
How to Achieve Modularity i . Distributed Object Allocation

Franco Zambonelli
Dipartimento di Scienze del l ' Ingegneria Universith di Modena

Via Campi 213/b - 41100 M o d e n a - ITALY
Ph.: +39-59-378517 - Fax: +39-59-370040

E-mail: zambonelli @dsi.unimo.it

Abstract
The paper focuses on language constructs for driving the

allocation of parallel object-oriented applications onto a
target architecture. The paper analyses the issues that arise in
the definition of these constructs and presents the solutions
adopted in several systems and programming environments,
by discussing their capability of enforcing the principle of
modularity. Open issues and future directions of research are
outlined.

Key-Words: Allocation, Dynamicity, Modularity, Object-
Orientation, Language Constructs

1. Introduction

The allocation problem, i.e., the problem of a wise
assignment of the components of a parallel application to the
execution resources so to achieve high performance, is one of
the key points to be faced in the design of any parallel and
distributed programming environment [CasK88].

Fully automated tools can be implemented and integrated
within a distributed environment. They are in charge of
controlling the execution of a parallel application and
deciding, on the basis of an automated allocation policy, the
allocation of its components. The main advantage of
automated allocation tools is to provide t ransparency: the
user can disregard any issue related to allocation and leave all
decisions to the policy. A drawback of an automated approach
is that it is only capable of reaching general purpose goals and
cannot to take into account the peculiar application needs:
different applications can have different needs in terms of
system resources, and the same allocation policy may have
different impact on them.

An alternative approach may sacrifice transparency to
give the user the capability of driving the allocation of a
parallel application. Though such a solution may be viable for
static applications, whose allocation can be effectively decided
before their execution, dynamic applications exist whose
allocation can be effectively decided only at run-time. Because
a dynamic intervention of the user is highly intrusive and,
generally, not tolerable, a customized dynamic allocation
policy must be somehow codified within the application.

The paper restricts the focus to object-oriented parallel
programming environments [Weg90, ChiC91] and analyses
those language constructs that can be introduced to permit
users to express the allocation behavior of their application

components and to drive their allocation. Though very
different approaches can be adopted, a few design issues can
precisely characterize them, such as the degree of
architecture independence of the constructs, their express ive
power, their degree of integration with the run- t ime system.
In addition, a primary requirement for the analyzed allocation
constructs is the capability of enforcing modu la r i t y in the
definition of the allocation behavior, i.e., the constructs must
be confined and separated from other application parts and
they must grant reuse of the defined allocation behavior via
context independence.

The paper surveys and analyses the above issues, with
attention to modularity, several object-oriented programming
environments and systems that provide some kind of
allocation constructs; among the others, the Parallel Objects
environment [CorL91, CorLZ97], whose project personally
involved the author. Without the ambition of defining a
precise taxonomy, the paper outlines important similarities
and differences among the facilities offered by different
systems. In addition, the analysis permits to highlight open
issues in the area and to suggest new directions of research.

The paper is organized as follows. Section 2 analyses the
allocation problem in its general terms. Section 3 introduces
the customized approach to allocation and section 4 its main
design issues. Section 5 surveys the existing systems. Section 6
outlines open issues and future directions of research.

2. The Allocation Problem

A parallel application defines a set of logical components
in need of execution and of interacting/communicating each
other. The allocation problem, in its general terms, consists in
finding one assignment of the application components to the
available physical resources of the target architecture that
achieve high-performance, i.e., a good speed-up depending
on application characteristics and available resources
[CasK881.

2.1 Static versus Dynamic Allocation

Based on the time at which allocation decision are taken,
one can distinguish between static and dynamic approaches. In
the static approach, the allocation of the components of a
parallel application onto a target architecture is decided before
the execution of the application itself. A static approach to
allocation is suitable only for those applications whose
behavior can be accurately predicted at compile- t ime
[NorT93]. Whenever the behavior of an application is

ACM SIGPLAN Notices 75 V. 32(6) June 19!

http://crossmark.crossref.org/dialog/?doi=10.1145%2F261353.261364&domain=pdf&date_stamp=1997-06-01

dynamic, i.e., it cannot be predicted at compile-time, no
effective allocation decision can be taken betbre the execution.
In those cases, a dynamic approach must be adopted
[ShiKS92]: the allocation of the components of a parallel
application must be decided at run-time and adaptively,
depending on the current state of the execution. One the one
hand, the allocation of each component can be decided when it
begins its active life within the system (i.e., when it is
dynamically created). On the other hand, if a migration
mechanism is available [Smi88, Nut94], the allocation of
already allocated entities can be changed during their life.

