A Distributed Minimum Cut Approximation Scheme

Hsin-Hao Su *
University of Michigan

Abstract

In this paper, we study the problem of approximating the minimum cut in a distributed message-passing model, the CONGEST model. The minimum cut problem has been well-studied in the context of centralized algorithms. However, there were no known non-trivial algorithms in the distributed model until the recent work of Ghaffari and Kuhn. They gave algorithms for finding cuts of size $O\left(\epsilon^{-1} \lambda\right)$ and $(2+\epsilon) \lambda$ in $O(D)+\tilde{O}\left(n^{1 / 2+\epsilon}\right)$ rounds and $\tilde{O}(D+\sqrt{n})$ rounds respectively, where λ is the size of the minimum cut. This matches the lower bound they provided up to a polylogarithmic factor. Yet, no scheme that achieves $(1+\epsilon)$-approximation ratio is known. We give a distributed algorithm that finds a cut of size $(1+\epsilon) \lambda$ in $\tilde{O}(D+\sqrt{n})$ time, which is optimal up to polylogarithmic factors.

1 Introduction

The minimum cut problem is a fundamental problem in graph algorithms and network design. Given a weighted undirected graph $G=(V, E)$, a cut $C=(S, V \backslash S)$ where $\emptyset \subset S \subset V$, is a partition of vertices into two non-empty sets. The weight of a cut, $w(C)$, is defined to be the sum of the edge weights crossing C. The minimum cut problem is to find a cut with the minimum weight. The exact version of the problem as well as the approximate version have been studied for many years [6, 10, 8, 13, 12, 3, 15, 9] in the context of centralized models of computation, resulting in nearly linear time algorithms [9, 12, 8].

Elkin [2] and Das Sarma et al. 1] addressed the problem in the distributed message-passing model. The problem has trivial time complexity of $\Theta(D)$ (unweighted diameter) in the LOCAL model, where the message size is unlimited. Ghaffari and Kuhn [5] recently developed approximation algorithms for this problem in the CONGEST model where each message is bounded by $\Theta(\log n)$ bits. They assume that the edges of G have integer weights from $\left\{1, \ldots, n^{\Theta(1)}\right\}$ and treat G as an unweighted multigraph, where an edge e with weight $w(e)$ is converted to $w(e)$ parellel edges, while still only $\Theta(\log n)$ bits can be sent over these parallel edges together in each round. Let λ be the value of the minimum cut, they give an algorithm that finds a cut of size at most $O\left(\epsilon^{-1} \lambda\right)$ in $O(D)+O\left(n^{1 / 2+\epsilon} \log ^{3} n \log \log n \log ^{*} n\right)$ time. Moreover, they gave an algorithm that finds a cut of size at most $(2+\epsilon) \lambda$ in $O\left(\left(D+\sqrt{n} \log ^{*} n\right) \log ^{2} n \log \log n \frac{1}{\epsilon^{5}}\right)$ time. Das Sarma et al. [1] showed α-approximating the minimum cut requires $\tilde{\Omega}(D+\sqrt{n})$ rounds for weighted graphs for any $\alpha \geq 1$. Ghaffari and Kuhn extended their lower bound for unweighted multigraphs (which is equivalent to the setting where one is allowed to send messages of size $w \cdot \Theta(\log n)$ over an edge of weight w in weighted graphs). For unweighted simple graphs, they also gave a lower bound of $\tilde{\Omega}(D+\sqrt{n / \alpha})$. Therefore, the upper bound and lower bound provided by Ghaffari and Kuhn match up to a polylogarithmic factor.

[^0]However, still no approximation algorithms exist for any approximation factor less than 2 . In this paper, we give a simple algorithm that finds a minimum cut of size at most $(1+\epsilon) \lambda$ in $\tilde{O}(D+\sqrt{n})$ time. In particular, our algorithm runs in $O\left(\left(\log ^{11} n / \epsilon^{17}\right)\left(D+\sqrt{n} \log ^{*} n\right)\right)$ rounds.

Our approach uses the semi-duality between minimum cuts and tree packings as in (9, 16]. Karger [9] showed that if we greedily pack enough trees, then for any minimum cut, there is a tree crossing the cut at most twice. However, it is technically not easy to utilize this fact to find minimum cuts in the distributed model. Instead, we use a lemma by Thorup [16], which shows that if we pack more trees then there is at least one minimum cut that is crossed by a tree exactly once. We take some ingredients from Ghaffari and Kuhn's algorithm and Thurimella's algorithm [17] for identifying biconnected components to devise a procedure that is able to simultanously test the values of the $n-1$ cuts induced by deleting one of the $n-1$ edges in a tree. Note that the number of trees we have to pack is polynomial in the value of the minimum cut. Thus, we will first use the sampling lemma of Karger [7] to obtain a sampled graph that scales the value of the minimum cut down to $O\left(\log n / \epsilon^{2}\right)$. Then we only have to pack polylogarithmic number of trees. Finally, we combine the resampling procedure, the tree packing, and the procedure for testing tree-induced-cuts to find an approximate minimum cut.

2 Distributed Minimum Cut Approximation

Let G be a connected graph with integer weights from $\{1, \ldots, W\}$, where $W=n^{\Theta(1)}$. We will treat G as a multigraph with uniform edge weights. Let λ be the weight of the minimum cut of G. We show how to find such an approximate minimum cut whose weight is at most $(1+\epsilon) \lambda$.

An edge e is a bridge if it does not exist a cycle in G passing e (or equivalently, deleting e breaks G into two connected components). Given two graph A and B with the same vertex set, $A+B$ is the multigraph obtained by including edges in A and edges in B.

A tree packing \mathcal{T} is a multiset of spanning trees. The load of an edge e with respect to \mathcal{T} is the number of trees in \mathcal{T} containing e. Given a tree T, we say a cut is induced by T if such a cut is obtained by deleting an edge $e \in T$. We will denote this cut by $C(T, e)$. A tree packing $\mathcal{T}=\left\{T_{1}, \ldots, T_{k}\right\}$ is greedy if each T_{i} is a minimum spanning tree with respect to the loads induced by $\left\{T_{1}, \ldots, T_{i-1}\right\}$. Let $\epsilon^{\prime}=\Theta(\epsilon)$ such that $\left(1+\epsilon^{\prime}\right)^{3} /\left(1-\epsilon^{\prime}\right)=1+\epsilon$.
Lemma 2.1 (Thorup [16]). A greedy tree packing with $96(\lambda+1)^{7} \log ^{3} m$ trees contains a tree crossing some min-cut only once.

Remark 2.2. The number of trees in the original statement of the lemma is $\omega\left(\lambda^{7} \log ^{3} m\right)$, though the proof actually implies that $\Theta\left(\lambda^{7} \log ^{3} m\right)$ is enough. In particular, Thorup showed $24 \lambda \ln m / \epsilon^{2}$ trees is sufficient, where ϵ satisfies $\frac{\epsilon\left(3+\log _{1+\alpha} m\right)}{\lambda}+\alpha<\frac{2}{\lambda(\lambda+1)}$ for some $\alpha<1$. We can choose $\alpha=\frac{1}{\lambda(\lambda+1)}$ and $\epsilon=\frac{1}{2(\lambda+1)^{3} \ln m}$ to make the inequality hold. Therefore, $96(\lambda+1)^{7} \ln ^{3} m$ trees is sufficient.

We describe our algorithm in Algorithm [1. The subroutine $\operatorname{Test}(T, \kappa)$ returns a cut whose weight is at most $\left(1+\epsilon^{\prime}\right) \kappa$ w.h.p. if there exists a cut in G induced by T with weight at most κ.

We show that w.h.p. the algorithm will output a cut C with $w(C) \leq(1+\epsilon) \lambda$. In particular, consider the iteration i where $\lambda \in\left[X_{i}, X_{i+1}\right]$. Let λ^{\prime} denote the value of the minimum cut in the sampled graph H_{i}. If $i=0$, then it is clear that $\lambda^{\prime}=\lambda \leq X_{1}=20 \ln n / \epsilon^{\prime 2}$. If $i>0$, since we sampled with probability $1 / 2^{i}=20 \ln n /\left(\epsilon^{\prime 2} X_{i+1}\right)=10 \ln n /\left(\epsilon^{\prime 2} X_{i}\right) \geq 10 \ln n /\left(\epsilon^{\prime 2} \lambda\right)$, we know that w.h.p. for any cut C [7, Corollary 2.4],

$$
\left(1-\epsilon^{\prime}\right) \cdot w_{G}(C) / 2^{i} \leq w_{H_{i}}(C) \leq\left(1+\epsilon^{\prime}\right) \cdot w_{G}(C) / 2^{i}
$$

Therefore, $\lambda^{\prime} \leq\left(1+\epsilon^{\prime}\right) \lambda / 2^{i} \leq\left(1+\epsilon^{\prime}\right) 20 \ln n / \epsilon^{\prime 2}$. If we pack $96\left(\lambda^{\prime}+1\right)^{7} \log ^{3} m$ trees in \mathcal{T}, then by Lemma 2.1 there exists a tree crossing some minimum cut C^{*} of H_{i} only once. Notice that for any other cut C^{\prime},

$$
w_{G}\left(C^{*}\right) \leq 2^{i} \cdot \frac{w_{H_{i}}\left(C^{*}\right)}{1-\epsilon^{\prime}}=2^{i} \cdot \frac{\lambda^{\prime}}{1-\epsilon^{\prime}} \leq 2^{i} \cdot \frac{w_{H_{i}}\left(C^{\prime}\right)}{1-\epsilon^{\prime}} \leq \frac{1+\epsilon^{\prime}}{1-\epsilon^{\prime}} \cdot w_{G}\left(C^{\prime}\right)
$$

```
\(X_{0} \leftarrow 1\)
\(i \leftarrow 0\)
repeat
    \(X_{i+1} \leftarrow 2^{i} \cdot 20 \ln n / \epsilon^{\prime 2}\)
    (We are assuming \(\lambda \in\left[X_{i}, X_{i+1}\right]\) in this iteration)
    Let \(H_{i}\) be the subgraph sampled with probability \(p=1 / 2^{i}\) on each edge of \(G\).
    Find a greedy tree packing \(\mathcal{T}\) with \(96\left(\left(1+\epsilon^{\prime}\right) 20 \ln n / \epsilon^{\prime 2}+1\right)^{7} \ln ^{3} m\) trees in \(H_{i}\)
    \(\gamma \leftarrow X_{i}\)
    repeat
        for each \(T \in \mathcal{T}\) do
            Call Test \(\left(T,\left(1+\epsilon^{\prime}\right) \gamma\right)\).
            If \(\operatorname{Test}\left(T,\left(1+\epsilon^{\prime}\right) \gamma\right)\) returns a cut \(C\), output \(C\) and terminate.
        end for
        \(\gamma \leftarrow\left(1+\epsilon^{\prime}\right) \gamma\)
    until \(\gamma>\frac{1+\epsilon^{\prime}}{1-\epsilon^{\prime}} \cdot X_{i+1}\)
    \(i \leftarrow i+1\)
until \(X_{i+1}>n W\)
```

Algorithm 1: $(1+\epsilon)$-approximate minimum cut
Therefore, one of the cuts induced by some $T \in \mathcal{T}$ is an $\left(1+\epsilon^{\prime}\right) /\left(1-\epsilon^{\prime}\right)$ approximate minimum cut. Denote this cut by C^{\prime}, so $w\left(C^{\prime}\right) \in\left[X_{i},\left(\left(1+\epsilon^{\prime}\right) /\left(1-\epsilon^{\prime}\right)\right) \cdot X_{i+1}\right]$. Therefore in the i^{\prime} th iteration, there exists γ in the loop (Line9-Line [15) such that $w\left(C^{\prime}\right) \in\left[\gamma,\left(1+\epsilon^{\prime}\right) \gamma\right]$. So w.h.p. we will output a cut with weight at most $\left(1+\epsilon^{\prime}\right)^{2} \gamma \leq\left(1+\epsilon^{\prime}\right)^{2} w\left(C^{\prime}\right) \leq\left(1+\epsilon^{\prime}\right)^{3} /\left(1-\epsilon^{\prime}\right) w\left(C^{*}\right)=(1+\epsilon) w\left(C^{*}\right)$.

2.1 Distributed Implmentation

We have shown the correctness of this algorithm. It remains to show how to implement it in $\tilde{O}(D+\sqrt{n})$ distributed rounds, and in particular, to implement the tree packing (Line 7) and Test (T, κ) in Algorithm [1. To pack k trees, it is striaghtfoward to apply k MST computations on the graph where the edge weights are equal to the number of trees including it. This can be done in $O\left(k\left(D+\sqrt{n} \log ^{*} n\right)\right)$ rounds [11].

Given a partition \mathcal{P} of G into components, Ghaffari and Kuhn [5] devised a testing procedure to test if there is a cut induced by a component in \mathcal{P} that has weight less than κ in $\widetilde{O}(D+\sqrt{n})$ rounds. Given a spanning tree T, we will show how to test the $n-1$ cuts induced by T also in $\widetilde{O}(D+\sqrt{n})$ rounds.

```
for \(i \leftarrow 1 \ldots k=\Theta\left(\frac{\log n}{\epsilon^{2}}\right)\) do
    Let \(G_{i}\) be the subgraph obtained by sampling each edge of \(G\) independently with probability
    \(1-2^{-1 / \kappa}\).
3: For each edge \(e \in T\), determine if \(e\) is a bridge in the graph \(G_{i}+T\).
4: Let \(Y_{e, i}= \begin{cases}1 & \text { if } e \text { is not a bridge in the graph } G_{i}+T \text {. } \\ 0 & \text { otherwise. }\end{cases}\)
end for
If there is \(e \in T\) such that \(\sum_{i=1}^{k} Y_{e, i} \leq k / 2+\epsilon^{\prime} k / 8\), then return the cut \(C(T, e)\)
```

Algorithm 2: $\operatorname{Test}(T, \kappa)$. $\operatorname{Test}(T, \kappa)$ returns a cut whose weight is at most $\left(1+\epsilon^{\prime}\right) \kappa$ w.h.p. if there exists a cut in G induced by T with weight at most κ. Note that the sample probability $1-2^{-1 / \kappa}=\Theta(1 / \kappa)$.

Lemma 2.3. If T induces a cut $C(T, e)$ with weight at most κ, then T est (T, κ) returns a cut w.h.p. Moreover, any cut returned by the algorithm has weight at most $\left(1+\epsilon^{\prime}\right) \kappa$ w.h.p.

Proof. Consider a cut $C(T, e)$. First observe that G_{i} contains an edge crossing $C(T, e)$ if and only if e is not a bridge in the graph $G_{i}+T$. Therefore, $\mathrm{E}\left[Y_{e, i}\right]=1-\left(1-\left(1-2^{-1 / \kappa}\right)\right)^{w(C(T, e))}=$ $1-2^{-w(C(T, e)) / \kappa}$.

