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Abstract 
The paper focuses on language constructs for  driving the 

allocation of parallel object-oriented applications onto a 
target architecture. The paper analyses the issues that arise in 
the definition of these constructs and presents the solutions 
adopted in several systems and programming environments, 
by discussing their capability of enforcing the principle of 
modularity. Open issues and future directions of research are 
outlined. 
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1. Introduction 

The allocation problem, i.e., the problem of a wise 
assignment of the components of a parallel application to the 
execution resources so to achieve high performance, is one of 
the key points to be faced in the design of any parallel and 
distributed programming environment [CasK88]. 

Fully automated tools can be implemented and integrated 
within a distributed environment. They are in charge of 
controlling the execution of a parallel application and 
deciding, on the basis of an automated allocation policy, the 
allocation of its components. The main advantage of 
automated allocation tools is to provide t ransparency:  the 
user can disregard any issue related to allocation and leave all 
decisions to the policy. A drawback of an automated approach 
is that it is only capable of reaching general purpose goals and 
cannot to take into account the peculiar application needs: 
different applications can have different needs in terms of 
system resources, and the same allocation policy may have 
different impact on them. 

An alternative approach may sacrifice transparency to 
give the user the capability of driving the allocation of a 
parallel application. Though such a solution may be viable for 
static applications, whose allocation can be effectively decided 
before their execution, dynamic applications exist whose 
allocation can be effectively decided only at run-time. Because 
a dynamic intervention of the user is highly intrusive and, 
generally, not tolerable, a customized dynamic allocation 
policy must be somehow codified within the application. 

The paper restricts the focus to object-oriented parallel 
programming environments [Weg90, ChiC91] and analyses 
those language constructs that can be introduced to permit 
users to express the allocation behavior of their application 

components and to drive their allocation. Though very 
different approaches can be adopted, a few design issues can 
precisely characterize them, such as the degree of  
architecture independence of the constructs, their express ive  
power, their degree of integration with the run- t ime  system. 
In addition, a primary requirement for the analyzed allocation 
constructs is the capability of enforcing modu la r i t y  in the 
definition of the allocation behavior, i.e., the constructs must 
be confined and separated from other application parts and 
they must grant reuse of the defined allocation behavior via 
context independence. 

The paper surveys and analyses the above issues, with 
attention to modularity, several object-oriented programming 
environments and systems that provide some kind of  
allocation constructs; among the others, the Parallel Objects 
environment [CorL91, CorLZ97], whose project personally 
involved the author. Without the ambition of defining a 
precise taxonomy, the paper outlines important similarities 
and differences among the facilities offered by different 
systems. In addition, the analysis permits to highlight open 
issues in the area and to suggest new directions of research. 

The paper is organized as follows. Section 2 analyses the 
allocation problem in its general terms. Section 3 introduces 
the customized approach to allocation and section 4 its main 
design issues. Section 5 surveys the existing systems. Section 6 
outlines open issues and future directions of  research. 

2. The Allocation Problem 

A parallel application defines a set of logical components 
in need of execution and of interacting/communicating each 
other. The allocation problem, in its general terms, consists in 
finding one assignment of the application components to the 
available physical resources of the target architecture that 
achieve high-performance, i.e., a good speed-up depending 
on application characteristics and available resources 
[CasK881. 

2.1 Static versus Dynamic Allocation 

Based on the time at which allocation decision are taken, 
one can distinguish between static and dynamic approaches. In 
the static approach, the allocation of the components of  a 
parallel application onto a target architecture is decided before 
the execution of the application itself. A static approach to 
allocation is suitable only for those applications whose 
behavior can be accurately predicted at compile- t ime 
[NorT93]. Whenever the behavior of an application is 
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dynamic, i.e., it cannot be predicted at compile-time, no 
effective allocation decision can be taken betbre the execution. 
In those cases, a dynamic  approach  must be adopted 
[ShiKS92]: the allocation of the components of a parallel 
application must be decided at run-time and adaptively, 
depending on the current state of the execution. One the one 
hand, the allocation of each component can be decided when it 
begins its active life within the system (i.e., when it is 
dynamically created). On the other hand, if a migration 
mechanism is available [Smi88, Nut94], the allocation of 
already allocated entities can be changed during their life. 

