skip to main content
research-article

HSL_MI28: An Efficient and Robust Limited-Memory Incomplete Cholesky Factorization Code

Authors Info & Claims
Published:08 July 2014Publication History
Skip Abstract Section

Abstract

This article focuses on the design and development of a new robust and efficient general-purpose incomplete Cholesky factorization package HSL_MI28, which is available within the HSL mathematical software library. It implements a limited memory approach that exploits ideas from the positive semidefinite Tismenetsky-Kaporin modification scheme and, through the incorporation of intermediate memory, is a generalization of the widely used ICFS algorithm of Lin and Moré. Both the density of the incomplete factor and the amount of memory used in its computation are under the user's control. The performance of HSL_MI28 is demonstrated using extensive numerical experiments involving a large set of test problems arising from a wide range of real-world applications. The numerical experiments are used to isolate the effects of scaling, ordering, and dropping strategies so as to assess their usefulness in the development of robust algebraic incomplete factorization preconditioners and to select default settings for HSL_MI28. They also illustrate the significant advantage of employing a modest amount of intermediate memory. Furthermore, the results demonstrate that, with limited memory, high-quality yet sparse general-purpose preconditioners are obtained. Comparisons are made with ICFS, with a level-based incomplete factorization code and, finally, with a state-of-the-art direct solver.