If there is $C(T, e) \leq \kappa$, then $\mathrm{E}\left[Y_{e, i}\right] \leq 1 / 2$ and $\mathrm{E}\left[\sum_{i} Y_{e, i}\right] \leq k / 2$. By Hoeffiding's inequality, $\operatorname{Pr}\left(\sum_{i} Y_{e, i}>k / 2+\epsilon^{\prime} k / 8\right) \leq \operatorname{Pr}\left(\sum_{i} Y_{e, i}>\mathrm{E}\left[\sum_{i} Y_{e, i}\right]+\epsilon^{\prime} k / 8\right) \leq e^{-\frac{2\left(\epsilon^{\prime} k / 8\right)^{2}}{k}}=e^{-\epsilon^{\prime 2} k / 32}=1 / \operatorname{poly}(n)$. By taking the union bound over the $n-1$ cuts induced by T, we conclude that w.h.p. the algorithm will return a cut if there is cut whose weight is at most κ.

On the other hand if $w(C(T, e))>\left(1+\epsilon^{\prime}\right) \kappa$, then $\mathrm{E}\left[Y_{e, i}\right]=1-2^{-1-\epsilon^{\prime}} \geq 1 / 2+\epsilon^{\prime} / 4$ when $\epsilon^{\prime} \leq 1$, since $2^{-\epsilon^{\prime}} \leq 1-\epsilon^{\prime} / 2$ when $\epsilon^{\prime} \leq 1$. So $E\left[\sum_{i} Y_{e, i}\right] \geq k / 2+\epsilon^{\prime} k / 4$. By Hoeffiding's inequality, $\operatorname{Pr}\left(\sum_{i} Y_{e, i} \leq k / 2+\epsilon^{\prime} k / 8\right) \leq \operatorname{Pr}\left(\sum_{i} Y_{e, i} \leq \mathrm{E}\left[\sum_{i} Y_{e, i}\right]-\epsilon^{\prime} k / 8\right) \leq e^{-\frac{2\left(\epsilon^{\prime} k / 8\right)^{2}}{k}}=e^{-\epsilon^{\prime 2} k / 32}=1 / \operatorname{poly}(n)$. By taking the union bound over the $n-1$ cuts induced by T, we conclude the cut returned by the algorithm has weight at most $\left(1+\epsilon^{\prime}\right) \kappa$ w.h.p.

2.2 Computing the Bridges

Given a subgraph G_{i} of G, it remains to show how to determine what edges of T are bridges in the subgraph $T+G_{i}$ in $\tilde{O}(D+\sqrt{n})$ rounds. Thurimella 17] gave an algorithm for computing the biconnected components of the underlying graph in $\tilde{O}(D+\sqrt{n})$ rounds. With simple modifications, it can be applied to compute which edges of T are bridges in the subgraph G_{i} of the underlying graph G. Note that even we have the algorithm for computing the bridges of T in $G+T$, it is not clearly whether we can directly simulate it to compute the bridges of T in $G_{i}+T$, because we want the running time to depend on the diameter of G rather than that of G_{i}. Therefore, we describe the algorithm and necessary changes below.

Fix a root r in T. Let $\operatorname{pre}(u) \in[0, n-1]$ be the preorder number which denote the time u is visited if we perform a depth-first search on T starting at r. Denote the subtree rooted at u by T_{u}
and let size (u) be the size of T_{u}. Let

$$
\begin{gathered}
\operatorname{low}(u) \stackrel{\text { def }}{=} \min \begin{cases}\operatorname{pre}(u) \\
\operatorname{low}(v) & v \text { is a child of } u \text { in } T \\
\operatorname{pre}(v) & u v \in G_{i} \stackrel{\dagger}{ }\end{cases} \\
\operatorname{high}(u) \stackrel{\text { def }}{=} \max \begin{cases}\operatorname{pre}(u) \\
\operatorname{high}(v) & v \text { is a child of } u \text { in } T \\
\operatorname{pre}(v) & u v \in G_{i} \stackrel{\dagger}{\leftrightharpoons}\end{cases}
\end{gathered}
$$

Lemma 2.4. Let $u v \in T$ with v being a child of u, i.e. pre $(u)<\operatorname{pre}(v)$. uv is a bridge if and only if $\operatorname{low}(v) \geq \operatorname{pre}(v)$ and $\operatorname{high}(v) \leq \operatorname{pre}(v)+\operatorname{size}(v)-1$.

Proof. First notice that every vertex $x \in T_{v}$ must have $\operatorname{pre}(x) \in[\operatorname{pre}(v), \operatorname{pre}(v)+\operatorname{size}(v)-1]$. If $u v$ is a bridge, then no descendent of v will be adjacent to anything outside the subtree rooted at v, for otherwise a cycle passing $u v$ will be created. Therefore, $\operatorname{low}(v), \operatorname{high}(v) \in[\operatorname{pre}(v), \operatorname{pre}(v)+$ $\operatorname{size}(v)-1]$.

On the other hand, if $\operatorname{low}(v)<\operatorname{pre}(v)$ or if $\operatorname{high}(v) \geq \operatorname{pre}(v)+\operatorname{size}(v)$, then there exists a vertex $y \in T_{v}$ and $z \notin T_{v}$ such that y and z are adjacent. Since $z \notin T_{v}$, there must exists a path from z to u such that it does not pass $u v$. Therefore, $u \rightarrow v \rightsquigarrow y \rightarrow z \rightsquigarrow u$ forms a cycle and $u v$ is not a bridge.

Remark 2.5. Note that the second condition $\operatorname{high}(v) \leq \operatorname{pre}(v)+\operatorname{size}(v)-1$ is needed because T is not necessarily a DFS tree.

Now it remains to show how to compute $\operatorname{pre}(u)$, $\operatorname{low}(u)$, and $\operatorname{high}(u)$ in $\tilde{O}(D+\sqrt{n})$ time. It is explicitly described in 17 how to compute $\operatorname{pre}(u)$. Note that $\operatorname{pre}(u)$ is independent of the G_{i}. Although $\operatorname{low}(u)$ and $\operatorname{high}(u)$ depend on G_{i}, they can be computed in a similar way in $\tilde{O}(D+\sqrt{n})$ time. For completeness, we describe how to compute these functions in the following.

Lemma 2.6 ($4, ~[11)$. A tree of n vertices can be divided into $O(\sqrt{n})$ connected subgraphs each of diameter $O(\sqrt{n})$ in $O\left(\sqrt{n} \log ^{*} n\right)$ time

First, use Lemma 2.6 to decompose the rooted tree T into components $F_{1}, \ldots F_{O(\sqrt{n})}$. For each component F_{i}, there is a root r_{i} which is either the root of T, r, or the unique vertex in F_{i} connecting to its parent outside F_{i}. It is shown in 14 that the root r is able to downcast distinct messages of size $O(\log n)$ to each of r_{i} in $O(D+\sqrt{n})$ time. Conversely, it is possible for each of the r_{i} to upcast a message of size $O(\log n)$ to the root r in $O(D+\sqrt{n})$ time.

Suppose each vertex has a unique ID. The component ID of F_{i} is defined to be the ID of r_{i}. The component ID can be broadcast to every vertex in the component in $O(\sqrt{n})$ rounds. We can then assume that the root r knows the topology of the contracted tree where each component is contracted into a single vertex. This can be done if every root r_{i} upcasts a message about the component ID of its parent and itself.

To compute pre (u), each root r_{i} in each component first calculate the size of F_{i} then upcast it to r. Since r knows the topology of the contracted tree, r can calculate the size of each subtree rooted at each of r_{i}. Then r downcasts the size of subtree rooted at r_{i} back to r_{i}. Now each F_{i}

[^1]computes its preorder number internally in $O(\sqrt{n})$ time assuming r_{i} has number 0 . During the computation, each r_{i} also records what its preorder number is supposed to be if the depth-first search started from the root of its parent component. Finally, each r_{i} upcasts this number to r and then r computes the correct offset for each subtree and downcasts the offsets back to the r_{i}. After adding the offset internally, we get the correct preorder number.

