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ABSTRACT
System administrators employ network monitors, such as
traffic analyzers, network intrusion prevention systems, and
firewalls, to protect the network’s hosts from remote adver-
saries. The problem is that vulnerabilities are caused pri-
marily by errors in the host software and/or configuration,
but modern hosts are too complex for system administra-
tors to understand, limiting monitoring to known attacks.
Researchers have proposed automated methods to compute
network monitor placements, but these methods also fail to
model attack paths within hosts and/or fail to scale beyond
tens of hosts. In this paper, we propose a method to compute
network monitor placements that leverages commonality in
available access control policies across hosts to compute net-
work monitor placement for large-scale systems. We intro-
duce an equivalence property, called flow equivalence, which
reduces the size of the placement problem to be propor-
tional to the number of unique host configurations. This
process enables us to solve mediation placement problems
for thousands of hosts with access control policies contain-
ing of thousands of rules in seconds (less than 125 for a
network of 9500 hosts). Our method enables administrators
to place network monitors in large-scale networks automati-
cally, leveraging the actual host configuration, to detect and
prevent network-borne threats.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess Control
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1. INTRODUCTION
System administrators are responsible for the security of

all the hosts in their networks. They aim to prevent the
software on their hosts from being compromised and to pro-
tect critical organizational data from leakage and/or unau-
thorized modification. System administrators often leverage
network monitoring in the form of firewalls [9], traffic anal-
ysis tools [3], and network intrusion prevention systems [34]
to block attacks. Such tools examine packets destined for
networked processes in the host and packets produced by
those processes to detect malicious input data and leaked
secret data, respectively.

The problem for system administrators is to determine
how to leverage network monitoring to protect their hosts
effectively. There are two challenges. First, system adminis-
trators must determine where to place network monitoring.
A naive approach would be to monitor at each networked de-
vice, but monitoring incurs a cost, both towards deployment
(e.g., configuring monitoring) and in terms of performance
(e.g., overhead of monitoring). Second, system administra-
tors must determine which rules to enforce at each moni-
tor. While system administrators often leverage community
knowledge (e.g., Snort rule bases) about known malicious
behavior to detect or block attacks at monitors, these rules
may not pertain to that monitoring location or be specific
to different configurations, and therefore miss some attacks.
Also, system administrators must be careful when modifying
such rule bases to avoid introducing false positives.

Researchers have explored methods to both reason about
adversary attack paths and to place monitoring to cover all
known paths. Attack trees [21] and attack graphs [33, 29, 1]
model possible actions of adversaries that may lead to the
compromise of a valuable resource. However, building either
attack trees or attack graphs currently requires knowledge
about the likely vulnerabilities on individual hosts, which
may be incomplete (i.e., previously-unknown vulnerabili-
ties may be missed) and brittle (i.e., vulnerabilities may be
patched). Alternatively, researchers have developed meth-
ods to place security monitoring to block or limit adversary
access to prevent attacks based on classical problems [27, 30,
17]. These methods focus on only one layer of the system,
such as the network, a single host, or a single program be-
cause the size of the graphs becomes prohibitive. A recent
work that reasons about data flows in distributed systems



only handles systems with tens of hosts [23]. As a result,
such methods are not usable for organizations with several
networks containing many hosts.

In this paper, our goal is to develop a method that en-
ables the placement of network monitoring for the actual
threats present in an organization-wide deployment. This
work is motivated by Talele et al. who build summaries of
individual hosts to improve scalability to networks of tens
of hosts with fine-grained access control policies [37], such
as the SELinux reference policy that contains over 50,000
rules [28]. We identify several insights that enable addi-
tional, significant improvements in scalability. First, many
hosts are launched from the same OS distribution, which to-
day come pre-configured with an access control policy, conse-
quently all hosts running that OS distribution have the same
access control policy. Second, many hosts assume the same
“role” in an organization, such as network (e.g., DHCP or
DNS) server, web server, database, web client, often result-
ing in the same information flows per host. Third, we find
that network connections among hosts are often equivalent
from a security standpoint, in which case we obtain the same
threats for hosts with equivalent network connections. Using
these insights, we define three equivalence relations for hosts
that enable merging of equivalent host graphs. Further, we
prove that one equivalence property, called flow equivalence,
reduces the size of the placement problem to be proportional
to the number of unique host configurations, rather than the
number of hosts.

We use these equivalence properties to examine how to
produce network monitor placements in large-scale, hetero-
geneous networks. First, we develop a method for comput-
ing merged graphs from network configurations, host access
control policies, and target applications of the hosts. We
show that solutions can be produced for the merged graphs
that are equivalent to those that would be computed from
the original graph using standard algorithms. Second, we
demonstrate the impact of our approach on a heterogeneous
network configuration [25], finding that it works well for all
types of networks except ad hoc (i.e., where connections can-
not be predicted). In this example, merging enables a signif-
icant reduction in the sizes of graphs, from millions of nodes
to a few thousand, enabling network monitor placements to
be computed in 1-2 minutes, where the entire process of gen-
erating the merged systems and computing placements takes
10-40 minutes. While we do not produce specific monitor
placement code, we produce the placement of network mon-
itoring and the associated security requirements, which cor-
respond approximately to network monitoring rules. Gener-
ating specific network monitor rules is future work.

In this work, we make the following contributions.

• We define three equivalence relations among hosts, called
concrete, label, and flow equivalence, that enable all
hosts in an equivalence class to be represented by a
single merged host in a mediator placement problem
without loss of information flow semantics.

• We show that by using these equivalence relations the
size of a mediator placement problem is dependent on
the number of unique host configurations, not the num-
ber of hosts. Thus, networks with significant redun-
dancy among host configurations will see significant
benefits.