References

  1. Patrick R. Amestoy, Timothy A. Davis, and Iain S. Duff. 2004. Algorithm 837: AMD, an approximate minimum degree ordering algorithm. ACM Trans. Math. Softw. 30, 3, 381--388. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Owe Axelsson, Igor Kaporin, Igor Konshin, Andrey Kucherov, Maya Neytcheva, Ben Polman, and Alex Yeremin. 2000. Comparison of algebraic solution methods on a set of benchmark problems in linear elasticity. Final Report of the STW project NNS.4683. Department of Mathematics, University of Nijmegen.Google ScholarGoogle Scholar
  3. Owe Axelsson and Niels Munksgaard. 1983. Analysis of incomplete factorizations with fixed storage allocation. In Preconditioning Methods: Analysis and Applications. Topics in Computational Mathematics, Vol. 1, Gordon & Breach, New York, 219--241.Google ScholarGoogle Scholar
  4. Lourenco Beirão da Veiga, Vitaliy Gyrya, Konstantin Lipnikov, and Gianmarco Manzini. 2009. Mimetic finite difference method for the Stokes problem on polygonal meshes. J. Comput. Phys. 228, 19, 7215--7232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Michele Benzi. 2002. Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182, 2, 418--477. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Michele Benzi, John C. Haws, and Miroslav Tůma. 2000. Preconditioning highly indefinite and nonsymmetric matrices. SIAM J. Sci. Comput. 22, 4, 1333--1353. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Michele Benzi and M. Tůma. 2003. A robust incomplete factorization preconditioner for positive definite matrices. Numer. Linear Algebra Appl. 10, 5--6, 385--400.Google ScholarGoogle ScholarCross RefCross Ref
  8. Elisabeth H. Cuthill and James McKee. 1969. Reducing the bandwidth of sparse symmetric matrices. In Proceedings of the 24th National Conference of the ACM. ACM Press, 157--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. 38, Article 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Elizabeth D. Dolan and Jorge J. Moré. 2002. Benchmarking optimization software with performance profiles. Math. Prog. 91, 2, 201--213.Google ScholarGoogle ScholarCross RefCross Ref
  11. Iain. S. Duff and Jacko Koster. 2001. On algorithms for permuting large entries to the diagonal of a sparse matrix. SIAM J. Matrix Anal. Appl. 22, 4, 973--996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Iain S. Duff and Stéphane Pralet. 2005. Strategies for scaling and pivoting for sparse symmetric indefinite problems. SIAM J. Matrix Anal. Appl. 27, 2, 313--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Roland W. Freund and Nöel M. Nachtigal. 1990. An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, part II. Tech. Rep., TR 90--46. RIACS, NASA Ames Research Center.Google ScholarGoogle Scholar
  14. Thomas George, Anshul Gupta, and Vivek Sarin. 2009, revised 2011. An empirical analysis of the performance of preconditioners for SPD systems. Res. Rep. RC 24737, IBM.Google ScholarGoogle Scholar
  15. Thomas George, Anshul Gupta, and Vivek Sarin. 2012. An empirical analysis of the performance of preconditioners for SPD systems. ACM Trans. Math. Softw. 38, Article 24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Nicholas I. M. Gould, Yifan F. Hu, and Jennifer A. Scott. 2007. A numerical evaluation of sparse direct symmetric solvers for the solution of large sparse, symmetric linear systems of equations. ACM Trans. Math. Softw. 33, Article 10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Nicholas I. M. Gould and Jennifer A. Scott. 2004. A numerical evaluation of HSL packages for the direct solution of large sparse, symmetric linear systems of equations. ACM Trans. Math. Softw. 30, 3, 300--325. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Anshul Gupta and Thomas George. 2010. Adaptive techniques for improving the performance of incomplete factorization preconditioning. SIAM J. Sci. Comput. 32, 1, 84--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jonathan D. Hogg and Jennifer A. Scott. 2008. The effects of scalings on the performance of a sparse symmetric indefinite solver. Tech. Rep., RAL-TR-2008-007, Rutherford Appleton Laboratory.Google ScholarGoogle Scholar
  20. Jonathan D. Hogg and Jennifer A. Scott. 2011. HSL_MA97: A bit-compatible multifrontal code for sparse symmetric systems. Tech. Rep., RAL-TR-2011-024, Rutherford Appleton Laboratory.Google ScholarGoogle Scholar
  21. Jonathan D. Hogg and Jennifer A. Scott. 2014. Pivoting strategies for tough sparse indefinite systems. ACM Trans. Math. Softw. 40, 1, Article 4. DOI: http://dx.doi.org/10.1145/2513109.2513113 Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. HSL. 2013. A collection of Fortran codes for large-scale scientific computation. http://www.hsl.rl.ac.uk.Google ScholarGoogle Scholar
  23. David Hysom and Alex Pothen. 2001. A scalable parallel algorithm for incomplete factor preconditioning. SIAM J. Sci. Comput. 22, 6, 2194--2215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Alan Jennings and George M. Malik. 1977. Partial elimination. J. Inst. Math. Appl. 20, 3, 307--316.Google ScholarGoogle ScholarCross RefCross Ref
  25. Alan Jennings and George M. Malik. 1978. The solution of sparse linear equations by the conjugate gradient method. Int. J. Numer. Methods Engrg. 12, 1, 141--158.Google ScholarGoogle ScholarCross RefCross Ref
  26. Mark T. Jones and Paul E. Plassmann. 1995a. Algorithm 740: Fortran subroutines to compute improved incomplete Cholesky factorizations. ACM Trans. Math. Softw. 21, 1, 18--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Mark T. Jones and Paul E. Plassmann. 1995b. An improved incomplete Cholesky factorization. ACM Trans. Math. Softw. 21, 1, 5--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Igor E. Kaporin. 1998. High quality preconditioning of a general symmetric positive definite matrix based on its UTU+UTR+RTU decomposition. Numer. Linear Algebra Appl. 5, 6, 483--509.Google ScholarGoogle ScholarCross RefCross Ref
  29. George Karypis and Vipin Kumar. October 1997. METIS: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices (Version 3.0). Tech. Rep., University of Minnesota, Department of Computer Science and Army HPC Research Center.Google ScholarGoogle Scholar
  30. Chih-Jen Lin and Jorge J. Moré. 1999. Incomplete Cholesky factorizations with limited memory. SIAM J. Sci. Comput. 21, 1, 24--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Konstantin Lipnikov, Mikhail Shashkov, Daniil Svyatskiy, and Yuri Vassilevski. 2007. Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J. Comput. Phys. 227, 1, 492--512. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Konstantin Lipnikov, Daniil Svyatskiy, and Yuri Vassilevski. 2009. Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes. J. Comput. Phys. 228, 3, 703--716. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Thomas A. Manteuffel. 1980. An incomplete factorization technique for positive definite linear systems. Math. Comp. 34, 150, 473--497.Google ScholarGoogle Scholar
  34. John K. Reid and Jennifer A. Scott. 1999. Ordering symmetric sparse matrices for small profile and wavefront. Int. J. Numer. Methods Eng. 45, 1737--1755.Google ScholarGoogle ScholarCross RefCross Ref
  35. Daniel Ruiz. 2001. A scaling algorithm to equilibrate both rows and columns norms in matrices. Tech. Rep., RAL-TR-2001-034, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England.Google ScholarGoogle Scholar
  36. Daniel Ruiz and Bora Uçar. 2011. A symmetry preserving algorithm for matrix scaling. Tech. Rep., INRIA RR-7552, INRIA, Grenoble, France.Google ScholarGoogle Scholar
  37. Yousef Saad. 1994. ILUT: A dual threshold incomplete LU factorization. Numer. Linear Algebra Appl. 1, 4, 387--402.Google ScholarGoogle ScholarCross RefCross Ref
  38. Yousef Saad. 1996. Iterative Methods for Sparse Linear Systems. PWS Publishing Co., Boston. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Jennifer A. Scott and Miroslav Tůma. 2011. The importance of structure in incomplete factorization preconditioners. BIT 51, 2, 385--404.Google ScholarGoogle ScholarCross RefCross Ref
  40. Jennifer A. Scott and Miroslav Tůma. 2014. On positive semidefinite modification schemes for incomplete Cholesky factorization. SIAM J. Sci. Comput. 36, 2, A634--A667.Google ScholarGoogle ScholarCross RefCross Ref
  41. Scott W. Sloan. 1986. An algorithm for profile and wavefront reduction of sparse matrices. Int. J. Numer. Methods Eng. 23, 239--251.Google ScholarGoogle ScholarCross RefCross Ref
  42. Scott W. Sloan. 1989. A Fortran program for profile and wavefront reduction. Int. J. Numer. Methods Eng. 28, 2651--2679.Google ScholarGoogle ScholarCross RefCross Ref
  43. Made Suarjana and Kincho H. Law. 1995. A robust incomplete factorization based on value and space constraints. Int. J. Numer. Methods Eng. 38, 1703--1719.Google ScholarGoogle ScholarCross RefCross Ref
  44. Miron Tismenetsky. 1991. A new preconditioning technique for solving large sparse linear systems. Linear Algebra Appl. 154--156, 331--353.Google ScholarGoogle Scholar
  45. Ichitaro Yamazaki, Zhaojun Bai, Wenbin Chen, and Richard Scalettar. 2009. A high-quality preconditioning technique for multi-length-scale symmetric positive definite linear systems. Numer. Math. Theory, Methods and Appl. 2, 4, 469--484.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. HSL_MI28: An Efficient and Robust Limited-Memory Incomplete Cholesky Factorization Code

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Mathematical Software
        ACM Transactions on Mathematical Software  Volume 40, Issue 4
        June 2014
        154 pages
        ISSN:0098-3500
        EISSN:1557-7295
        DOI:10.1145/2639949
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 8 July 2014
        • Revised: 1 October 2013
        • Accepted: 1 October 2013
        • Received: 1 April 2013
        Published in toms Volume 40, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader