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1 Introduction
This note reports a tight asymptotic solution to the following recurrence on all
positive integers n:

T(n) = cn®log’ n+ Y% | a;-T([bi-n]) for n > ny, (1)
0<T(n)<d for n < nyg, (2)

where
e a>0,0>20,c>0,d>0,
e k is a positive integer,

g, >0and1>b>0fori=1,...,k,

e ng > max% ﬁ.
Since ng > max?_; lle.-" [b;n] < n—1for all b; and n > ny. Thus, the T(n) term
on the left-hand side of (1) is defined on T-terms with smaller n, and (2) properly
specifies the initial values of T'.

A special case of this recurrence, namely, k£ = 1, is discussed in [2, 5] and standard
textbooks on algorithms and is used extensively to analyze divide-and-conquer strate-
gies [1, 4]. A specific recurrence with k = 2 is used to analyze a divide-and-conquer
algorithm for selecting a key with a given rank [1, 3, 4].
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Let g(z) = X% ,a;-b?. The characteristic equation of the general recurrence is
the equation g(z) = 1. Our solution to the general recurrence is summarized in the
following theorem.

Theorem 1 If r is the solution to the characteristic equation of the general recur-
rence, then
o(n") ifr > a;
T(n) ={ O(n*log'*’n) ifr =a;
O(n%logn) ifr <a.

The key ingredient of our proof for this theorem is the notion of a characteristic
equation. With this new notion, our proof is essentially the same as that of the
case with £k = 1 [1, 2, 4, 5]. This note concentrates on elaborating the characteristic
equation’s role in our proof by detailing an upper bound proof for a certain case.
Once this example is understood, it is straightforward to reconstruct a general proof
for Theorem 1. Consequently, we omit the general proof for the sake of brevity and
clarity.

2 An Example

This section discusses the general recurrence with £k = 3. To further focus our
attention on the characteristic equation’s role, we assume that § = 0, r is a positive
integer, and = > a. Then, according to Theorem 1, T'(n) = ©(n"). We will only
prove T'(n) = O(n"). The lower bound proof is similar.

Let S(n) = fi-n"— fa-n™"7 — f3-n®. It suffices to show that there exist some positive
constants fi, fa, f3 such that T'(n) = O(S(n)).  These constants and some others are
chosen as follows. Without loss of generality, we assume b; < by < bs.

c
fs = ————

9(a) =1
f2 = any positive constant;

h = i+t

_ 1 Are Y,
Mg = ma.X{ﬂo, b]_, (_f2 (g('r _ %) _ 1)) }1
M = 'leé?n)‘(){l,T(n)}.

Note that since 0 < b; < 1 for all b;, g is a decreasing function. Then since r > a and
r>r1—1% g(a) >1and g(r— 1) > 1. Thus, the above constants are all positive. We
next consider the following new recurrence:
R(n) = cn® + a1-R([bhi-n]) + a2-R([b2-n]) + ag-R([bs-n]) for n > mp, (3)
R(n) =1 for n < my,

It can be shown by induction that T(n) < M-R(n) for all n. Thus, to prove T'(n) =
O(S(n)), it suffices to show R(n) < S(n) for all n.



Base Case: R(m) < S(m) for all m < myg. This follows from the choice of f;.
Given some n > myg, we need to show R(n) < S(n).

Induction Hypothesis: R(m) < S(m) for all integers m where my < m < n.
Induction Step:

R(n) < cn®+a1-S([b1-n]) + az-S([bz-n]) + a3-S([ba-n]) (4)
< en®+ fig(r)(n+ bil)r — farg(r — %)"nr_% — fa-g{a)n® (5)

< en®+ fi-g(r)n™ + f1-2'-n"‘1-% — fa-g(r — %)-n"_% — f3-9(a)-n® (6)

In this above derivation,

e (4) follows from (3), the inequality mo > ng, the base step and the induction
hypothesis;

e (5) follows from the fact that [b;-n] < b;-(n + ﬁ),
e (6) follows from the fact that (n + ﬁ)’ <n + 2’-n"1-ﬁ because r is a positive
integer and mg > -

To finish the induction step, note that the right-hand side of (6) is at most S(n) as
desired for the following reasons.

e By the choice of f3, c-n® + f3-g(@)-n® < —f3-n°.
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[ ] Since mo 2 (m;_—lj) , fl_ZT.nT—l_ﬁ — fz_g(r — %)_nr—% S _fz'nr—%.
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