have integer weights from {1, . . . , nΘ(1)} and treat
G as an unweighted multigraph, where an edge e with weight w(e) is converted to w(e) parellel
edges, while still only Θ(log n) bits can be sent over these parallel edges together in each round.
Let λ be the value of the minimum cut, they give an algorithm that finds a cut of size at most
O(ǫ−1λ) in O(D) + O(n1/2+ǫ log3 n log log n log∗ n) time. Moreover, they gave an algorithm that
finds a cut of size at most (2 + ǫ)λ in O((D +

√
n log∗ n) log2 n log log n 1

ǫ5) time. Das Sarma et

al. [1] showed α-approximating the minimum cut requires Ω̃(D +
√
n) rounds for weighted graphs

for any α ≥ 1. Ghaffari and Kuhn extended their lower bound for unweighted multigraphs (which
is equivalent to the setting where one is allowed to send messages of size w ·Θ(log n) over an edge
of weight w in weighted graphs). For unweighted simple graphs, they also gave a lower bound of
Ω̃(D+

√
n/α). Therefore, the upper bound and lower bound provided by Ghaffari and Kuhn match

up to a polylogarithmic factor.

∗This work is supported by NSF grants CCF-0746673, CCF-1217338, and CNS-1318294 and a grant from the

US-Israel Binational Science Foundation. This work was done while visiting MADALGO at Aarhus University.

http://arxiv.org/abs/1401.5316v1

However, still no approximation algorithms exist for any approximation factor less than 2. In
this paper, we give a simple algorithm that finds a minimum cut of size at most (1+ǫ)λ in Õ(D+

√
n)

time. In particular, our algorithm runs in O((log11 n/ǫ17)(D +
√
n log∗ n)) rounds.

Our approach uses the semi-duality between minimum cuts and tree packings as in [9, 16].
Karger [9] showed that if we greedily pack enough trees, then for any minimum cut, there is a
tree crossing the cut at most twice. However, it is technically not easy to utilize this fact to find
minimum cuts in the distributed model. Instead, we use a lemma by Thorup [16], which shows
that if we pack more trees then there is at least one minimum cut that is crossed by a tree exactly
once. We take some ingredients from Ghaffari and Kuhn’s algorithm and Thurimella’s algorithm
[17] for identifying biconnected components to devise a procedure that is able to simultanously
test the values of the n − 1 cuts induced by deleting one of the n − 1 edges in a tree. Note that
the number of trees we have to pack is polynomial in the value of the minimum cut. Thus, we
will first use the sampling lemma of Karger [7] to obtain a sampled graph that scales the value
of the minimum cut down to O(log n/ǫ2). Then we only have to pack polylogarithmic number
of trees. Finally, we combine the resampling procedure, the tree packing, and the procedure for
testing tree-induced-cuts to find an approximate minimum cut.

2 Distributed Minimum Cut Approximation

Let G be a connected graph with integer weights from {1, . . . ,W}, where W = nΘ(1). We will
treat G as a multigraph with uniform edge weights. Let λ be the weight of the minimum cut of G.
We show how to find such an approximate minimum cut whose weight is at most (1 + ǫ)λ.

An edge e is a bridge if it does not exist a cycle in G passing e (or equivalently, deleting e breaks
G into two connected components). Given two graph A and B with the same vertex set, A+B is
the multigraph obtained by including edges in A and edges in B.

A tree packing T is a multiset of spanning trees. The load of an edge e with respect to T is
the number of trees in T containing e. Given a tree T , we say a cut is induced by T if such a
cut is obtained by deleting an edge e ∈ T . We will denote this cut by C(T, e). A tree packing
T = {T1, . . . , Tk} is greedy if each Ti is a minimum spanning tree with respect to the loads induced
by {T1, . . . , Ti−1}. Let ǫ′ = Θ(ǫ) such that (1 + ǫ′)3/(1− ǫ′) = 1 + ǫ.

Lemma 2.1 (Thorup [16]). A greedy tree packing with 96(λ + 1)7 log3 m trees contains a tree
crossing some min-cut only once.