2.2 Automated Allocation Tools 

To manage the allocation of a parallel application onto a 
target parallel/distributed system is a complex activity, 
whether a static or a dynamic approach is adopted. 

To provide full t r anspa rency  and to free the user from 
any allocation-related issue, a parallel programming 
environment can integrate automated tools for dealing with 
either static or dynamic allocation (or both). In the static case, 
it is the job of the compiler to extract from the application 
code all the information needed and to map it onto the target 
architecture on the basis of a mapping algorithm [NorT93]. 
Static code analysis and off-line monitoring can produce a 
large amount of usefifl information about resource exploitation 
of the app!ication components. In the dynamic case, the 
application behavior is monitored at run-time and then, on the 
basis of the obtained information, the allocation of the 
application components is decided by an allocation policy in 
charge of dynamically issuing the needed mechanisms 
[CorLZ92]. 

3. Toward  User-Driven Al locat ion 

Automated allocation tools have the great advantage of 
making the allocation transparent to the user. However, they 
have limits that can make it necessary to users the control of 
the allocation of  their applications. 

3.1 L imi t s  o f  A u t o m a t e d  A l l o c a t i o n  Tools 

Any automated approach to allocation fixes a general- 
purpose goal for the allocation policy, tn the past few years, 
many research efforts have been devoted to the study of both 
static and dynamic allocation policy with the goal of either 
load sharing or load balancing [ShiKS92]. In addition, several 
systems and programming environments have integrated 
automated allocation tools based on a fixed load 
balancing/sharing policy [PowM83, BalK93]. However, all of 
the above proposals are more system-oriented rather than 
application-oriented: the same policy applied to all 
applications without any variation neglects peculiar 
application needs. For example, an automated policy could 
allocate on distant nodes, with the aim of load balancing, 
heavily communicating entities, making them incur in high 
communication costs, because the components of a parallel 
application usually needs to interact each other [Ju188]. 
Furthermore, by assigning the entities situated on the critical 
path of an application the same amount of execution resources 

assigned to the other application components can make the 
whole application execution time increase [ShiWP90]. 

Static allocation policies - because of their off-line and 
non intrusive nature - can somehow take into account, in their 
decisions, detailed information about the execution and the 
communication behavior of the application components. The 
situation is different in the dynamic case: it is too expansive to 
dynamically collect detailed information about the behavior of 
the application components and to take them into account in 
allocation decisions. Only a very l imited amount of 
application-dependent information can be collected and 
exploited in decisions, because of  the on-l ine and intrusive 
nature of  dynamic allocation tools. 

3.2 Explicit Allocation Code 

When the performance achieved by the decisions of 
automated allocation tools is not satisfactory, one might decide 
to sacrifice transparency for performances. The user, in this 
case, has the duty of studying his/her applicat ions '  behavior 
and somehow driving their allocation. 

The off-line nature of static allocation can make it quite 
simple to take into account the peculiar  needs of  an 
application: the user can fully manual ly  specify, before the 
execution of an application, where its components must be 
allocated, even with the help of some graphical  tool [Bru93]; 
in addition, the user can easily check the decisions taken by a 
mapping algorithm to tune its behavior. 

To take into account the dynamic allocation needs of  an 
application is more complex. The on-l ine nature of the 
decisions makes impossible to leave the user the duty of 
directly detecting the applications'  behavior and deciding the 
allocation of their components at run-time: this interaction 
would produce an intolerable overhead and the user cannot be 
prompt enough to make his/her decisions effective. 

A different approach is necessary to allow the execution 
of a parallel application to be dynamical ly  managed with 
regard to its peculiar allocation needs: a parallel  application 
must contain in itself not only the "algori thmic" code but also 
some kind of "al locat ion code". The allocation code must 
allow users to specify the allocation needs of  their application 
components or, in other words, must help in building a 
customized dynamic allocation policy. 

The capability of controlling the allocation of the 
application component from the application level can be 
provided by the run-time support to the environment, that 
gives users access to the low-level allocation mechanisms. 
This capability can be given in the form of: 
• l i b r a ry  calls, with a well defined interface, that give direct 

access to the allocation mechanisms available in the 
environment [Zhou93, Tar94]; 

• language constructs  whose execution has the effect of 
influencing the allocation of the application onto the 
architecture [Ju188, Ach93]. 

In both cases, the allocation code is no longer transparent 
to the programmers that acquire, by means of the allocation 
code, the capability of building their own dynamic allocation 
policies, tuned to the peculiar needs of their applications. 

The above distinction between l ibrary calls and language 
constructs is not the most significant one: in many cases, a 



sequence of language constructs is simply translated by the 
compiler in a sequence of library calls to the run-time support. 
Thus, the tollowing of this paper focuese on language 
constructs only. 

4. D e s i g n  I s s u e s  i n  t h e  A l l o c a t i o n  Code 

Very different approaches can be adopted in the 
definition of language constructs to provide application-level 
access to the allocation mechanisms. This section outlines and 
analyzes the issues that characterize most significantly a given 
proposal in the area, with a peculiar attention to modularity. 

4.1 M o d u l a r i t y  

The modularity principle enforces separation of concerns 
and tries to build encapsulated and reusable modules. In the 
allocation area, modularity expresses the capability of: 
- separat ing the allocation code from the algorithmic code 

of an application; 
* confining the area of influence of the allocation code for a 

specific application or component of an application. 
With regard to the first point, the code that implements 

the core functionality of an application has a goal different 
from the code that implements the allocation policy. Hence, if 
separation of concerns is not enforced and, instead, different 
kinds of code are mixed together, the complexity of an 
application is likely to increase, making it more difficult 
design and maintenance. The same separation principle is 
encouraged, for example, in the area of synchronization for 
concurrent programming [CorL91, McH94]. 

The second point relates to reuse, that can be granted 
only by enforcing encapsulation and context-independence. 
Because the allocation code associated to an application or to 
the components of an application becomes part of the 
behavioral description of the components, one must avoid the 
allocation behavior of one component to be influenced by other 
external entities: this would be a violation of the encapsulation 
principle and would no longer guarantee the same expected 
behavior in dif/erent contexts. Conversely, the allocation code 
associated to a given component must not influence the 
allocation of any external entity. 

4.2 Other Design Issues  

Though the enforcement of the modularity principle is a 
primary requirement, other important issues characterize 
language constructs for allocation. In particular: 
- abstraction,  i.e., the degree of architecture independence 

the allocation code expresses and, consequently, the 
capability of making applications portable; 

- expressive power, i.e., the capability of the allocation code 
of giving user full control over the allocation of his/her 
application components; 

- integration with the run-time support, i.e., the degree of 
control the run-time support has over the allocation and 
the way it interacts with the user-defined allocation code. 

The lack of a dominant architecture makes architecture- 
independence and portability a general requirement in the 

parallel computing area. The allocation code must answer 
them too, by expressing the allocation needs of parallel 
applications in abstract and architecture-independent terms 
that are likely to assume different concrete meanings on 
different architectures, transparently to the user. A drawback 
of an architecture-independent approach is that it cannot 
always grant a very efficient exploitation of the resources of 
the target architecture, because of  the introduced abstraction 
layer. With regard to modularity, the application of a modular 
principle in the definition of the allocation code and 
architecture-dependency seem to clash: the reusability degree 
of the application components would be too limited by 
granting portability only across different application but not 
across different architectures. 

By recalling that the reason for writing application- 
specific allocation code is that a single policy in the run-t ime 
system is not be suitable for all applications, an environment 
that provides tools for writing application-specific policies 
must grant tools powerful enough to express a wide range of 
allocation policies. In the allocation area, it can be very 
difficult to understand the power of either a set of  language 
construct or of library calls. Expressiveness can be measured 
by the amount of information about the state of  the system that 
can be exploited, the available allocation mechanisms and the 
capacity of directly commanding them. The respect of  the 
modular principle intrinsically limits the expressiveness of  the 
allocation code; nevertheless, we claim this limit is essential to 
keep low the complexity of the allocation code. 

With regard to the run-time system, the starting point of 
this paper is that a user-defined allocation policy is likely to 
perform better than a general-purpose allocation policy. 
However, we feel that leaving to the user the duty of  managing 
the allocation of its parallel application from scratch and 
without any help from the run-time system may not to be the 
optimal solution. An alternative approach can integrate an 
automated allocation policy and some kind of allocation code, 
conceived with the purpose of customizing its automated 
behavior. An important advantage that can come from this 
integration is that the user is no longer obliged to specify the 
allocation code: if  no allocation code is defined, the system 
policy performs anyway some dynamic management on the 
allocation of the parallel application on the system. An 
apparent drawback of an integrated approach is that it seems 
to clash with modularity, by allowing an external entity - the 
automated policy - to influence the allocation of the 
application components. Despite of  that, a clear separation of 
concerns is still enforced: the allocation code can be defined 
only on the basis of application-level information; the policies 
implemented in the run-time system take allocation decisions 
based on low-level load information about the current state of 
the system. Only by allowing an external entity to exploit this 
low-level information one can grant architecture-independence 
and ease of use without loosing in efficiency. 

5. Survey of Existing Environments 

Several proposals in the concurrent object-oriented area 
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aim to define language constructs for customizing the 
allocation of objects in parallel/distributed applications. As a 
general rule, all proposals make the allocation code become 
part of the definition of a class (figure 1), as it has been for 
language constructs introduced for different purposes, such as 
synchronization and deadline specification [CorL91, Aks94]. 
In fact, because the application components are instances of a 
class that describes their behavior, the dynamic allocation 
needs of the components have to be considered as part of the 
behavior. In addition, all proposals focus on locality of 
references between objects as the key issue to achieve high- 
performance. Apart  from this common characteristics, very 
diffterent approaches have been followed, as the following sub- 
sections show. 

l S~nc~hro°d~isation 
i i _ _ _ . . ,  

Figure 1. The allocation code as part of a class definition 

5.1 Emerald and F r i e n d s  

Emerald [Jul88] is one of the systems that firstly 
introduced language-level constructs to dynamically allocate 
the objects of a parallel applications. 

Emerald can insert constructs for allocation either as 
instructions in the code of the instance methods or as 
annotations in the definition of an instance variable (see figure 
2). 

/2 eZ21'lTa°:on 
Figure 2. The Emerald approach 

With regard to the former case, Emerald defines several 
constructs for object mobility (i.e., migration), that have the 
effect of making the corresponding mechanism apply. The 
move construct can be used to migrate an object to a given 
location, i.e., to the node of residence of another object. For 
example, the instruction: 

move X to locate Y 

provides, when executed, to move the object referred by the 
variable X to the node where the object referred by Y currently 
resides. The move  primitive can also be used in parameter- 
passing when invoking an operation upon an object. For 
example, the following statement: 

foo.SomeOperation(move X) 

specifies the compiler that the parameter object (in this case 

X) should be migrated to the node where the object referred by 
foo is located. In Emerald parlance this is known as call-by- 
move. Another keyword, visit, can be used instead of m o v e  in 
parameter passing: in this case, the parameter is to be 
migrated to the destination node for the duration of the call 
and moved back upon termination. Call-by-move and call-by- 
visit are provided in the language both as a convenience to the 
programmer (they avoid the need for explicit move statements 
before a call) and as a performance optimization (they permit  
the compiler to pack the migrating objects in the same 
network packet of  the invocation). 

The last mobil i ty concept that Emerald supports is f ix ing,  
which requires an object to become immobile. If  one object is 
fixed at a node it cannot be migrated to another node, unless it 
is later unfixed and thus made mobile again or refixed to a 
different node. One reason why one object may be fixed at a 
node is if  it is currently accessing resources specific to that 
node. The syntax used in Emerald for fixing, unfixing and 
refixing are as follows: 

fix X at Y 
unfix X 
refix X at Y 

Any move  and visit commands are ignored by the run-t ime 
system if  applied to one object which is currently fixed. 

Objects do not live in isolation but contain references to 
other objects, e.g., an object may be the root node of a graph or 
a linked list. When such an object is being moved to another 
node, it may be appropriate to move the entire graph/l inked 
list, so to grant locality. The a t tach  annotation, used in the 
definition of instance variables, is provided for this purpose_ 
For example, the following definition: 

attach var foo: type_of_foo 

specifies that the 1oo instance should always follow the 
movements of the objects in which it is declared. Whenever 
the object into which this declaration is contained migrates, it 
requires the migration of  any object eventually attached to foe,  
in a transitive way. 

Emerald constructs are very powerful and make it 
possible to express a great variety of allocation behavior in 
applications. In addition, they are abstract and portable: the 
allocation code of the application components is expressed in 
terms of the allocation of other components, without forcing 
(though allowing) the user to refer, say, to a physical node of 
the system. In spite of these advantages, the Emerald way of 
dealing with the allocation of application components is far 
from enforcing the modular principle. Firstly, allocation 
constructs are mixed with the sequential code (methods and 
instance variables definitions). Thus, no separation of 
concerns is provided and the user is forced to define his/her 
classes by taking into account, at the same time, algorithmic 
and allocation-related issues: this is likely to increase the 
complexity of parallel applications. In addition, the allocation 
constructs may tend to violate the encapsulation principle. In 
fact, the constructs inserted in the code of a class do not 
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specity the allocation behavior of the instances of the class 
itself (i.e., of the object that is currently executing them) but 
they can command the migration of other instances of which 
the reference is hold. This happens, for example, because an 
object can be moved around in the system commanded by the 
clients that are currently refereeing it or by objects attached to 
them. 

As a final remark, in Emerald all responsibility of 
allocation is left to the user and there is neither any system- 
level allocation policy to check or integrate the user-inserted 
allocation constructs nor any way to access to information 
about the current system state (for example, the load of the 
nodes). Only a few static allocation decisions can be 
autonomously taken at compile time: for example, the 
compiler generates code to move a parameter if it is a small 
and immutable object, e.g., an integer, because such objects 
can be copied unexpensively. 

The Emerald approach has influenced many other object- 
based systems such as Amber, Distributed Smalltalk and 
Trellis/DOWL. 

Amber  [Cha89] shapes its object mobility primitives 
after those of Emerald. It offers facilities to move an object via 
the MoveTo primitive, to Attach one object to another and to 
Unattach an attached object. A peculiar characteristic of 
Amber is the capability of marking an object as immutable: in 
this case, invoking MoveTo on it will replicate the object 
rather than move it, thus allowing better availability without 
incurring in any consistency problem. 

Distr ibuted Smal l ta lk  [Ben90] provides the move and 
copy instructions to migrate and replicate an object on a given 
node, respectively. In addition, it provides the ability to 
optionally state the node at which an object is to be created. 
Again, the syntax is very similar to the Emerald's one. 

The Tre l l i s /DOWL system [HeuA89, Ach93] offers the 
same allocation constructs of the Emerald system and, again, 
[nix them in the algorithmic code and do not integrate them 
with any automated allocated policy. However, the semantic of 
the constructs differ from that of Emerald, and represents a 
step toward encapsulation. In fact, allocation constructs are 
introduced to specify the dynamic allocation behavior of the 
object onto which the constructs are inserted, without 
influencing the allocation of other application objects, say of 
objects to which the reference is held. 

For instance, in Trellis each object has instance variables 
called location and fixed_at. Assigning a value to these 
variables cause an object to migrate to, or to become fixed at, a 
location: since instance variables can be assigned only from 
the methods of the objects itself, no other components of an 
application can decide of migrating or fixing an object to a 
given node. Analogously, t h e  attachment is expressed by 
means of an instance variable that specifies (in the form of a 
head and tail list), to which other objects an object must be 
attached: differently from Emerald, it is an objects that declare 
its attachment to another one, and so deciding of following it 
in its migration, not viceversa. 

The move and visit primitives of Trellis serve basically 
the same purpose as they do in Emerald but, again, they are 
used in a different way: they move and visit primitives do not 

appear in the invocation of an operation, as in Emerald, but in 
its declaration. For example: 

operation foo(a:visit someType, b:move otherType) 

The above declaration makes the actual parameter of an 
invocation of the foo operation migrate. Though the parameter  
objects are still influenced in their allocation by external 
entities (i.e., the invoking object), the allocation behavior is 
somehow a bit more context-independent, because it is the 
same for any invocation of the same operation. 

5 .2  Ref lec t ive  Sys t ems  

Reflective systems are characterized by the introduction a 
mete  computing level in which is stored and processed data to 
model the computation [WatY88]. Reflective systems delegate 
any issue related to the management and the optimization of  
application execution to the mete-level that is capable, on the 
basis of the current state of the computation, of influencing the 
behavior of applications. Programming a reflective system 
means not only to write the usual algorithmic code (the so 
called base-level) but also to write the meta-level code: in that 
way, the algorithmic part of the code is completely separated 
from its management part. 

. . . . . . . . . . . .  . . . . . . . . . . . .  

Figure 3. Allocation in an Object-Based Reflective System 

In concurrent object-based reflective systems [WatY88], 
each base-level object is associated to a meta-level object, in 
charge of managing its communication and synchronization. 
A natural extension is to give meta-level objects the 
responsibility of allocation too [Mas94, OkaI94, Lux95], such 
as locality of reference, load balancing, management of  
prioritized scheduling policies (see figure 3). When 
programming the recta-level, the user has access to all the 
information usually exploited by automated allocation tools, 
such as the state of hardware resources, the current toad of the 
nodes, the location of the objects in the systems. In addition, 
by the meta-level, the user can directly control the location of  
the base-level objects by commanding their migrations. This 
allows the user to write his/her own allocation policies for the 
objects of  the system. 

In the AL/1D system [OkaI94], for example, meta-level 
objects can store, as instance variables, load information about 
the state of the system nodes and about the location of other 
objects in the system. Operations of the meta-level objects, 
triggered by the events occurring at the base-level, can access 
this variables and issue the allocation mechanisms to 
implement specific allocation policies. As an example,  a 
method of the Foo class can be defined in the meta-object to 
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react to any message send action and to provide the migration 
of the sender toward the receiver, whenever the receiver is the 
object bar. This is shown, with the AL-1D syntax, in the 
below code: 

meta Foo/* declaration of the meta-object */ 
vars IocalHost;/* meta level instance variable */ 

/* node of residence of the base-level object */ 

method Foo ssend: rcvr: msg 
/* method to react at base-level send events */ 
vars rcvr location;/* local variable */ 

rcvr_location = NameServer location: rcvr 
/* find the location of the receiver */ 
if (receiver location != IocalHost AND 

(rcvr name) == #bar) then 
state migrating: rcvrLocation 

The Distributed Memory Reflective Archi tecture  
system [Mas94] enlarge the meta-level capabilities by 
introducing different meta-level objects apart from the one 
associated with the base-level objects of the application. For 
example, a meta-level object called node manager can be 
introduced to describe the computational state of one node of 
the system and can collectively manage all base-level objects 
allocated in the node; In addition, a meta-level object called 
class manager can be associated to each class of the system to 
manage the resources shared by all the objects within a class. 
In some sense, these additional meta-level objects can assume 
the role of an allocation policy within the run-time system and 
have the capability of taking allocation decisions based on 
system-state information not easily accessible at the level of 
single instances. 

A well confined problem is faced in the BirliX system 
[Lux95]: not only the allocation policy for a given object can 
be customized, but the migration mechanism too, to allow 
grater flexibility and efficiency. 

Due to the introduced meta-level, reflective systems 
provide a clear separation of concerns (the allocation cede is 
confined and not mixed with the algorithmic code) and 
encapsulation (the meta-level influences the allocation of the 
associated instance only). Then, they represent an important 
evolution toward the respect of a modular principle in the 
allocation code. In addition, reflective system gives users full 
power in programming customized allocation policies for their 
application: they permit to exploit system-level information to 
specify the allocation behavior for both single instances and 
groups of objects. In spite of this flexibility, the definition of 
the meta-level is prone to become low-level and, then, less 
portable and difficult to be written (as depicted from figure 3). 

5.3 Paral lel  Ob jec t s  

The Parallel Objects programming environment 
[CorL91], based on the active object model [ChiC91], 
addresses the allocation problem by integrating a system-level 
allocation policy with a set of high-level directives 
(collectively called Abstract Configuration Language, shortly 

ACL)  to specific the peculiar allocation needs of application 
objects [CorLZ97]. 

The load balancing policy in the run-time support 
automatically decides about the allocation of newly created 
objects and about the migration of already allocated one, 
depending on the current system load [CorLZ92]. Though 
capable of autonomous decisions, the policy is forced to act in 
agreement with the ACL directives, and then adapts its 
behavior to the peculiar allocation needs of an application (see 
figure 4). Depending on the user skill with the allocation 
problem, ACL directives could be more or less constrainable. 
At one extreme, the user can totally ignore them and let the 
allocation to be completely decided by the system policy; since 
the system policy cannot always act respecting the application 
needs, this might produce inefficiency. At the other extreme, 
the user can specify the application allocation needs in a 
complete way as to almost (or fully) disable the automatic 
allocation policy; if the directives specified by the user are 
clever, they will realize "ad-hoc" allocation policies for his/her 
applications. 

I Syncbaonisati.~ 

. ~ .  _ 7 ~ _  A ~ ~ ~ .  Application Level 

Run4ime 
Support 

Figure 4. ACL directives interact with the PO run-time support 

A C L  directives may refer either to general allocation 
properties of one objects and of its internal components (in 
Parallel Objects, one objects is not considered a whole unit of 
allocation but, instead, its state and the activities devoted to 
the services of the requests can be distributed [CorLZ97]) or 
the allocation of one object in relation with other application 
objects. Examples of  ACL directives are: 
• distributed(#nodes): allows one object to distribute its 

components onto several nodes; 
• migratable(): allows one objects to be migrated around the 

system; 
• c lose  to(O]):  specifies the need of one object to be 

allocated near the object O1 ; 
• neighbour(O2): specifies the need of one object to be 

allocated near the object 02 ,  but not on the same node, so 
to allow them to execute in parallel without competing for 
execution resources. 

It is important to note that ACL directives dynamic 
requirements can be parameterized and related to the current 
state of the object. For example, one ACL directive can specify 
the locality need of the instances of  a class in relationship with 
an instance whose reference is maintained in an instance 
variable. The fact that a reference to one object con change in 
time, makes the behavior specified by the directive 
dynamically change. 

ACL directives are abstract and portable, because they 
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express logical rather than physical concepts related to the 
allt~cation of the components. Only at compile-time these 
concepts assume concrete meaning, depending on the 
particular characteristics of the target architecture. For 
examples, the "closeness" concept can assume the meaning of 
"coresidence" in a distributed environment, "on the same 
cluster" in a clustered environment. 

With regard to modularity, ACL directives enforce both 
separation of concerns and encapsulation. One the one hand, 
they are specified in a special section of the class definition, as 
follows: 

PO_CLASS foo 
STATE_section 

/* state definition */ 
METHODS_section 

/* methods definition */ 
ACL section 

/* list of ACL directives */ 
END_CLASS foo 

On the other hand, even if ACL specifies the allocation needs 
of an objects in terms of the allocation of other objects, the 
run-time support does not interpret them as transitive and does 
not perform any allocation action on one object unless it 
agrees with the ACL directives associated to the object. 

A limit of the Parallel Objects approach with respect to 
Emerald-like and Reflective system is the limited expressive 
power that high level directives induce. However, to our 
opinion, this lack of expressiveness is somehow supplied by 
the automated decisions of the integrated load balancing 
policy. 