2.2 Automated Allocation Tools

To manage the allocation of a parallel application onto a
target parallel/distributed system is a complex activity,
whether a static or a dynamic approach is adopted.

To provide full t r anspa rency and to free the user from
any allocation-related issue, a parallel programming
environment can integrate automated tools for dealing with
either static or dynamic allocation (or both). In the static case,
it is the job of the compiler to extract from the application
code all the information needed and to map it onto the target
architecture on the basis of a mapping algorithm [NorT93].
Static code analysis and off-line monitoring can produce a
large amount of usefifl information about resource exploitation
of the app!ication components. In the dynamic case, the
application behavior is monitored at run-time and then, on the
basis of the obtained information, the allocation of the
application components is decided by an allocation policy in
charge of dynamically issuing the needed mechanisms
[CorLZ92].

3. Toward User-Driven Al locat ion

Automated allocation tools have the great advantage of
making the allocation transparent to the user. However, they
have limits that can make it necessary to users the control of
the allocation of their applications.

3.1 L imi t s o f A u t o m a t e d A l l o c a t i o n Tools

Any automated approach to allocation fixes a general-
purpose goal for the allocation policy, tn the past few years,
many research efforts have been devoted to the study of both
static and dynamic allocation policy with the goal of either
load sharing or load balancing [ShiKS92]. In addition, several
systems and programming environments have integrated
automated allocation tools based on a fixed load
balancing/sharing policy [PowM83, BalK93]. However, all of
the above proposals are more system-oriented rather than
application-oriented: the same policy applied to all
applications without any variation neglects peculiar
application needs. For example, an automated policy could
allocate on distant nodes, with the aim of load balancing,
heavily communicating entities, making them incur in high
communication costs, because the components of a parallel
application usually needs to interact each other [Ju188].
Furthermore, by assigning the entities situated on the critical
path of an application the same amount of execution resources

assigned to the other application components can make the
whole application execution time increase [ShiWP90].

Static allocation policies - because of their off-line and
non intrusive nature - can somehow take into account, in their
decisions, detailed information about the execution and the
communication behavior of the application components. The
situation is different in the dynamic case: it is too expansive to
dynamically collect detailed information about the behavior of
the application components and to take them into account in
allocation decisions. Only a very l imited amount of
application-dependent information can be collected and
exploited in decisions, because of the on-l ine and intrusive
nature of dynamic allocation tools.

3.2 Explicit Allocation Code

When the performance achieved by the decisions of
automated allocation tools is not satisfactory, one might decide
to sacrifice transparency for performances. The user, in this
case, has the duty of studying his/her applicat ions ' behavior
and somehow driving their allocation.

The off-line nature of static allocation can make it quite
simple to take into account the peculiar needs of an
application: the user can fully manual ly specify, before the
execution of an application, where its components must be
allocated, even with the help of some graphical tool [Bru93];
in addition, the user can easily check the decisions taken by a
mapping algorithm to tune its behavior.

To take into account the dynamic allocation needs of an
application is more complex. The on-l ine nature of the
decisions makes impossible to leave the user the duty of
directly detecting the applications' behavior and deciding the
allocation of their components at run-time: this interaction
would produce an intolerable overhead and the user cannot be
prompt enough to make his/her decisions effective.

A different approach is necessary to allow the execution
of a parallel application to be dynamical ly managed with
regard to its peculiar allocation needs: a parallel application
must contain in itself not only the "algori thmic" code but also
some kind of "al locat ion code". The allocation code must
allow users to specify the allocation needs of their application
components or, in other words, must help in building a
customized dynamic allocation policy.

The capability of controlling the allocation of the
application component from the application level can be
provided by the run-time support to the environment, that
gives users access to the low-level allocation mechanisms.
This capability can be given in the form of:
• l i b r a ry calls, with a well defined interface, that give direct

access to the allocation mechanisms available in the
environment [Zhou93, Tar94];

• language constructs whose execution has the effect of
influencing the allocation of the application onto the
architecture [Ju188, Ach93].

In both cases, the allocation code is no longer transparent
to the programmers that acquire, by means of the allocation
code, the capability of building their own dynamic allocation
policies, tuned to the peculiar needs of their applications.

The above distinction between l ibrary calls and language
constructs is not the most significant one: in many cases, a

sequence of language constructs is simply translated by the
compiler in a sequence of library calls to the run-time support.
Thus, the tollowing of this paper focuese on language
constructs only.

4. D e s i g n I s s u e s i n t h e A l l o c a t i o n Code

Very different approaches can be adopted in the
definition of language constructs to provide application-level
access to the allocation mechanisms. This section outlines and
analyzes the issues that characterize most significantly a given
proposal in the area, with a peculiar attention to modularity.