Internet

VPN

Trusted Clients

Partner Network

Server Farm Internet
Edge

Ad hoc network

Data Center
Remote Clients

Figure 1: Example Organization’s System: Contain-
ing six networks, two server and four client networks
(one is wireless and one is ad hoc)

• We use the method to show that graphs representing
the information flows in networks containing nearly
10,000 hosts can be compressed from millions of nodes
and edges to just a few thousand without any loss of
information flow semantics. Using this method, mon-
itor placement for such networks can be computed in
slightly over 2 minutes.

The rest of the paper is as follows. In Section 2, we
identify the challenges and goals in network monitor place-
ment. In Section 3, we review the formal model for rea-
soning about network monitor placement and highlight the
challenges in solving the problem. In Section 4, we out-
line the proposed approach to producing network monitor
placements in large-scale networks and define three equiva-
lence relations for merging host information flow models. In
Section 5, we outline a method for computing network mon-
itor placements that leverages the merging offered by these
equivalence classes. In Section 6, we evaluate the method
analytically and experimentally. In Section 7, we compare
our approach to related work. We conclude by summarizing
our approach and results in Section 8.

2. EXAMPLE SCENARIO
Figure 1 shows an example of an organization’s comput-

ing system. In this example, the organization deploys a
set of web applications across six networks, two server net-
works and four client networks. While the exact deploy-
ments vary, the server-side deployments of the web appli-
cations generally utilize edge servers (e.g., firewalls, load
balancers, etc.) that forward requests to one or more web
servers (e.g., Apache, IIS), which may then leverage applica-
tion servers (e.g., Tomcat) to implement the core application
functionality by retrieving the necessary data from database
servers. The server-side deployments are almost exclusively
wired networks with a well defined network topology and
extensive connectivity among the server layers.

On the other hand, the clients may access server appli-
cations through more varied network configurations. Client
networks may be wired or wireless, and the wireless net-
works may be 802.11, cellular, or ad hoc (e.g., MANETs).
Clients on organization networks are protected by firewalls
and may be isolated by technologies, such as VLANs, but
otherwise the structure of such networks is relatively flat.



For clients outside organizational networks, organizations
often offer their employees services to access internal ap-
plications (e.g., VPNs).

Modern organizations often control the configuration of
their internal hosts. For convenient management, it is of-
ten common for server hosts performing the same task to
be configured identically. For example, all web servers may
be configured using the same OS distribution and many may
support the same web applications to enable load balancing.
In addition, while organizational clients may be deployed on
a variety of platforms, including traditional hosts (e.g., desk-
tops and laptops) and a variety of new devices (e.g., phones,
tablets, etc.), organizations often control the applications
(and versions) that run on these devices to ease manage-
ment as well. In many cases, client users are not allowed to
download new applications to organizational machines.

System administrators are concerned with a variety of
threats to the confidentiality, integrity, and availability of
their application processing throughout their organization.
Threats may originate externally, from other internal net-
works, and from hosts within the same network. While ex-
ternal hosts may be treated as fully untrusted, our partic-
ular interest is in tracking attacks that may be propagated
from within organizational networks. A common problem
is that unprivileged processes on one host are compromised
and then used as a stepping stone to more advanced attacks
compromising security-critical hosts that impact all hosts on
the network (e.g., a Windows domain controller). Thus, we
aim to account for data flows among processes on hosts, as
well as data flows among hosts across entire organizations.

In this work, we propose to develop automated methods
to place network monitors to log and/or block unsafe com-
munications for large-scale (organizational) networks. Con-
ceptually, the goal is to produce a minimal cost monitor
placement that blocks all access to vulnerabilities (i.e., no
false negatives), that does not block any legitimate function-
ality (i.e., no false positives), and does not include any spuri-
ous monitoring (i.e., no unnecessary overhead). In practice,
such goals are ideal, but experience has shown that false
positives must be prevented, while spurious monitoring and
false negatives must be minimized.

3. MEDIATOR PLACEMENT PROBLEM
The problem of determining where to place network mon-

itoring to block or log all possible attack paths is an instance
of the mediator placement problem [18, 30]. The mediator
placement problem aims to resolve all information flow er-
rors, as defined in an information flow model, such as the
one below (adopted from Talele et al. [37]).

Definition 1. An information flow model, I = (G,L,M),
consists of the following concepts:

1. A directed data flow graph G = (V,E) consisting of a
set of nodes V connected by edges E.

2. A lattice L= {L,�}. For any two labels li, lj ∈ L,
li � lj means that li ‘can flow to’ lj.

3. A label mapping function M : V → PL where PL is
the power set of L (i.e., each node is mapped either to
a set of labels in L or to ∅).

4. The lattice imposes security constraints on the infor-
mation flows enabled by the data flow graph. Each

pair u, v ∈ V s.t. [u ↪→G v ∧ (∃lu ∈ M(u), lv ∈ M(v).
lu 6�L lv)], where ↪→G means there is a path from u
(source) to v (sink) in G, represents an information
flow error.

In this model, the possible data flows are edges that propa-
gate labels representing the security requirements on system
data among nodes that represent system resources (subjects
and objects). The lattice of labels represents the legal flows
of labeled data that every operation of the system must sat-
isfy. While lattice policies are traditionally associated with
multilevel security [5, 6], more general policies are possible,
such as policies constructed from sets of individual security
requirements [19, 42] that we will leverage in this paper.
When data with incompatible labels reach the same node,
an information flow error results. It has been shown that
information flow errors [24, 16, 32, 8] can be found auto-
matically using such a model.

A solution that resolves all information flow errors medi-
ates all paths to those errors by imposing security require-
ments (i.e., labels required by the sink). An edge mediator
(or simply, mediator), R = ((u, v), l), where (u, v) ∈ E is
an edge and l ∈ L is the label of the data propagated on
that edge. In general, the mediator placement problem is to
find the minimal cost placement of mediators that resolve
all errors in an information flow model.

Researchers have explored methods for solving the media-
tor placement problem to monitor security in networks [27],
hosts [23, 30], and individual programs [18, 13, 20]. These
techniques convert the operations authorized by network
policies, network topology, host policies, and program code,
respectively, into data flow graphs. They then identify threats
and security requirements of the system, define the legal
information flows as a lattice of labels representing these
threats and security requirements, and define a label map-
ping function to associate the threats and security require-
ments with their sources and sinks, respectively. The secu-
rity requirements at sinks are mostly domain-specific, and
may be added by OS distributors and/or system admin-
istrators. Researchers have demonstrated that the media-
tor placement problem can be reduced to well-known graph
problems, such as directed multicut (i.e., graph cut for mul-
tiple pairs of terminals) and vertex cover. Although these
problems are NP-complete, several greedy algorithms are
available (e.g., union the solution to individual cut prob-
lems). In fact, the equivalence between such problems has
been shown formally [18].

The main limitation of the above approaches is scalabil-
ity. Organizations may consist of thousands of hosts. In
addition, each host may run many processes each with com-
plex interactions. The policy that governs how Linux pro-
cesses may legally communicate contains tens of thousands
of rules [28]. Finally, individual programs also implement
complex data flows. As a result, most prior methods for
solving mediator placement problems only reason about one
level of the system, such as the network [27], hosts [23, 30], or
individual programs [13, 20, 18]. When researchers consider
all these layers, the problem was limited to a small number
of machines [23]. Talele et al. proposed a method whereby
summaries of individual hosts are produced [37], yet only
problems consisting of tens of hosts could be solved. Our
goal is to develop methods for reasoning about organiza-
tional networks in their entirety.



4. MERGING REDUNDANT HOSTS
The key to placing network monitors in large-scale net-

works is removing the redundancy from instances of the in-
formation flow model of Definition 1. In this section, we
leverage the insight that there is potentially a significant
amount of redundancy among hosts. The commonality as-
sumption is based on the understanding of various infor-
mation available on the corporate and university networks
studied. Using this insight, we propose three, progressively
more ambitious equivalence relationships among hosts, con-
crete, label, and flow equivalence, that enable the merging of
hosts that satisfy those relations.

4.1 Redundant Host Information Flows
We make the observation that in a distributed system,

the system is composed from a set of interconnected hosts.
Thus, we distinguish the contributions to the system in-
formation flow model of each host as a host information
flow model (HIFM), where a HIFM for host i is defined as
Ii = (Gi,L,Mi), where Gi = (Vi, Ei), security lattice L and
label mappings Mi : Vi → PL.

Viewing a system’s single host at a time also requires a
distinction of input and output between hosts. Input nodes
are the nodes in a HIFM’s data-flow graph that only receive
input from nodes outside the data-flow graph, and output
nodes are nodes in a HIFM’s data-flow graph that only send
output to nodes outside the data-flow graph. Formally, an
edge (u, v) is an input edge for an HIFM data-flow graph Gi

if v ∈ Vi and u 6∈ Vi. v is then said to be an input node
for host graph i, and for all edges (u, v) for an input node v
imply that u 6∈ Vi. The set of input nodes of Gi are Ii ⊆ Vi.
Second, an edge (v, u) is an output edge for Gi if v ∈ Vi and
u 6∈ Vi. v is then said to be an output node for Gi, and for
all edges (v, u) for an output node v imply that u 6∈ Vi. The
set of output nodes of Gi are Oi ⊆ Vi. The combination of
input and output edges and nodes are called I/O edges and
I/O nodes, respectively.

Our goal is to identify HIFMs that are equivalent with
respect to the mediator placement problem. Intuitively, two
HIFMs are equivalent if any equivalent mediator placement
will either resolve all the information flow errors in both
HIFMs or will fail to resolve at least one information flow
error. If so, we find that we can merge the two HIFMs
into one merged HIFM that represents all the information
flows of both, reducing the size of the data-flow graph by
removing one host sub graph. In some cases, some effort
must be undertaken to ensure that the outputs produced
by the merged HIFM is equivalent to that of the individual
nodes. We discuss these requirements below, but detail the
merging methods for each equivalence relation in Section 5.3.

We find that there is a significant redundancy among hosts
in conventional systems because many hosts are now de-
ployed from the same image. For example, many organiza-
tions produce a master image for hosts with specific roles in
the organization, such as application-specific servers (e.g.,
web server and database) and employee clients. Using a sin-
gle master image makes it easier to install hosts and also
gives administrators more control over the security of the
hosts.

From our perspective, the main impact of the use of mas-
ter images is that the security policies of several hosts may
be identical, potentially resulting in the same information
flows. In modern systems, many OS distributions include a

mandatory access control (MAC) policy [28, 4, 35, 41]. Re-
searchers have previously shown that MAC policies define
the possible data flows on a host [38, 16]. If the images are
the same, then they will implement the same firewall policy
dictating the I/O of the host. For hosts deployed for the
same purpose (e.g., a generic client host or a specific server
application), then the firewall policies will often allow only
the same I/O. As a result, we find that many hosts imple-
ment the same data flows. We define the data-flow equiva-
lence relation below, which we will use as a foundation for
the later equivalence classes used for merging below.

Definition 2. Two HIFMs I1 = (G1,L,M1) and I2 =
(G2,L,M2) are said to be data-flow equivalent I1 ≡df I2 if:

1. Same data-flow graph: There is a graph isomor-
phism between G1 and G2. Implied by the graph iso-
morphism is a bijection f : V1 → V2, which maps nodes
from graph G1 to G2. A node in one graph that is
bijectively-mapped to a node in the other graph is said
to correspond.

2. Corresponding inputs: For every input node i ∈ I1
in G1 the corresponding node f(i) = j that is an input
node in G2, such that j ∈ I2.

3. Corresponding outputs: For every output node o ∈
O1 in G1 the corresponding node f(o) = p that is an
output node in G2, such that p ∈ O2.

It is easy to see that the data-flow equivalence relation
reflexive, symmetric, and transitive, so it is an equivalence
relation.

The key insight in this paper is that if many hosts have
the same data flows, then many will face different versions
of essentially the same mediator placement problem. While
different HIFMs with the same data flow graphs may still
have different label mappings in general, we find that in
many cases installations that are configured for same appli-
cation can apply the same label mapping. In addition, if the
labels are distinct, applications dictate that label mappings
be applied on the same subjects and objects in the MAC pol-
icy (i.e., the same nodes in the data flow graph). The rest of
this section, we leverage this idea to define three equivalence
relations for HIFMs that imply that the hosts have the same
impact on the solution of the mediator placement problem.

4.2 Concrete Equivalence
We begin by defining a basic equivalence relation between

HIFMs that serves as a foundation for the more subtle equiv-
alence relations defined later. Intuitively, the idea is that if
two hosts have the same data-flow graphs, label mapping
functions, and the same input and output connections, then
they will produce the same information flows along all cor-
responding edges. We call this concrete equivalence because
the HIFM of the two hosts must be identical.

Definition 3. Two HIFMs I1 = (G1,L,M1) and I2 =
(G2,L,M2) are said to satisfy concrete equivalence I1 ≡c I2
if:

1. I1 and I2 satisfy data-flow equivalence.

2. Corresponding input edges: If i1 ∈ I1, (u, i1) ∈ E
and f(i1) = i2, then (u, i2) ∈ E.

3. Corresponding mappings: If M1(v1) = L and f(v1) =
v2, then M2(v2) = L.



4. Corresponding output edges: If o1 ∈ O1, (o1, v) ∈
E and f(o1) = o2, then (o2, v) ∈ E.

This definition places many restrictions on equivalent hosts:
two hosts have the same data flow graph, I/O nodes and
edges, and, label mapping function. That is these are hosts
that enforce the same security policies (same data flow),
configured within the same network to the same other hosts
(same I/O), and are applied to the same application secu-
rity requirements (same label mapping). Clearly, in this
case, these two hosts will have the same information flow
error paths (since all the paths are the same).

Finally, note that the requirement for output equivalence
can be relaxed. HIFMs that satisfy concrete equivalence re-
quirements 1-3 above will always produce data of the same
label at the corresponding output nodes. Thus, we can
merge two HIFMs with different output edges by unioning
these edges to the merged HIFM. HIFMs that satisfy only
concrete equivalence requirements 1-3 are said to satisfy con-
crete input equivalence.

Example: Suppose two web servers have the same input
connections (from edge servers and databases) and output
connections (with databases and edge servers). If they also
enforce the same MAC policy, then they satisfy concrete
equivalence and can be represented by a single host sub
graph. If the web servers had different output connections,
then could still be merged because they satisfy concrete in-
put equivalence.

4.3 Label Equivalence
While concrete equivalence will enable merging of hosts

in the same network, it is not suitable for merging hosts in
different networks. In that case, the hosts do not have the
same concrete connections in the network topology. We find
that two HIFMs that receive data of the same label at corre-
sponding input nodes, also produce equivalent information
flow errors. We call this label equivalence.

Definition 4. Two HIFMs I1 = (G1,L,M1) and I2 =
(G2,L,M2) are said to satisfy label equivalence I1 ≡l I2 if:

1. I1 and I2 satisfy data-flow equivalence.

2. Equivalent input mappings: If M1(i1) = L and
f(i1) = i2, then M2(i2) = L.

3. Corresponding mappings: If M1(v1) = L′ and f(v1) =
v2, then M2(v2) = L′.

In this case the main difference between concrete input
equivalence is that we replace the corresponding input edges
by equivalent input label mappings (requirement 2). This
implies that if the labels of the data received at the input
node is known and is same at each input, then the two
HIFMs satisfy information-flow equivalence. In this case,
the input labels, data flows, and label mappings are the
same, so the information flow error paths will be the same.

Example: To understand when this would be applicable
consider the following case. Suppose clients in two differ-
ent offices depend on the same services (DHCP, DNS, etc.)
administered by the same trusted party and are limited to
the same set of web applications. In this case, the labels of
the data that can be received by these clients could be de-
termined in advance. Assuming that the two clients further
enforce the same MAC policy and host firewall policy (e.g.,
use the same OS distribution) and run the same internal
applications over the same data (i.e., same label mappings),
then these clients satisfy label equivalence.

4.4 Flow Equivalence
While label equivalence abstracts hosts from their specific

network connections, hosts have to enforce exactly the same
security requirements (label mappings) against exactly the
same threats (input labels). However, in many cases, the
same programs may be used for different deployments, where
we know that may face threats at the same input location,
but the exact nature of the threat may vary (i.e., input label
may differ). In addition, the exact security requirements
that a program may need to enforce may also vary although
the program must still defend itself against threats from the
same paths (i.e., label mapping may differ). In this section,
we show that HIFMs can be equivalent even if the specific
label mappings do not match; instead, only the sources and
sinks of information flow errors must match.

The intuition is that external threats are received at input
nodes, and the question is simply whether two hosts have
information flow errors at the same sinks, regardless of the
specific labels mapped to input nodes or sinks. If so, the
hosts’ HIFMs still have information flow errors along the
same path (see Definition 1, item 4).

Conceptually, the key insight is that information flow er-
rors are not borne of specific labels, but of the paths that
lead to errors. If the corresponding paths lead to errors, then
corresponding mediator placements will resolve those errors.
The actual label of the mediator can be determined later.
Based on this insight, we define flow equivalence between
HIFMs.

Definition 5. Two HIFMs I1 = (G1,L,M1) and I2 =
(G2,L,M2) are said to satisfy flow equivalence I1 ≡f I2 if:

1. I1 and I2 satisfy data-flow equivalence.

2. Corresponding info flow errors: If node u1 ∈ V1

is a source of an information flow error at v1 ∈ V1 if
and only if the corresponding node f(u1) = u2 ∈ V2

is a source of an information flow error at the corre-
sponding node f(v1) = v2 ∈ V2.