6.  O p e n  I s s u e s  a n d  F u t u r e  W o r k  

The definition and the implementation of language 
constructs to customize the allocation of parallel application is 
a quite new area of research. From the analysis of the above 
proposals, we identified several open issues and promising 
areas of research. 

First of all, it is necessary a deep analysis of the 
performance benefits provided by these constructs. If wise 
application of allocation code can potentially increase 
performances, conversely it could also be used inappropriately 
and, then, it can degrade performance. For example, migrating 
an object close to the server it is currently accessing can 
increase performance only if the number of accesses is high 
enough to outweigh the migration cost; otherwise, that will 
degrade performances. Currently, none of the systems 
surveyed in the paper introduces tools to evaluate the 
effectiveness of the allocation code specified within an 
application. In addition, though the application of the 
modularity principle and the abstraction of the language 
constructs can make it theoretically portable, this must also be 
supported by performance portability. All the surveyed systems 
claim portability, but none of them have proved their 
allocation code to be effectively portable - in terms of 
performances - onto different architectures. In this direction, 
formal methods could help in the definition of the allocation 

code and ira its perfkmnance analysis 
A second area that needs to be analyzed relates to 

reusability and comes fiom the inheritance anomaly problem 
[McH94]. Inheritance involves not just code reuse but also 
code change; if a class contains two kinds of code - for 
example sequential code and synchronization code - a change  

to one of these kinds of inherited code can hinder the reuse of 
the other kind of inherited code (and viceversa). In the worst 
case, a subclass may not be able to reuse an)' inherited code. 
Most of the analysis of the inheritance anomaly have focused 
the domain of synchronization, but the inheritance anomaly 
may appear whenever one inherits two or more kinds of code 
within a hierarchy. For example, inheritance anomalies have 
been reported even in the area of object-oriented real-time 
systems with regard to deadline specifications [Aks94]. Thus, 
the problem is likely to represent itself in the analyzed domain 
of allocation [Mas94]. However, to our knowledge, no specific 
analysis of the problem exists and little is known about how 
serious the problem can be. 

A further interesting area of research concerns the strict 
relation between the allocation code and the synchronization 
code. The area of allocation seems to overlap with the area of 
synchronization for concurrent object-oriented languages in 
several important ways: 
• the same event-based programming model used in several 

synchronization proposal [CorL91, McH94], can be used 
for the allocation. This event-based model has been 
explicitly identified in reflective systems, but characterizes 
also Emerald-like systems (the invocation of a method can 
cause its parameter to migrate) and Parallel Objects (the 
creation of an objects starts a decisional activity within the 
integrated load balancing policy); 

• the semantics of the accesses to a given component of an 
application (and the way they are synchronized) is likely to 
provide important hints with regard to its allocation. For 
example, if a component is accessed in mutual exclusion, it 
could be migrated to the component that is currently 
accessing so to enforce locality of reference and with the 
guarantee that no other local access will be broken. As a 
further example, one object with a read-only state can be 
replicated without any consistency problem. 

The overlap between allocation and synchronization suggests 
that researchers in the relatively young area of allocation 
might be able to derive some useful ideas from the deeper 
analyzed area of synchronization. With regard to the modular 
issue, we suggest  to consider that the allocation area is 
evolving in a very similar to the one of synchronization: as the 
latter evolved from semaphores up to monitor and path- 
expression, the allocation area is evolving from low-level 
constructs mixed in the algorithmic code (Emerald), up to 
meta-level allocation objects (Reflective Systems) and high- 
level directives with a well-defined scope and separated from 
the algorithmic code (Parallel Objects). 

7. Conclusions 

The paper surveys several object-oriented programming 
environments that provide language constructs to express the 
dynamic allocation behavior of applications: among a variety 
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of heterogeneous approaches, a few issues can characterize 
them. The paper focuses on modularity and analyses whether 
and how the introduced constructs permit to follow a modular 
principle in the allocation code. 

Promising areas of research are oflered by the 
relationship of the allocation problem with the 
synchronization area and by the analysis of the inheritance 
anomaly in the allocation code. 
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