4.1 M o d u l a r i t y

The modularity principle enforces separation of concerns
and tries to build encapsulated and reusable modules. In the
allocation area, modularity expresses the capability of:
- separat ing the allocation code from the algorithmic code

of an application;
* confining the area of influence of the allocation code for a

specific application or component of an application.
With regard to the first point, the code that implements

the core functionality of an application has a goal different
from the code that implements the allocation policy. Hence, if
separation of concerns is not enforced and, instead, different
kinds of code are mixed together, the complexity of an
application is likely to increase, making it more difficult
design and maintenance. The same separation principle is
encouraged, for example, in the area of synchronization for
concurrent programming [CorL91, McH94].

The second point relates to reuse, that can be granted
only by enforcing encapsulation and context-independence.
Because the allocation code associated to an application or to
the components of an application becomes part of the
behavioral description of the components, one must avoid the
allocation behavior of one component to be influenced by other
external entities: this would be a violation of the encapsulation
principle and would no longer guarantee the same expected
behavior in dif/erent contexts. Conversely, the allocation code
associated to a given component must not influence the
allocation of any external entity.

4.2 Other Design Issues

Though the enforcement of the modularity principle is a
primary requirement, other important issues characterize
language constructs for allocation. In particular:
- abstraction, i.e., the degree of architecture independence

the allocation code expresses and, consequently, the
capability of making applications portable;

- expressive power, i.e., the capability of the allocation code
of giving user full control over the allocation of his/her
application components;

- integration with the run-time support, i.e., the degree of
control the run-time support has over the allocation and
the way it interacts with the user-defined allocation code.

The lack of a dominant architecture makes architecture-
independence and portability a general requirement in the

parallel computing area. The allocation code must answer
them too, by expressing the allocation needs of parallel
applications in abstract and architecture-independent terms
that are likely to assume different concrete meanings on
different architectures, transparently to the user. A drawback
of an architecture-independent approach is that it cannot
always grant a very efficient exploitation of the resources of
the target architecture, because of the introduced abstraction
layer. With regard to modularity, the application of a modular
principle in the definition of the allocation code and
architecture-dependency seem to clash: the reusability degree
of the application components would be too limited by
granting portability only across different application but not
across different architectures.

By recalling that the reason for writing application-
specific allocation code is that a single policy in the run-t ime
system is not be suitable for all applications, an environment
that provides tools for writing application-specific policies
must grant tools powerful enough to express a wide range of
allocation policies. In the allocation area, it can be very
difficult to understand the power of either a set of language
construct or of library calls. Expressiveness can be measured
by the amount of information about the state of the system that
can be exploited, the available allocation mechanisms and the
capacity of directly commanding them. The respect of the
modular principle intrinsically limits the expressiveness of the
allocation code; nevertheless, we claim this limit is essential to
keep low the complexity of the allocation code.

With regard to the run-time system, the starting point of
this paper is that a user-defined allocation policy is likely to
perform better than a general-purpose allocation policy.
However, we feel that leaving to the user the duty of managing
the allocation of its parallel application from scratch and
without any help from the run-time system may not to be the
optimal solution. An alternative approach can integrate an
automated allocation policy and some kind of allocation code,
conceived with the purpose of customizing its automated
behavior. An important advantage that can come from this
integration is that the user is no longer obliged to specify the
allocation code: if no allocation code is defined, the system
policy performs anyway some dynamic management on the
allocation of the parallel application on the system. An
apparent drawback of an integrated approach is that it seems
to clash with modularity, by allowing an external entity - the
automated policy - to influence the allocation of the
application components. Despite of that, a clear separation of
concerns is still enforced: the allocation code can be defined
only on the basis of application-level information; the policies
implemented in the run-time system take allocation decisions
based on low-level load information about the current state of
the system. Only by allowing an external entity to exploit this
low-level information one can grant architecture-independence
and ease of use without loosing in efficiency.

5. Survey of Existing Environments

Several proposals in the concurrent object-oriented area

77

aim to define language constructs for customizing the
allocation of objects in parallel/distributed applications. As a
general rule, all proposals make the allocation code become
part of the definition of a class (figure 1), as it has been for
language constructs introduced for different purposes, such as
synchronization and deadline specification [CorL91, Aks94].
In fact, because the application components are instances of a
class that describes their behavior, the dynamic allocation
needs of the components have to be considered as part of the
behavior. In addition, all proposals focus on locality of
references between objects as the key issue to achieve high-
performance. Apart from this common characteristics, very
diffterent approaches have been followed, as the following sub-
sections show.

l S~nc~hro°d~isation
i i _ _ _ . . ,

Figure 1. The allocation code as part of a class definition

5.1 Emerald and F r i e n d s

Emerald [Jul88] is one of the systems that firstly
introduced language-level constructs to dynamically allocate
the objects of a parallel applications.