Remark 2.2. The number of trees in the original statement of the lemma is ω(λ7 log3m), though
the proof actually implies that Θ(λ7 log3m) is enough. In particular, Thorup showed 24λ lnm/ǫ2

trees is sufficient, where ǫ satisfies
ǫ(3+log1+α m)

λ + α < 2
λ(λ+1) for some α < 1. We can choose

α = 1
λ(λ+1) and ǫ = 1

2(λ+1)3 lnm
to make the inequality hold. Therefore, 96(λ + 1)7 ln3m trees is

sufficient.

We describe our algorithm in Algorithm 1. The subroutine Test(T, κ) returns a cut whose
weight is at most (1 + ǫ′)κ w.h.p. if there exists a cut in G induced by T with weight at most κ.

We show that w.h.p. the algorithm will output a cut C with w(C) ≤ (1 + ǫ)λ. In particular,
consider the iteration i where λ ∈ [Xi,Xi+1]. Let λ′ denote the value of the minimum cut in the
sampled graph Hi. If i = 0, then it is clear that λ′ = λ ≤ X1 = 20 ln n/ǫ′2. If i > 0, since we
sampled with probability 1/2i = 20 ln n/(ǫ′2Xi+1) = 10 ln n/(ǫ′2Xi) ≥ 10 ln n/(ǫ′2λ), we know that
w.h.p. for any cut C [7, Corollary 2.4],

(1− ǫ′) · wG(C)/2i ≤ wHi(C) ≤ (1 + ǫ′) · wG(C)/2i.

2

Therefore, λ′ ≤ (1 + ǫ′)λ/2i ≤ (1 + ǫ′)20 ln n/ǫ′2. If we pack 96(λ′ + 1)7 log3m trees in T , then by
Lemma 2.1 there exists a tree crossing some minimum cut C∗ of Hi only once. Notice that for any
other cut C ′,

wG(C
∗) ≤ 2i · wHi(C

∗)

1− ǫ′
= 2i · λ′

1− ǫ′
≤ 2i · wHi(C

′)

1− ǫ′
≤ 1 + ǫ′

1− ǫ′
· wG(C

′)

1: X0 ← 1
2: i← 0
3: repeat

4: Xi+1 ← 2i · 20 ln n/ǫ′2
5: (We are assuming λ ∈ [Xi,Xi+1] in this iteration)
6: Let Hi be the subgraph sampled with probability p = 1/2i on each edge of G.
7: Find a greedy tree packing T with 96((1 + ǫ′)20 ln n/ǫ′2 + 1)7 ln3m trees in Hi

8: γ ← Xi

9: repeat

10: for each T ∈ T do

11: Call Test(T, (1 + ǫ′)γ).
12: If Test(T, (1 + ǫ′)γ) returns a cut C, output C and terminate.
13: end for

14: γ ← (1 + ǫ′)γ
15: until γ > 1+ǫ′

1−ǫ′ ·Xi+1

16: i← i+ 1
17: until Xi+1 > nW

Algorithm 1: (1 + ǫ)-approximate minimum cut

Therefore, one of the cuts induced by some T ∈ T is an (1+ ǫ′)/(1− ǫ′) approximate minimum
cut. Denote this cut by C ′, so w(C ′) ∈ [Xi, ((1+ ǫ′)/(1− ǫ′)) ·Xi+1]. Therefore in the i’th iteration,
there exists γ in the loop (Line 9–Line 15) such that w(C ′) ∈ [γ, (1+ ǫ′)γ]. So w.h.p. we will output
a cut with weight at most (1 + ǫ′)2γ ≤ (1 + ǫ′)2w(C ′) ≤ (1 + ǫ′)3/(1 − ǫ′)w(C∗) = (1 + ǫ)w(C∗).

2.1 Distributed Implmentation

We have shown the correctness of this algorithm. It remains to show how to implement it
in Õ(D +

√
n) distributed rounds, and in particular, to implement the tree packing (Line 7) and

Test(T, κ) in Algorithm 1. To pack k trees, it is striaghtfoward to apply k MST computations on
the graph where the edge weights are equal to the number of trees including it. This can be done
in O(k(D +

√
n log∗ n)) rounds [11].

Given a partition P of G into components, Ghaffari and Kuhn [5] devised a testing procedure
to test if there is a cut induced by a component in P that has weight less than κ in Õ(D +

√
n)

rounds. Given a spanning tree T , we will show how to test the n − 1 cuts induced by T also in
Õ(D +

√
n) rounds.