To compute low (u), initially each vertex u computes $\min \left(\operatorname{pre}(u), \min _{u v \in G_{i}} \operatorname{pre}(v)\right)$ in constant rounds. Then the problem becomes aggregating the minimum in the subtree T_{u} for each u. First, each r_{i} computes the minimum in F_{i} in $O(\sqrt{n})$ time and then upcasts to r. Using the information, r calculates the minimum of the subtrees rooted at each r_{i} and downcasts to each r_{i}. Now each r_{i} sends the minimum to its parent via the inter-component links. The parent replace its minimum if it is smaller. Finally, each component F_{i} internally updates the minimum toward the root r_{i}. Then each vertex has the correct minimum. $\operatorname{high}(u)$ can be computed in the same way.

Therefore, the step of computing the bridges in T of $G_{i}+T$ takes $O\left(D+\sqrt{n} \log ^{*} n\right)$ time. Each invocation of $\operatorname{Test}(T, \kappa)$ takes $O\left(\frac{\log n}{\epsilon^{2}}\left(D+\sqrt{n} \log ^{*} n\right)\right)$ time.

2.3 Running Time

Now we analyze the running time of Algorithm [1. The outerloop runs for $O(\log n)$ iterations. Therefore, the tree packing, Line [7, is executed $O(\log n)$ times, each taking $O\left(\log ^{10} n / \epsilon^{14}(D+\right.$ $\left.\sqrt{n} \log ^{*} n\right)$) rounds.

Let $k=O(\log (n W))$ be the largest index such that $X_{k} \leq n W$. The total number of iterations that the innerloop runs is at most

$$
\sum_{i=0}^{k} \log _{1+\epsilon^{\prime}}\left(\frac{1+\epsilon^{\prime}}{1-\epsilon^{\prime}} \cdot \frac{X_{i+1}}{X_{i}}\right)=O(k)+\sum_{i=0}^{k} \log _{1+\epsilon^{\prime}} \frac{X_{i+1}}{X_{i}}=O(k)+\log _{1+\epsilon^{\prime}}\left(X_{k+1}\right)=O(\log n / \epsilon)
$$

Therefore, $\operatorname{Test}(T, \kappa)$ is invoked at most $O\left((\log n / \epsilon) \cdot\left(\log ^{10} n / \epsilon^{14}\right)\right)$ times, each taking $O\left(\left(\log n / \epsilon^{2}\right)(D+\right.$ $\left.\sqrt{n} \log ^{*} n\right)$) rounds.

The total running time is

$$
\begin{aligned}
& O\left(\log n \cdot\left(\log ^{10} n / \epsilon^{14}\right)\left(D+\sqrt{n} \log ^{*} n\right)\right)+\left(\log ^{11} n / \epsilon^{15}\right) \cdot\left(\left(\log n / \epsilon^{2}\right)\left(D+\sqrt{n} \log ^{*} n\right)\right) \\
& =O\left(\left(\log ^{12} n / \epsilon^{17}\right) \cdot\left(D+\sqrt{n} \log ^{*} n\right)\right)=\tilde{O}(D+\sqrt{n})
\end{aligned}
$$

Remark 2.7. The total iterations of the outerloop and innerloop in Algorithm 1 can be reduced to $O(1)$ and $O(1 / \epsilon)$ by first approximating λ within constant factor by Ghaffari and Kuhn's algorithm. Then, we can reduce our running time to $O\left(\left(\log ^{11} n / \epsilon^{17}\right)\left(D+\sqrt{n} \log ^{*} n\right)\right)$.