Emerald can insert constructs for allocation either as
instructions in the code of the instance methods or as
annotations in the definition of an instance variable (see figure
2).

/2 eZ21'lTa°:on
Figure 2. The Emerald approach

With regard to the former case, Emerald defines several
constructs for object mobility (i.e., migration), that have the
effect of making the corresponding mechanism apply. The
move construct can be used to migrate an object to a given
location, i.e., to the node of residence of another object. For
example, the instruction:

move X to locate Y

provides, when executed, to move the object referred by the
variable X to the node where the object referred by Y currently
resides. The move primitive can also be used in parameter-
passing when invoking an operation upon an object. For
example, the following statement:

foo.SomeOperation(move X)

specifies the compiler that the parameter object (in this case

X) should be migrated to the node where the object referred by
foo is located. In Emerald parlance this is known as call-by-
move. Another keyword, visit, can be used instead of m o v e in
parameter passing: in this case, the parameter is to be
migrated to the destination node for the duration of the call
and moved back upon termination. Call-by-move and call-by-
visit are provided in the language both as a convenience to the
programmer (they avoid the need for explicit move statements
before a call) and as a performance optimization (they permit
the compiler to pack the migrating objects in the same
network packet of the invocation).

The last mobil i ty concept that Emerald supports is f ix ing,
which requires an object to become immobile. If one object is
fixed at a node it cannot be migrated to another node, unless it
is later unfixed and thus made mobile again or refixed to a
different node. One reason why one object may be fixed at a
node is if it is currently accessing resources specific to that
node. The syntax used in Emerald for fixing, unfixing and
refixing are as follows:

fix X at Y
unfix X
refix X at Y

Any move and visit commands are ignored by the run-t ime
system if applied to one object which is currently fixed.

Objects do not live in isolation but contain references to
other objects, e.g., an object may be the root node of a graph or
a linked list. When such an object is being moved to another
node, it may be appropriate to move the entire graph/l inked
list, so to grant locality. The a t tach annotation, used in the
definition of instance variables, is provided for this purpose_
For example, the following definition:

attach var foo: type_of_foo

specifies that the 1oo instance should always follow the
movements of the objects in which it is declared. Whenever
the object into which this declaration is contained migrates, it
requires the migration of any object eventually attached to foe,
in a transitive way.

Emerald constructs are very powerful and make it
possible to express a great variety of allocation behavior in
applications. In addition, they are abstract and portable: the
allocation code of the application components is expressed in
terms of the allocation of other components, without forcing
(though allowing) the user to refer, say, to a physical node of
the system. In spite of these advantages, the Emerald way of
dealing with the allocation of application components is far
from enforcing the modular principle. Firstly, allocation
constructs are mixed with the sequential code (methods and
instance variables definitions). Thus, no separation of
concerns is provided and the user is forced to define his/her
classes by taking into account, at the same time, algorithmic
and allocation-related issues: this is likely to increase the
complexity of parallel applications. In addition, the allocation
constructs may tend to violate the encapsulation principle. In
fact, the constructs inserted in the code of a class do not

78

specity the allocation behavior of the instances of the class
itself (i.e., of the object that is currently executing them) but
they can command the migration of other instances of which
the reference is hold. This happens, for example, because an
object can be moved around in the system commanded by the
clients that are currently refereeing it or by objects attached to
them.

As a final remark, in Emerald all responsibility of
allocation is left to the user and there is neither any system-
level allocation policy to check or integrate the user-inserted
allocation constructs nor any way to access to information
about the current system state (for example, the load of the
nodes). Only a few static allocation decisions can be
autonomously taken at compile time: for example, the
compiler generates code to move a parameter if it is a small
and immutable object, e.g., an integer, because such objects
can be copied unexpensively.

The Emerald approach has influenced many other object-
based systems such as Amber, Distributed Smalltalk and
Trellis/DOWL.

Amber [Cha89] shapes its object mobility primitives
after those of Emerald. It offers facilities to move an object via
the MoveTo primitive, to Attach one object to another and to
Unattach an attached object. A peculiar characteristic of
Amber is the capability of marking an object as immutable: in
this case, invoking MoveTo on it will replicate the object
rather than move it, thus allowing better availability without
incurring in any consistency problem.

Distr ibuted Smal l ta lk [Ben90] provides the move and
copy instructions to migrate and replicate an object on a given
node, respectively. In addition, it provides the ability to
optionally state the node at which an object is to be created.
Again, the syntax is very similar to the Emerald's one.

The Tre l l i s /DOWL system [HeuA89, Ach93] offers the
same allocation constructs of the Emerald system and, again,
[nix them in the algorithmic code and do not integrate them
with any automated allocated policy. However, the semantic of
the constructs differ from that of Emerald, and represents a
step toward encapsulation. In fact, allocation constructs are
introduced to specify the dynamic allocation behavior of the
object onto which the constructs are inserted, without
influencing the allocation of other application objects, say of
objects to which the reference is held.

For instance, in Trellis each object has instance variables
called location and fixed_at. Assigning a value to these
variables cause an object to migrate to, or to become fixed at, a
location: since instance variables can be assigned only from
the methods of the objects itself, no other components of an
application can decide of migrating or fixing an object to a
given node. Analogously, t h e attachment is expressed by
means of an instance variable that specifies (in the form of a
head and tail list), to which other objects an object must be
attached: differently from Emerald, it is an objects that declare
its attachment to another one, and so deciding of following it
in its migration, not viceversa.

The move and visit primitives of Trellis serve basically
the same purpose as they do in Emerald but, again, they are
used in a different way: they move and visit primitives do not

appear in the invocation of an operation, as in Emerald, but in
its declaration. For example:

operation foo(a:visit someType, b:move otherType)

The above declaration makes the actual parameter of an
invocation of the foo operation migrate. Though the parameter
objects are still influenced in their allocation by external
entities (i.e., the invoking object), the allocation behavior is
somehow a bit more context-independent, because it is the
same for any invocation of the same operation.

5 .2 Ref lec t ive Sys t ems

Reflective systems are characterized by the introduction a
mete computing level in which is stored and processed data to
model the computation [WatY88]. Reflective systems delegate
any issue related to the management and the optimization of
application execution to the mete-level that is capable, on the
basis of the current state of the computation, of influencing the
behavior of applications. Programming a reflective system
means not only to write the usual algorithmic code (the so
called base-level) but also to write the meta-level code: in that
way, the algorithmic part of the code is completely separated
from its management part.

.

Figure 3. Allocation in an Object-Based Reflective System

In concurrent object-based reflective systems [WatY88],
each base-level object is associated to a meta-level object, in
charge of managing its communication and synchronization.
A natural extension is to give meta-level objects the
responsibility of allocation too [Mas94, OkaI94, Lux95], such
as locality of reference, load balancing, management of
prioritized scheduling policies (see figure 3). When
programming the recta-level, the user has access to all the
information usually exploited by automated allocation tools,
such as the state of hardware resources, the current toad of the
nodes, the location of the objects in the systems. In addition,
by the meta-level, the user can directly control the location of
the base-level objects by commanding their migrations. This
allows the user to write his/her own allocation policies for the
objects of the system.

In the AL/1D system [OkaI94], for example, meta-level
objects can store, as instance variables, load information about
the state of the system nodes and about the location of other
objects in the system. Operations of the meta-level objects,
triggered by the events occurring at the base-level, can access
this variables and issue the allocation mechanisms to
implement specific allocation policies. As an example, a
method of the Foo class can be defined in the meta-object to

79

react to any message send action and to provide the migration
of the sender toward the receiver, whenever the receiver is the
object bar. This is shown, with the AL-1D syntax, in the
below code:

meta Foo/* declaration of the meta-object */
vars IocalHost;/* meta level instance variable */

/* node of residence of the base-level object */

method Foo ssend: rcvr: msg
/* method to react at base-level send events */
vars rcvr location;/* local variable */

rcvr_location = NameServer location: rcvr
/* find the location of the receiver */
if (receiver location != IocalHost AND

(rcvr name) == #bar) then
state migrating: rcvrLocation

The Distributed Memory Reflective Archi tecture
system [Mas94] enlarge the meta-level capabilities by
introducing different meta-level objects apart from the one
associated with the base-level objects of the application. For
example, a meta-level object called node manager can be
introduced to describe the computational state of one node of
the system and can collectively manage all base-level objects
allocated in the node; In addition, a meta-level object called
class manager can be associated to each class of the system to
manage the resources shared by all the objects within a class.
In some sense, these additional meta-level objects can assume
the role of an allocation policy within the run-time system and
have the capability of taking allocation decisions based on
system-state information not easily accessible at the level of
single instances.

A well confined problem is faced in the BirliX system
[Lux95]: not only the allocation policy for a given object can
be customized, but the migration mechanism too, to allow
grater flexibility and efficiency.

Due to the introduced meta-level, reflective systems
provide a clear separation of concerns (the allocation cede is
confined and not mixed with the algorithmic code) and
encapsulation (the meta-level influences the allocation of the
associated instance only). Then, they represent an important
evolution toward the respect of a modular principle in the
allocation code. In addition, reflective system gives users full
power in programming customized allocation policies for their
application: they permit to exploit system-level information to
specify the allocation behavior for both single instances and
groups of objects. In spite of this flexibility, the definition of
the meta-level is prone to become low-level and, then, less
portable and difficult to be written (as depicted from figure 3).

5.3 Paral lel Ob jec t s

The Parallel Objects programming environment
[CorL91], based on the active object model [ChiC91],
addresses the allocation problem by integrating a system-level
allocation policy with a set of high-level directives
(collectively called Abstract Configuration Language, shortly

ACL) to specific the peculiar allocation needs of application
objects [CorLZ97].

The load balancing policy in the run-time support
automatically decides about the allocation of newly created
objects and about the migration of already allocated one,
depending on the current system load [CorLZ92]. Though
capable of autonomous decisions, the policy is forced to act in
agreement with the ACL directives, and then adapts its
behavior to the peculiar allocation needs of an application (see
figure 4). Depending on the user skill with the allocation
problem, ACL directives could be more or less constrainable.
At one extreme, the user can totally ignore them and let the
allocation to be completely decided by the system policy; since
the system policy cannot always act respecting the application
needs, this might produce inefficiency. At the other extreme,
the user can specify the application allocation needs in a
complete way as to almost (or fully) disable the automatic
allocation policy; if the directives specified by the user are
clever, they will realize "ad-hoc" allocation policies for his/her
applications.

I Syncbaonisati.~

. ~ . _ 7 ~ _ A ~ ~ ~ . Application Level

Run4ime
Support

Figure 4. ACL directives interact with the PO run-time support

A C L directives may refer either to general allocation
properties of one objects and of its internal components (in
Parallel Objects, one objects is not considered a whole unit of
allocation but, instead, its state and the activities devoted to
the services of the requests can be distributed [CorLZ97]) or
the allocation of one object in relation with other application
objects. Examples of ACL directives are:
• distributed(#nodes): allows one object to distribute its

components onto several nodes;
• migratable(): allows one objects to be migrated around the

system;
• c lose to(O]): specifies the need of one object to be

allocated near the object O1 ;
• neighbour(O2): specifies the need of one object to be

allocated near the object 02 , but not on the same node, so
to allow them to execute in parallel without competing for
execution resources.

It is important to note that ACL directives dynamic
requirements can be parameterized and related to the current
state of the object. For example, one ACL directive can specify
the locality need of the instances of a class in relationship with
an instance whose reference is maintained in an instance
variable. The fact that a reference to one object con change in
time, makes the behavior specified by the directive
dynamically change.

ACL directives are abstract and portable, because they

80

, , , . •

express logical rather than physical concepts related to the
allt~cation of the components. Only at compile-time these
concepts assume concrete meaning, depending on the
particular characteristics of the target architecture. For
examples, the "closeness" concept can assume the meaning of
"coresidence" in a distributed environment, "on the same
cluster" in a clustered environment.

With regard to modularity, ACL directives enforce both
separation of concerns and encapsulation. One the one hand,
they are specified in a special section of the class definition, as
follows:

PO_CLASS foo
STATE_section

/* state definition */
METHODS_section

/* methods definition */
ACL section

/* list of ACL directives */
END_CLASS foo

On the other hand, even if ACL specifies the allocation needs
of an objects in terms of the allocation of other objects, the
run-time support does not interpret them as transitive and does
not perform any allocation action on one object unless it
agrees with the ACL directives associated to the object.

A limit of the Parallel Objects approach with respect to
Emerald-like and Reflective system is the limited expressive
power that high level directives induce. However, to our
opinion, this lack of expressiveness is somehow supplied by
the automated decisions of the integrated load balancing
policy.

6. O p e n I s s u e s a n d F u t u r e W o r k

The definition and the implementation of language
constructs to customize the allocation of parallel application is
a quite new area of research. From the analysis of the above
proposals, we identified several open issues and promising
areas of research.