Flow equivalence is the first equivalence class for which
some non-trivial computation is necessary to validate equiv-
alence. In theory, computing all the sources of constraint
violations could be expensive1, but there are several factors
that mitigate this expense. First, we only need to focus on
input nodes as sources, as other errors could be computed
in advance. In practice, input nodes form a small fraction
of the number of nodes in a host’s data-flow graph. Second,
we compute the paths after the host graphs are summarized,
which already eliminated spurious paths [37].

Example: Suppose two web servers implement two dif-
ferent web applications on behalf of their clients. The labels
of the application data are l1 and l2, respectively. Note that
the web servers must protect their application data from
untrusted clients, whose label c is below (recall that we are
focusing on integrity) that of the application data c < l1
and c < l2. If the two web servers are deployed using the
same OS distribution and web server, the untrusted clients
will submit requests through corresponding input nodes in
the two servers (sources), leading to information flow errors
(as c < l1 and c < l2) in the corresponding web applications

1Information flow errors can be detected in linear time in the
worst case [31], but identifying all sources that may cause
all errors is O(|V | ∗ |E|) in worst-case.
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(sinks). Since such information flow errors in both servers
can be resolved anywhere along the corresponding paths, the
corresponding mediator placement can resolve both errors.
That is, if the merged HIFM mediator is ((u, v)l) this can be
mapped to respective mediators ((u1, v1)l1) and ((u2, v2)l2)
for the web servers. Thus for networks with diverse config-
urations, we can still perform merging, since the flow equiv-
alence is not based on the concrete connections and labels.
Our method boils down the minimal required constraint for
information flow error equivalence. In hosts where we don’t
have information flow error equivalence, merging is not fea-
sible in those cases and have to be solved separately.

Reduction in mediation placement problem size.
One key question is what the impact of flow equivalence is
on the size of the mediation placement problem. In theory,
the size of the merged network is the same as the number of
flow-equivalence classes of hosts, as each host in an equiva-
lence class can be represented by a single HIFM. In practice,
flow equivalence dictate that any hosts with the same MAC
policy (OS distribution), firewall policy, and target applica-
tion(s) has the potential of being merged. Thus, as described
above, all web servers hosted on the same OS distribution
are candidates for equivalence.

4.5 Leveraging Network Mediation
Merging individual HIFMs based on flow equivalence pro-

vides the potential for the greatest reduction of the three
relations, but it does not take into account the protection
that can be provided by the network nodes on paths to hosts.
Suppose that a network node provides the data to a set of
web server hosts, if the web servers all satisfy flow equiv-
alence, then a mediator may be placed in each of the web
server hosts at the corresponding edges. However, since the
network node is on the data flow path to the web server
hosts, we could place a single mediator at the network node
obviating the need for the per host mediation. A naive ap-
plication of flow equivalence will lead to a larger number of
mediators by not utilizing network nodes effectively.

The fundamental problem is that flow equivalence enables
us to merge a set of hosts that are in different networks. If
one of the hosts is in a network that lacks the ability to
do network mediation, then mediators will be placed inside
the merged host and be applied to all hosts represented by
the merged host, including those hosts that have network
nodes capable of the required mediation. As a result, we
will produce a worse solution than we would without the
merging.

Fortunately, there is a simple solution to this problem.
Instead of merging based solely on hosts, we can include the
nodes for the network devices that may provide mediation
in the HIFM’s data flow graph. Thus, if the network de-
ployments differ in their mediation, then the hosts will not

be merged, enabling utilization of network mediation for all
hosts where it is possible.

Of course, the network nodes must be capable of perform-
ing whatever mediation is required. In practice, a network
node must be capable of changing the security requirements
of the network data to satisfy the needs of the sink. As
such security requirements are expressed in terms of labels,
likewise mediation capabilities can be defined in terms of
the labels that can be achieved by nodes. In this work, we
associate each network node and host with a lattice label
defining the LUB of mediation, called the capability label,
where each capability label is in the set of lattice labels of
the system information flow model. In theory, the node can
mediate to any label dominated by its capability label.

5. PLACING NETWORK MONITORS
In this section, we discuss how to use the equivalence rela-

tions defined above to compute a network monitor placement
from host information flow models and network topologies
for the system. Figure 2 shows the steps in our proposed
method. First, we describe a setup stage that produces the
host information flow models from security policies and net-
work topologies, using an existing method to produce sum-
maries. Second, we partition the set of summarized HIFMs
into equivalence classes using the three types of equivalence
relations from the previous section. Third, given a set of
equivalence classes and the network topologies for the sys-
tem, we produce a merged system information flow model.
Fourth, we leverage known methods for solving the mediator
placement problem for the merged system information flow
graph.

5.1 Setup Stage: Host Summaries
Our method produces network monitor placements from

host information flow models and network topologies. How-
ever, since hosts are not configured directly as host informa-
tion flow models, these have to be produced. Fortunately,
researchers have developed several automated methods for
computing elements of the information flow model. While
some manual configuration of host information flow models
may still be required, the task can be significantly reduced.
In addition, host information flow models of modern OS
distributions may be quite complex themselves, so we lever-
age previously proposed methods for producing summarized
host information flow models, which we call host summaries.

Host information flow models consist of a data flow graph,
lattice, and label mapping function as specified in Defini-
tion 1, but automated techniques are available to generate
each of the above elements. First, modern OS distributions
now provide pre-configured software packages, host firewall
policies, and mandatory access control (MAC) policies from



which data flow graphs can be constructed2. One issue is
connecting the data flows between network nodes and the
host processes, but some OS distributions (e.g., RedHat)
leverage labeled networking [10] (e.g., Secmark [22]) and
researchers have explored methods to relate access control
policies to system call sites [15]. Network topologies express
flows among network nodes.

Second, instead of using lattices to express traditional
multilevel security policies [5, 6], we envision using lattices
to represent security requirements as sets of labels, as in De-
centralized Information Flow Control [14] (DIFC). Security
requirements are predicates on nodes that must be satisfied
to prevent compromise. For example, one security require-
ment would be a limit for the number of allowed entries in
an HTTP Range query at the web server. Such a require-
ment can be encoded as a label, where only data satisfying
that requirement may be assigned that label. Our approach
is agnostic to the source of security requirements. Some re-
quirements may be derived from known vulnerabilities and
others from software testing.

In general, all web servers may want to enforce the HTTP
Range requirement highlighted above, so that label can be
mapped to any web server in any deployment. Thus, we
can automatically assign this label mapping to any host tar-
geted as a web server deployment. However, some secu-
rity requirements may be deployment-specific. For example,
many organizations deploy their own custom software on OS
distributions, such as web applications. Fortunately, MAC
policies support such customizations. For example, system
administrators use the mod_selinux module for Apache to
generate separate web application processes with distinct
permissions. However, the system administrators (or web
application developers) will have to assign specific labels for
their web application, if the web application has any special
data requirements. This is the main manual effort in setup.

Finally, researchers have found that host information flow
models themselves can be large, with thousands of nodes
and edges. This observation inspired Talele et al. to pro-
duce host summaries that retain only the nodes and edges
necessary to preserve the attack path semantics of the origi-
nal host information flow model [37]. Such summarization is
analogous to building function summaries for static program
analysis [7]. For some server host configurations, they found
that they could reduce the number of nodes by 65-80% and
the number of edges by approximately 85%.

5.2 Compute Equivalence Classes
Given the HIFM summaries computed above, we aim to

partition these summaries into equivalence classes using the
equivalence relations defined in Section 4 and then merge the
equivalent hosts. The challenge is that not all the equiva-
lence classes are the same from a merging perspective. Con-
crete equivalence requires the fewest graph changes, followed
by label equivalence, and finally flow equivalence. Thus, we
want to design a method that prefers concrete equivalence to
others, where possible, but still enables subsequent merging
using label and flow equivalence.

2The typical method is to create a node for each subject
and object and edges as follows: for each authorized read-
like operation by subject u upon object v create edge (v, u)
and for each authorized write-like operation by subject u
upon object v create edge (u, v).
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Figure 3: Equivalence Class Dominance: Flow
Equivalence creates classes that are a superset of La-
bel Equivalence, which in turn creates classes that
are a superset of Concrete Equivalence

We find that the three proposed equivalence relations sat-
isfy a set-dominance relation themselves.

Definition 6. If two hosts information flow models I1
and I2 are concrete-equivalent I1 ≡c I2 (i.e., they belong
to the same concrete equivalence class), then they are also
label-equivalent I1 ≡l I2 and flow-equivalent I1 ≡f I2.
Similarly, if two hosts are label-equivalent then they are also
flow-equivalent.

By definition concrete equivalence implies that equivalent
hosts have equivalent information flow models and connect
to the same external nodes (input and output). As a result,
they are guaranteed to receive input data of the same label,
which along with the equivalent information flow models
satisfies label equivalence. Further, hosts that satisfy label
equivalence must violate constraints at the same sinks since
they have the same input labels, label mapping functions,
and lattice. Also, the corresponding sources will contribute
atoms (data of offending labels) that violate constraints at
those sinks for the same reason. Since label-equivalent hosts
also have equivalent host information flow graphs, they sat-
isfy flow equivalence as well. Concrete-equivalent are also
flow-equivalent as can be seen.

The Venn diagram shown in Figure 3 demonstrates this
subsumption relationship among three equivalence classes.
As Section 5.3 shows, flow equivalence is the most expen-
sive case to merge, so this subsumption relation is helpful
because we can merge concrete and label cases to reduce
the cost associated with merging for flow equivalence. As
a result, our method checks for concrete equivalence, fol-
lowed by label, and lastly flow equivalence. Also, we avoid
checking for equivalence for obviously distinct cases, such
as those hosts with different OS distributions and different
applications with label mappings.

5.3 Merge Hosts
Merge operation uses the equivalence classes produced in

previous section and leverages the hierarchy of equivalence
properties to execute the merge. Figure 4 shows a method
for merging the summarized HIFMs (simply HIFMs in this
section) for the three equivalence properties. We merge from
finest (concrete) to coarsest (flow) equivalence classes.

First, concrete equivalence classes consist of HIFMs that
have the same input and output links, so merging these
HIFMs is straightforward. We produce one representative
HIFM for each class and eliminate the rest. The solution
produced for the merged HIFM will be applicable to all
members of the equivalence class. In Figure 3, we see that
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Figure 4: Host Merging for Concrete, Label, and Flow Equivalence (left to right)

HIFMs H1, H2 and H3 can be represented using H1, thus
we keep one HIFM and discard the others. If we have
two HIFMs that satisfy only concrete input equivalence, we
union the output edges (not shown).

Figure 4 shows the merging operation performed for label-
equivalent HIFMs. For label equivalence, we again create
one merged HIFM for each equivalence class, but we have
to address the problem that the network links are different.
Since the HIFMs all receive data of the same label, it is
sufficient to union the I/O edges of the individual HIFMs
into the merged HIFM. Again referring to Figure 3, we have
H1 and H5 as representatives of two concrete equivalence
classes contained in the same label equivalence class with
two additional HIFMs H4 and H7. We then perform the
merge operation on these four HIFMs to create one merged
HIFM. The I/O edges for all four HIFMs are unioned and
are added to the corresponding nodes of the merged HIFM
in this case.

We merge HIFMs of the same flow equivalence classes as
represented in Figure 4. If HIFMs are flow-equivalent, then
they have the same data-flow graphs and hence each of the
HIFMs can be represented using any one of the HIFM’s data-
flow graphs. However, since each HIFM’s input nodes may
expect data of different labels, we augment the data-flow
graph with a second layer of dummy input nodes for each
unique input label, which we call constraint nodes because
they require satisfaction of a label mapping. Each input
edge to one of the merged HIFMs is connected to one of
the new input constraint nodes instead, enabling detection
of information flow errors should the input not comply with
the expected constraints from their label mappings.