3

1: for i← 1 . . . k = Θ(lognǫ2) do
2: Let Gi be the subgraph obtained by sampling each edge of G independently with probability

1− 2−1/κ.
3: For each edge e ∈ T , determine if e is a bridge in the graph Gi + T .

4: Let Ye,i =

{
1 if e is not a bridge in the graph Gi + T .

0 otherwise.
5: end for

6: If there is e ∈ T such that
∑k

i=1 Ye,i ≤ k/2 + ǫ′k/8, then return the cut C(T, e)

Algorithm 2: Test(T, κ). Test(T, κ) returns a cut whose weight is at most (1 + ǫ′)κ w.h.p. if there exists a
cut in G induced by T with weight at most κ. Note that the sample probability 1− 2−1/κ = Θ(1/κ).

Lemma 2.3. If T induces a cut C(T, e) with weight at most κ, then Test(T, κ) returns a cut w.h.p.
Moreover, any cut returned by the algorithm has weight at most (1 + ǫ′)κ w.h.p.

Proof. Consider a cut C(T, e). First observe that Gi contains an edge crossing C(T, e) if and only
if e is not a bridge in the graph Gi + T . Therefore, E[Ye,i] = 1 − (1 − (1 − 2−1/κ))w(C(T,e)) =
1− 2−w(C(T,e))/κ.

If there is C(T, e) ≤ κ, then E[Ye,i] ≤ 1/2 and E[
∑

i Ye,i] ≤ k/2. By Hoeffiding’s inequality,

Pr(
∑

i Ye,i > k/2 + ǫ′k/8) ≤ Pr(
∑

i Ye,i > E[
∑

i Ye,i] + ǫ′k/8) ≤ e−
2(ǫ′k/8)2

k = e−ǫ′2k/32 = 1/poly(n).
By taking the union bound over the n−1 cuts induced by T , we conclude that w.h.p. the algorithm
will return a cut if there is cut whose weight is at most κ.

On the other hand if w(C(T, e)) > (1 + ǫ′)κ, then E[Ye,i] = 1 − 2−1−ǫ′ ≥ 1/2 + ǫ′/4 when
ǫ′ ≤ 1, since 2−ǫ′ ≤ 1 − ǫ′/2 when ǫ′ ≤ 1. So E[

∑
i Ye,i] ≥ k/2 + ǫ′k/4. By Hoeffiding’s inequality,

Pr(
∑

i Ye,i ≤ k/2 + ǫ′k/8) ≤ Pr(
∑

i Ye,i ≤ E[
∑

i Ye,i]− ǫ′k/8) ≤ e−
2(ǫ′k/8)2

k = e−ǫ′2k/32 = 1/poly(n).
By taking the union bound over the n− 1 cuts induced by T , we conclude the cut returned by the
algorithm has weight at most (1 + ǫ′)κ w.h.p.

2.2 Computing the Bridges

Given a subgraph Gi of G, it remains to show how to determine what edges of T are bridges in
the subgraph T +Gi in Õ(D +

√
n) rounds. Thurimella [17] gave an algorithm for computing the

biconnected components of the underlying graph in Õ(D+
√
n) rounds. With simple modifications,

it can be applied to compute which edges of T are bridges in the subgraph Gi of the underlying
graph G. Note that even we have the algorithm for computing the bridges of T in G+ T , it is not
clearly whether we can directly simulate it to compute the bridges of T in Gi+T , because we want
the running time to depend on the diameter of G rather than that of Gi. Therefore, we describe
the algorithm and necessary changes below.

Fix a root r in T . Let pre(u) ∈ [0, n − 1] be the preorder number which denote the time u is
visited if we perform a depth-first search on T starting at r. Denote the subtree rooted at u by Tu

4

and let size(u) be the size of Tu. Let

low (u)
def
= min

pre(u)

low (v) v is a child of u in T

pre(v) uv ∈ Gi
†

high(u)
def
= max

pre(u)

high(v) v is a child of u in T

pre(v) uv ∈ Gi
†

Lemma 2.4. Let uv ∈ T with v being a child of u, i.e. pre(u) < pre(v). uv is a bridge if and only
if low (v) ≥ pre(v) and high(v) ≤ pre(v) + size(v)− 1.