First of all, it is necessary a deep analysis of the
performance benefits provided by these constructs. If wise
application of allocation code can potentially increase
performances, conversely it could also be used inappropriately
and, then, it can degrade performance. For example, migrating
an object close to the server it is currently accessing can
increase performance only if the number of accesses is high
enough to outweigh the migration cost; otherwise, that will
degrade performances. Currently, none of the systems
surveyed in the paper introduces tools to evaluate the
effectiveness of the allocation code specified within an
application. In addition, though the application of the
modularity principle and the abstraction of the language
constructs can make it theoretically portable, this must also be
supported by performance portability. All the surveyed systems
claim portability, but none of them have proved their
allocation code to be effectively portable - in terms of
performances - onto different architectures. In this direction,
formal methods could help in the definition of the allocation

code and ira its perfkmnance analysis
A second area that needs to be analyzed relates to

reusability and comes fiom the inheritance anomaly problem
[McH94]. Inheritance involves not just code reuse but also
code change; if a class contains two kinds of code - for
example sequential code and synchronization code - a change

to one of these kinds of inherited code can hinder the reuse of
the other kind of inherited code (and viceversa). In the worst
case, a subclass may not be able to reuse an)' inherited code.
Most of the analysis of the inheritance anomaly have focused
the domain of synchronization, but the inheritance anomaly
may appear whenever one inherits two or more kinds of code
within a hierarchy. For example, inheritance anomalies have
been reported even in the area of object-oriented real-time
systems with regard to deadline specifications [Aks94]. Thus,
the problem is likely to represent itself in the analyzed domain
of allocation [Mas94]. However, to our knowledge, no specific
analysis of the problem exists and little is known about how
serious the problem can be.

A further interesting area of research concerns the strict
relation between the allocation code and the synchronization
code. The area of allocation seems to overlap with the area of
synchronization for concurrent object-oriented languages in
several important ways:
• the same event-based programming model used in several

synchronization proposal [CorL91, McH94], can be used
for the allocation. This event-based model has been
explicitly identified in reflective systems, but characterizes
also Emerald-like systems (the invocation of a method can
cause its parameter to migrate) and Parallel Objects (the
creation of an objects starts a decisional activity within the
integrated load balancing policy);

• the semantics of the accesses to a given component of an
application (and the way they are synchronized) is likely to
provide important hints with regard to its allocation. For
example, if a component is accessed in mutual exclusion, it
could be migrated to the component that is currently
accessing so to enforce locality of reference and with the
guarantee that no other local access will be broken. As a
further example, one object with a read-only state can be
replicated without any consistency problem.

The overlap between allocation and synchronization suggests
that researchers in the relatively young area of allocation
might be able to derive some useful ideas from the deeper
analyzed area of synchronization. With regard to the modular
issue, we suggest to consider that the allocation area is
evolving in a very similar to the one of synchronization: as the
latter evolved from semaphores up to monitor and path-
expression, the allocation area is evolving from low-level
constructs mixed in the algorithmic code (Emerald), up to
meta-level allocation objects (Reflective Systems) and high-
level directives with a well-defined scope and separated from
the algorithmic code (Parallel Objects).

7. Conclusions

The paper surveys several object-oriented programming
environments that provide language constructs to express the
dynamic allocation behavior of applications: among a variety

81

..... i

of heterogeneous approaches, a few issues can characterize
them. The paper focuses on modularity and analyses whether
and how the introduced constructs permit to follow a modular
principle in the allocation code.

Promising areas of research are oflered by the
relationship of the allocation problem with the
synchronization area and by the analysis of the inheritance
anomaly in the allocation code.

8. References

[Ach93]

[Aks94]

[BalK93]

[Ben90]

[Bru93]

[CasK88]

[Cha89]

[ChiC91]

[CorL91]

[CorLZ92]

[CorLZ97]

[HeuA891

[Ju188]

B. Achauer, "The DOWL Distributed Object-Oriented
Language", Communications of the ACM, Vol. 36, No. 9,
pp. 48-55, Sept. 1993.
M. Aksit et al., "Real-Time Specification Inheritance
Anomalies and Real-Time Filters", Proceedings of
ECOOP '94, LNCS No. 821, pp. 386-407, Springer-
Verlag, July 1994.
H. E. Bal, M. F. Kaashoek, "Object Distribution in Orca
using Compile-Time and Run-Time Techniques",
Proceedings of OOPSLA '93, ACM SigPlan Notices, Vol.
28, No. 10, Oct. 1993.
J. Bennet, "Experience with Distributed Smalltalk",
Software: Practice and Experience, Vol. 20, No. 2, pp.
157-180, Feb. 1990.
D. Bruschi et al., "A User-Friendly Environment for
Parallel Programming", Proceedings of the 1 st

EUROMICRO Workshop on Parallel and Distributed
Processing, IEEE CS Press, pp. 451-456, Jan. 1993.
T. L. Casavant, J. G. Kuhl, "A Taxonomy of Scheduling
in General-Purpose Distributed Computing System",
IEEE Transactions on Software Engineering, Vol. 8, No.
4, pp. 141-154, Feb. 1988.
J. S. Chase et al., "The Amber System: Parallel
Programming on a Network of Multiprooessors",
Proceedings of the 12 m ACM Symposium on Operating
Systems Principles, ACM Operating Systems Review,
Vol. 23, No. 12, pp. 147-t58, Dec. 1989.
R.S. Chin, S.T. Chanson, "Distributed Object-Based
Programming Systems", ACM Computing Surveys, Vol.
23, No. 1, pp. 91-124, March 1991.
A. Corradi, L. Leonardi, "PO Constraints as Tools to
Synchronize Active Objects", The Journal of Object-
Oriented Programming, Vol. 4, No. 6, pp. 41-53, Oct.
1991.
A. Corradi, L. Leonardi, F. Zambonelli, "Load Balancing
Strategies for Massively Parallel Architectures", Parallel
Processing Letters, Vol. 2, No. 2 & 3, pp. 139-148, Sept.
1992.
A. Corradi, L. Leonardi, F. Zambonelli, "High-Level
Directives to Drive the Allocation of Parallel Object-
Oriented Applications", Workshop on High-Level
Programming Models and Supportive Environments,
IEEE CS Press, Geneva (CH), April 1997.
L. Heuser, B. Achauer, "Language Constructs to Express
Distribution of Object-Oriented Applications",
Proceedings of TOOLS '89, Paris (F), Nov. 1989.
E. Jul et al., "Fine Grained Mobility in the Emerald
System", ACM Transactions on Computer Systems, Vol.

6, No. 1, pp. 109-133, Feb. 1988.
[Lux95] W. Lux, "Adaptable Object Migration: Concept and

Implementation", ACM Operating Systems Review, Vol.
29, No. 5, pp. 54-69, May 1995.

[Mas94] H. Masuhara, "Study on a Reflective Architecture to
Provide Efficient Dynamic Resource Management for
Highly Parallel Object-Oriented Applications", Master
Thesis, University of Tokyo, Tokyo (J), Feb. 1994.

[McH94] C. Mc Hale, "Synchronisation in Concurrent Object-
Oriented Lanaguages: Expressive Power, Genericity and
Inheritance", PhD Thesis, Department of Computer
Science, Trinity College, Dublin (IR), Oct. 1994.

[NorT93] M.G. Norman, P. Thanisch, "Models of Machines and
Computation for Mapping in Multicomputers", ACM
Computing Surveys, Vol. 25, No. 3, pp. 263-302, Sept.
1993.

[Nut94] D. Nuttel, "A Brief Survey of Systems Providing Process
or Object Migration Facilities", ACM Operating Systems
Review, Vol. 28, No. 4, pp. 64-79, Oct. 1994.

[Okai94] H. Okamura, Y. Ishikawa, "Object Location Control
Using Meta-level Programming", Proceedings of ECOOP
'94, LNCS No. 821, pp. 299-319, Springer-Verlag, July
1994.

[PowM83] M. L. Powell, B. P. Miller, "Process Migration in
DEMOS/MP", Proceedings of the 9 m ACM Symposium
on Operating Systems Principles, ACM Operating
Systems Review, Vol. 17, No. 5, pp. 110-I 18, May 1983.

[ShiKS92] N. G. Shivaratri, P. Krueger, M. Singhal, "'Load
Distributing for Locally Distributed System", IEEE
Computer, Vol. 25, No. 12, pp. 33-44, Dec. 1992.

[ShiWP90] B. Shirazi, M. Wang, G. Pathak, "Analysis and
Evaluation of Heuristic Method for Static Task
Scheduling", The Journal of Parallel and Distributed
Computing, Vol. I0, No. 3, pp. 222-232, March 1990.

[Smi88] J.M.Smith, "A Survey of Process Migration
Mechanisms", ACM Operating Systems Review, Vol. 22,
No. 3, pp. 28-40, July 1988.

[Tar94] E. Tarnvik, "Dynamo: a Portable Tool for Dynamic Load
Balancing on Distributed Memory Multicomputers",
Concurrency: Practice and Experience", Vol. 6, No. 8, pp.
613-639, Dec. 1994.

[WatY88] T. Watanabe, A. Yonezawa, "Reflection in an Object-
Oriented Concurrent Language", Proceedings of OOPSLA
'88, ACM SigPlan Notices, Vol. 23, No. 11, pp. 306-315,
Nov. 1988.

[Weg90] P. Wegner, "Concepts and Paradigms of Object Oriented
Programming", ACM OOPS Messenger, Vol. l, No. l,
pp. 7-87, Aug. 1990.

[Zhou93] S. Zhou et al., "Utopia: a Load Sharing Facility for Large,
Heterogeneous Distributed Computer Systems", Software
Practice and Experience, Vol. 32, No. 12, pp. 1305-1336,
Dec. 1993.

82