A similar approach is taken to handle the output nodes
and their connections3 as represented in Figure 4. In this
case, we create an output constraint node for each combi-
nation of corresponding output node and expected label for
that node to transmit output of an expected output label
along the output edges. In order to create these output con-
straint nodes, we need to predict the expected output labels
correctly. Normally, this is not a problem, as the target
application is responsible for most outputs and must obey
specific security requirements (i.e., label mappings). How-
ever, some data may simply “flow through” the HIFM, so we
cannot predict the label associated to that data. We remove
HIFMs from the merge if we cannot predict the labels of the
data at all output nodes.

3Note that we must precompute the label on each output
constraint node in order to propagate data of the expected
label as the original host would have.

We then have to construct the label mapping function
for the merged HIFM based on the HIFMs that satisfy flow
equivalence. Since flow equivalence requires that all the label
mappings for each of the HIFMs merged result in the same
error paths, we can use any one HIFM as a template to pro-
duce the merged HIFM’s label mapping function. Thus, we
create a dummy lattice corresponding to the labels used in
one HIFM and their information flow relationships and map
those to the corresponding nodes in the equivalent HIFMs.
Input and output constraint nodes “translate” between the
dummy labels and the actual labels to maintain the correct
input and output information flows.

5.4 Compute Network Monitor Placement
In the last step, we compute a network monitor placement

that satisfies the system’s security requirements. This resul-
tant network monitors may be chosen to enforce secrecy,
integrity, and/or availability requirements. Finally, the se-
curity requirements must be converted into equivalent rules
for the network monitors to enforce those requirements.

We compute network monitor placements by solving the
mediator placement problem for the system’s information
flow model. Recall from Section 3 that the mediator place-
ment problem can be formulated as a graph problem. We
solve the directed multicut problem [11] using a greedy al-
gorithm that unions solutions to individual cut problems.

Since security requirements are simply sets of individual
requirements, we can represent requirements for integrity,
secrecy, and availability independently. In general, such re-
quirements may not be orthogonal, however. An integrity
requirement to filter data may cause a denial of service. In
order to prevent conflicts, we separate the security require-
ments into those that are known unsafe (to block) or not
known to be safe (to log). Thus, if the integrity requirement
above is for a known unsafe case, then blocking it denies an
adversary and prevents a likely compromise.

6. EVALUATION
In this section we aim to evaluate the two claims made

in this paper. First, we examine how the concrete, label,
and flow equivalence relations enable reductions in the size
of the information flow model. We find that one host infor-
mation flow model (HIFM) per distinct host configuration
can represent large systems, thus considerably reducing the
sizes of mediator placement problems. Second, we examine
the variation in the cost of computing mediator placement
while keeping the number of equivalence class constant but
increasing the host count. We observe that the results sub-
stantiate our claim that the size of a mediator placement



Table 1: Example Network from Figure 1: Network types: ”wired”=regular wired office network with routers
and switches; ”wireless”=wireless network with access point acting as monitor; ”adhoc”=network with no
specific access point. Network protected values: ”yes”= network devices can mediate to any label; ”limited
capability”=can only mediate some errors; ”no”=no mediation on the network device.

Network Client Admin Web Web DB DNS Network Network Network Total
Client Server 1 Server 2 Server Server Type Devices Protected

Trusted 400 400 100 - - 1 wired router, IDPS, yes 901
Clients firewall
Server - 100 400 400 - 1 wired router, IDPS, yes 901
Farm firewall
Data - - 100 100 600 1 wired router, IDPS, yes 801

Center firewall
Partner 150 150 - - - 1 wired router, limited 301
Clients firewall capability
Remote 300 100 - - - 1 wireless router, limited 401
Clients access point capability
Adhoc 300 - - - - - ad hoc network no 300

Network connected host
Total 1150 750 600 500 600 5 3605

problem depends on the number of distinct HIFMs and not
the number of hosts.

We perform the evaluation on the network shown in Fig-
ure 1, which is described elsewhere [25] and covers several
aspects of a typical corporate network. The details of the
different host configurations and network properties for this
experiment network are provided in Table 1. The columns
specify distinct host data flow configurations representing
different applications, the network architectures, the net-
work devices in each network, and the mediation capability
for the available network devices. Each host system enforces
SELinux MAC policies [28]. The networks also include other
servers such as DHCP and DNS servers. The network com-
munication for each host is defined by the network topology
and the firewall iptable rules enforced in the hosts and net-
work.

6.1 Information Flow Model Merging Results
Table 2 shows the experimental results of merging in four

organizational networks with variations in the unique host
configurations and the network configuration. The fourth
row describes the example network detailed in Table 1. The
first column in Table 2 shows the total number of hosts in
the sample network, followed by how many unique host data
flows (MAC/firewall policies/applications) are given for each
host. Each host can have multiple label mapping functions
represented in third column. These configurations of unique
host data flows and their various mapping functions gener-
ate unique host configurations identified in the next column.
The distribution of these unique host configurations among
the number of subnets forms the basis of the merging capa-
bility of the system.

The columns for concrete and label equivalence classes in
Table 2 show the equivalence classes computed in each of the
subnets of the system and then the number of classes for the
whole system. The label equivalence classes will always be
greater than or similar to the unique host configurations in
the system. The next column shows the flow equivalence
classes computed across all the networks in the system. The
flow equivalence is independent of the actual labels mapped
to the hosts as discussed earlier, which enables compression
to lower number of equivalence classes than the unique host

configurations. We discussed in Section 4.5 that mediator
placement solutions may be degraded when the network me-
diation capability is not considered. The final column shows
the merging possible when accounting for network media-
tion capabilities using flow equivalence. As expected, the
number of equivalence class increases, but the number of
mediators required decreases, as the table shows.

Table 3 shows an example of the impact of merging on the
total number of nodes and edges in a system-wide informa-
tion flow model for the network detailed in Table 1. We see
a reduction of three orders of magnitude, even relative to the
summarized hosts [37], using the proposed method, reducing
the number of nodes from millions to approximately 3500.
As the graph cut method has a worst-case cost O(|E|f),
where f is the maximum flow in the graph, such a reduction
will have a significant impact on compute time.