Proof. First notice that every vertex x ∈ Tv must have pre(x) ∈ [pre(v), pre(v) + size(v) − 1]. If
uv is a bridge, then no descendent of v will be adjacent to anything outside the subtree rooted at
v, for otherwise a cycle passing uv will be created. Therefore, low (v), high(v) ∈ [pre(v), pre(v) +
size(v)− 1].

On the other hand, if low(v) < pre(v) or if high(v) ≥ pre(v)+ size(v), then there exists a vertex
y ∈ Tv and z /∈ Tv such that y and z are adjacent. Since z /∈ Tv, there must exists a path from z
to u such that it does not pass uv. Therefore, u → v y → z u forms a cycle and uv is not a
bridge.

Remark 2.5. Note that the second condition high(v) ≤ pre(v) + size(v)− 1 is needed because T is
not necessarily a DFS tree.

Now it remains to show how to compute pre(u), low(u), and high(u) in Õ(D +
√
n) time. It

is explicitly described in [17] how to compute pre(u). Note that pre(u) is independent of the Gi.
Although low(u) and high(u) depend on Gi, they can be computed in a similar way in Õ(D+

√
n)

time. For completeness, we describe how to compute these functions in the following.

Lemma 2.6 ([4, 11]). A tree of n vertices can be divided into O(
√
n) connected subgraphs each of

diameter O(
√
n) in O(

√
n log∗ n) time

First, use Lemma 2.6 to decompose the rooted tree T into components F1, . . . FO(
√
n). For

each component Fi, there is a root ri which is either the root of T , r, or the unique vertex in Fi

connecting to its parent outside Fi. It is shown in [14] that the root r is able to downcast distinct
messages of size O(log n) to each of ri in O(D+

√
n) time. Conversely, it is possible for each of the

ri to upcast a message of size O(log n) to the root r in O(D +
√
n) time.

Suppose each vertex has a unique ID. The component ID of Fi is defined to be the ID of ri.
The component ID can be broadcast to every vertex in the component in O(

√
n) rounds. We can

then assume that the root r knows the topology of the contracted tree where each component is
contracted into a single vertex. This can be done if every root ri upcasts a message about the
component ID of its parent and itself.

To compute pre(u), each root ri in each component first calculate the size of Fi then upcast it
to r. Since r knows the topology of the contracted tree, r can calculate the size of each subtree
rooted at each of ri. Then r downcasts the size of subtree rooted at ri back to ri. Now each Fi

†It can be the case that v is the parent of u in T , which happens when there are parallel edges between u and v

in Gi + T , and one of them is in T . Note that an edge is not a bridge if it is a multiedge.

5

computes its preorder number internally in O(
√
n) time assuming ri has number 0. During the

computation, each ri also records what its preorder number is supposed to be if the depth-first
search started from the root of its parent component. Finally, each ri upcasts this number to r and
then r computes the correct offset for each subtree and downcasts the offsets back to the ri. After
adding the offset internally, we get the correct preorder number.

To compute low(u), initially each vertex u computes min(pre(u),minuv∈Gi pre(v)) in constant
rounds. Then the problem becomes aggregating the minimum in the subtree Tu for each u. First,
each ri computes the minimum in Fi in O(

√
n) time and then upcasts to r. Using the information,

r calculates the minimum of the subtrees rooted at each ri and downcasts to each ri. Now each ri
sends the minimum to its parent via the inter-component links. The parent replace its minimum if
it is smaller. Finally, each component Fi internally updates the minimum toward the root ri. Then
each vertex has the correct minimum. high(u) can be computed in the same way.

Therefore, the step of computing the bridges in T of Gi+T takes O(D+
√
n log∗ n) time. Each

invocation of Test(T, κ) takes O(logn
ǫ2

(D +
√
n log∗ n)) time.

2.3 Running Time

Now we analyze the running time of Algorithm 1. The outerloop runs for O(log n) iterations.
Therefore, the tree packing, Line 7, is executed O(log n) times, each taking O(log10 n/ǫ14(D +√
n log∗ n)) rounds.
Let k = O(log(nW)) be the largest index such that Xk ≤ nW . The total number of iterations

that the innerloop runs is at most

k∑

i=0

log1+ǫ′

(
1 + ǫ′

1− ǫ′
· Xi+1

Xi

)
= O(k) +

k∑

i=0

log1+ǫ′
Xi+1

Xi
= O(k) + log1+ǫ′(Xk+1) = O(log n/ǫ)