The exponent of the $\log n$ and the ϵ in our running time depends heavily on the size of the greedy tree packing in Lemma 2.1. If one can show that $O\left(\lambda^{a} \log ^{b} n\right)$ trees is sufficient, then our running time can be improved to $O\left(\left(\log ^{2+a+b} n / \epsilon^{2 a+3}\right) \cdot\left(D+\sqrt{n} \log ^{*} n\right)\right)$ rounds. Using Ghaffari and Kuhn's algorithm to approximate λ within a constant (Remark 2.7), we can get a running time of $O\left(\left(\log ^{1+a+b} n / \epsilon^{2 a+3}+\left(\log ^{2} n \log \log n\right) / \epsilon^{5}\right) \cdot\left(D+\sqrt{n} \log ^{*} n\right)\right)$. For comparison, Karger [9] showed that a greedy tree packing of size $O(\lambda \log n)$ is enough for any minimum cut to be crossed at most twice by some tree. It will be interesting to see if the number of trees in Lemma 2.1] can be reduced.

References

[1] A. Das Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pandurangan, D. Peleg, and R. Wattenhofer. Distributed verification and hardness of distributed approximation. SIAM Journal on Computing, 41(5):1235-1265, 2012.
[2] M Elkin. Distributed approximation: A survey. SIGACT News, 35(4):40-57, 2004.
[3] H. N. Gabow. A matroid approach to finding edge connectivity and packing arborescences. Journal of Computer and System Sciences, 50(2):259-273, 1995.
[4] J. A. Garay, S. Kutten, and D. Peleg. A sub-linear time distributed algorithm for minimumweight spanning trees. In Proc. 34th Symposium on Foundations of Computer Science (FOCS), pages 659-668, 1993.
[5] M. Ghaffari and F. Kuhn. Distributed minimum cut approximation. In Proc. 27th Symposium on Distributed Computing (DISC), volume 8205, pages 1-15. 2013.
[6] D. R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-out algorithm. In Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 21-30, 1993.
[7] D. R. Karger. Random sampling in cut, flow, and network design problems. In Proce. 26th ACM Symposium on Theory of Computing (STOC), pages 648-657, 1994.
[8] D. R. Karger. Using randomized sparsification to approximate minimum cuts. In Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 424-432, 1994.
[9] D. R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46-76, January 2000.
[10] D. R. Karger and C. Stein. An $\tilde{O}\left(n^{2}\right)$ algorithm for minimum cuts. In Proc. 25th $A C M$ Symposium on Theory of Computing (STOC), pages 757-765, 1993.
[11] S. Kutten and D. Peleg. Fast distributed construction of k-dominating sets and applications. In Proc. 14th ACM Symposium on Principles of Distributed Computing (PODC), pages 238-251, 1995.
[12] D. W. Matula. A linear time $2+\epsilon$ approximation algorithm for edge connectivity. In Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 500-504, 1993.
[13] H. Nagamochi and T. Ibaraki. Computing edge-connectivity in multigraphs and capacitated graphs. SIAM J. Discret. Math., 5(1):54-66, February 1992.
[14] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, 2000.
[15] M. Stoer and F. Wagner. A simple min-cut algorithm. J. ACM, 44(4):585-591, July 1997.
[16] M. Thorup. Fully-dynamic min-cut. Combinatorica, 27(1):91-127, 2007.
[17] R. Thurimella. Sub-linear distributed algorithms for sparse certificates and biconnected components. Journal of Algorithms, 23(1):160-179, 1997.

[^0]: *This work is supported by NSF grants CCF-0746673, CCF-1217338, and CNS-1318294 and a grant from the US-Israel Binational Science Foundation. This work was done while visiting MADALGO at Aarhus University.

[^1]: ${ }^{\dagger}$ It can be the case that v is the parent of u in T, which happens when there are parallel edges between u and v in $G_{i}+T$, and one of them is in T. Note that an edge is not a bridge if it is a multiedge.