Table 3: Reduction in the Data Flow Graph
Whole Network Summarized Merged hosts

Nodes 9 million 1.5 million 3540
Edges 19 million 3.8 million 20819

By computing mediator placement solutions for each merged
system we show that flow-equivalent merges that include the
network devices capable of mediation reduce the size of the
placement solution. For instance, the network in the fourth
row in Table 2 with 18 flow-equivalent hosts results in a so-
lution requiring 3213 host mediators using the method de-
scribed in Section 5.4. The mediator placement computed
from the 22 hosts including network mediation results in
only 2709 host mediators and 4 network mediators. Thus
the 4 network nodes can reduce the host mediation neces-
sary by over 100 mediators per network mediator.

6.2 Performance Analysis
Table 4 shows the compute times for each step in the

process of computing monitor placement for a network sys-
tem. The experiments were performed on a 2.80GHz intel
dual core machine running Linux kernel 2.6.31. The first
two columns in the table show the average time required for
computing the data flow graph and the summaries for one



Table 2: Equivalence Analysis Results: *-300 ad hoc network hosts

Host Unique Unique Unique Subnets Concrete Eq Label Eq Flow Eq Host Flow Eq+Net Host+Network
Count Data Mappings Host in System (Hosts per (Hosts per (Hosts per Mediators (Hosts per Mediators

Flows Configs Subnet/Sys) Subnet/Sys) System) System)
3600 5 2 11 5 2.8/14 2.6/13 9 1644 11 1319+3
6000 5 4 15 5 5.2/26 3.6/18 13 2326 14 1768+3
9500 5 30 120 5 26/130 24.3/121 112 20416 118 16718+3
3600 5 6 21 6 53.3/320* 4/24 18 3213 22 2709+4

Table 4: Compute Times for the Method Steps
Network Build host Summarize Compute Merge Compute

Size model per host per Equivalence hosts Placement
host (sec) host (sec) (min) (min) (min)

3600 3.5 25 5.03 3.43 1.25
6000 3.5 25 11.45 6.43 1.47
9500 3.5 25 21.36 12.27 2.06

host, these steps can be performed independently of each
other and hence can be parallelized easily. The computation
of the equivalence classes and merge operation is performed
on the entire information flow model using flow-equivalence
accounting for network mediation. The computation has
a worst case complexity of O(n2) where n is the number
of total hosts in the system. The computation for data flow
equivalence is optimized in cases where the policy applied to
the host is known to be same. Once the equivalence classes
have been identified, the processing of each HIFM can be
done independently from the others and then merged to-
gether. Computing mediator placements for an individual
HIFM given the host summary takes about 4-6 seconds on
average.

7. RELATED WORK
The research in the network and system security has mostly

followed a parallel path in finding and fixing the security vul-
nerabilities. We have various policy based system security
approaches [28, 37] which address the security requirement
in the system. Network security typically consists of placing
the network intrusion detection systems [12, 36] and effi-
ciently tracking the traffic between hosts. These methods
do not take into account internal hosts processes to identify
the actual nature of data being transmitted. The attack
graph [33, 29] and attack tree [21] approaches bring the net-
work and the host states closer to identify an exploit, but
they rely on previous knowledge of the vulnerability. As the
size of the system increases the approach faces the prob-
lem of state space explosion and soon becomes intractable.
There has been much work done in the area of perform-
ing efficient attack graph based analysis [27, 1, 40, 26, 2].
These techniques are mostly based on various heuristics and
knowledge of previous attacks to determine the attack be-
havior. The work in [40] does vulnerability analysis based
on the topology, temporal property and received alerts to
predict possible future alerts. The method used in [1] is an
extension of above method and employs a temporal abstrac-
tion of the attack graph to determine relevant sequences
in order to perform scalable detection. The work in [26]
also employs forensic analysis of attack strategies in order
to predict and defend future attacks. Rather than basing
the detection on earlier attack strategies and heuristics we
proactively model the host data flow to block all possible

attack paths by providing complete mediation. There have
been efforts to assure complete mediation while identifying
the optimal placement using classical approaches like vertex
cover [27] and graph cut problems [30, 17]. These efforts
have been mostly either in the context of host or network
mediation, but not for both.

Another work on network reduction [39] for the purpose of
efficient analysis, is based on reducing the number of network
nodes by unifying them such that the key network protocol
correctness properties are not violated. The work takes an
Border Gateway Protocol (BGP) instance of the protocol
and utilizes the Stable Paths Problem(SPP) to identify the
nodes that can be unified to reduce the network size prior
to performing analysis for anomaly diagnosis. The method
displays a similar idea on reduction of the graph for analysis
and is specific to network and does not deal with host data
flow connections.

This work is closer to the host data flow summarization
method done in [37], where they show that summaries main-
tain the fine grained data flow properties needed for com-
plete mediation while making it more efficient to analyze.
Though the method performed some reduction at host level
for efficient analysis, it was not able to handle more than
hundred hosts. We leverage their work further to address
the redundancy across the network and achieve further sum-
marization and are able to address thousands of hosts effi-
ciently.

8. CONCLUSION
In this paper we have successfully introduced the method

to model large network systems in scalable manner to enable
information flow analysis. We presented three key equiva-
lence concepts that enable us to preserve the information
flow error paths in the reduced system model. The model
can then be analyzed for security errors and the placement
solution thus obtained can solve the security errors in the
entire systems. This work considers the fine-grained flow
properties in every host while scaling the analysis to huge
corporate networks. The results show that this method can
achieve substantial reduction in the system graphs where
such reduction depends on the amount of redundancy among
host configurations and network topologies rather than the
actual number of hosts and network flows. We demonstrate
how near-optimal and efficient network monitor placement
can be done considering the host flows for typical configura-
tions of large corporate networks.
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