Therefore, Test(T, κ) is invoked at mostO((log n/ǫ)·(log10 n/ǫ14)) times, each taking O((log n/ǫ2)(D+√
n log∗ n)) rounds.
The total running time is

O(log n · (log10 n/ǫ14)(D +
√
n log∗ n)) + (log11 n/ǫ15) · ((log n/ǫ2)(D +

√
n log∗ n))

= O((log12 n/ǫ17) · (D +
√
n log∗ n)) = Õ(D +

√
n)

Remark 2.7. The total iterations of the outerloop and innerloop in Algorithm 1 can be reduced to
O(1) and O(1/ǫ) by first approximating λ within constant factor by Ghaffari and Kuhn’s algorithm.
Then, we can reduce our running time to O((log11 n/ǫ17)(D +

√
n log∗ n)).

The exponent of the log n and the ǫ in our running time depends heavily on the size of the
greedy tree packing in Lemma 2.1. If one can show that O(λa logb n) trees is sufficient, then our
running time can be improved to O((log2+a+b n/ǫ2a+3) · (D +

√
n log∗ n)) rounds. Using Ghaffari

and Kuhn’s algorithm to approximate λ within a constant (Remark 2.7), we can get a running
time of O((log1+a+b n/ǫ2a+3 + (log2 n log log n)/ǫ5) · (D +

√
n log∗ n)). For comparison, Karger [9]

showed that a greedy tree packing of size O(λ log n) is enough for any minimum cut to be crossed
at most twice by some tree. It will be interesting to see if the number of trees in Lemma 2.1 can
be reduced.

6

References

[1] A. Das Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pandurangan, D. Peleg, and
R. Wattenhofer. Distributed verification and hardness of distributed approximation. SIAM
Journal on Computing, 41(5):1235–1265, 2012.

[2] M Elkin. Distributed approximation: A survey. SIGACT News, 35(4):40–57, 2004.

[3] H. N. Gabow. A matroid approach to finding edge connectivity and packing arborescences.
Journal of Computer and System Sciences, 50(2):259 – 273, 1995.

[4] J. A. Garay, S. Kutten, and D. Peleg. A sub-linear time distributed algorithm for minimum-
weight spanning trees. In Proc. 34th Symposium on Foundations of Computer Science (FOCS),
pages 659–668, 1993.

[5] M. Ghaffari and F. Kuhn. Distributed minimum cut approximation. In Proc. 27th Symposium
on Distributed Computing (DISC), volume 8205, pages 1–15. 2013.

[6] D. R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-out algorithm.
In Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 21–30,
1993.

[7] D. R. Karger. Random sampling in cut, flow, and network design problems. In Proce. 26th
ACM Symposium on Theory of Computing (STOC), pages 648–657, 1994.

[8] D. R. Karger. Using randomized sparsification to approximate minimum cuts. In Proc. 5th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 424–432, 1994.

[9] D. R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, January 2000.

[10] D. R. Karger and C. Stein. An Õ(n2) algorithm for minimum cuts. In Proc. 25th ACM
Symposium on Theory of Computing (STOC), pages 757–765, 1993.

[11] S. Kutten and D. Peleg. Fast distributed construction of k-dominating sets and applications. In
Proc. 14th ACM Symposium on Principles of Distributed Computing (PODC), pages 238–251,
1995.

[12] D. W. Matula. A linear time 2 + ǫ approximation algorithm for edge connectivity. In Proc.
4th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 500–504, 1993.

[13] H. Nagamochi and T. Ibaraki. Computing edge-connectivity in multigraphs and capacitated
graphs. SIAM J. Discret. Math., 5(1):54–66, February 1992.

[14] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. Monographs on Discrete
Mathematics and Applications. Society for Industrial and Applied Mathematics, 2000.

[15] M. Stoer and F. Wagner. A simple min-cut algorithm. J. ACM, 44(4):585–591, July 1997.

[16] M. Thorup. Fully-dynamic min-cut. Combinatorica, 27(1):91–127, 2007.

[17] R. Thurimella. Sub-linear distributed algorithms for sparse certificates and biconnected com-
ponents. Journal of Algorithms, 23(1):160 – 179, 1997.

7

	1 Introduction
	2 Distributed Minimum Cut Approximation
	2.1 Distributed Implmentation
	2.2 Computing the Bridges
	2.3 Running Time

