
Efficient Data Management and Statistics
with Zero-Copy Integration

Jonathan Lajus
ENS Cachan

France
jonathan.lajus@ens-cachan.fr

Hannes Mühleisen
CWI, Amsterdam
The Netherlands

hannes@cwi.nl

ABSTRACT
Statistical analysts have long been struggling with ever-
growing data volumes. While specialized data management
systems such as relational databases would be able to handle
the data, statistical analysis tools are far more convenient to
express complex data analyses. An integration of these two
classes of systems has the potential to overcome the data
management issue while at the same time keeping analysis
convenient. However, one must keep a careful eye on imple-
mentation overheads such as serialization. In this paper, we
propose the in-process integration of data management and
analytical tools. Furthermore, we argue that a zero-copy in-
tegration is feasible due to the omnipresence of C-style arrays
containing native types. We discuss the general concept and
present a prototype of this integration based on the colum-
nar relational database MonetDB and the R environment for
statistical computing. We evaluate the performance of this
prototype in a series of micro-benchmarks of common data
management tasks.

1. INTRODUCTION
Researchers and practitioners alike have long been struggling
to produce solutions for the grand challenges that appeared
in the Big Data era. A single system to solve the chal-
lenges arising through large volumes of data that require
complex statistical processing to find answers might even
be impossible, due to the large gap in requirements: Large-
scale data management is based on very efficient processing
and memory bandwidth utilization, clever storage layouts
and complex query optimization techniques. Unfortunately,
running advanced analytical methods using the standard
database interfaces is tedious to impossible. On the other
hand, statistical processing packages have moved to give
statisticians more and more flexibility in expressing their
analyses. This however reduces optimization opportunities,
since optimization of expressive programming languages is
no simple task. In addition, their data handling capabilities
are by far not as advanced as those in a database system.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SSDBM ’14, June 30 - July 02 2014, Aalborg, Denmark.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2722-0/14/06 ...$15.00.
http://dx.doi.org/10.1145/2618243.2618265

A possible solution would be the integration of two systems
that specialize on the respective tasks of data management
and statistical analysis. This is our long term goal and has
already been shown to be both powerful and practical [11],
but a major issue remains: As the amount of data to be
transferred between the data management and the statis-
tics software grows larger, the transmission overhead grows.
This is a direct consequence of the memory management
techniques used on modern computing architectures, where
different processes have no direct access to memory held by
another process. The very popular choice of socket communi-
cation between processes requires expensive serialization and
de-serialization. Another possibility is shared memory, but
here, both systems need to specifically support this mode.

In this paper, we propose the integration of data manage-
ment and statistical software in the same process. If the two
systems run in one and the same process, data sharing can be
as simple as passing pointers around. Nevertheless, the issue
of different data representations within process memory by
the two systems can still make a conversion process necessary.
However, if both systems use the most common form of data
representation, C arrays of primitive types, the conversion
step might be avoided altogether. These data structures have
become very popular due to the high efficiency with which
they can be processed by modern hardware architectures.
This allows bulk operations on large amounts of data. As an
example, we show how two representatives of each class of
systems, the MonetDB analytical data management system
and the R environment for statistical computing can be inte-
grated in the same process. Furthermore, both systems use C
arrays of primitive types as their internal in-memory storage
model. Hence, we also show how zero-copy integration can
be achieved between these two systems, thereby extending
the capabilities of database management systems to new
application areas.

The main research question for this work was whether it is
possible to integrate statistical and data management sys-
tems in a way that does not require any data conversion or
copying. Such an integration would promise unparalleled
performance due to the highly specific optimization opportu-
nities on both sides; the data management side can focus on
performance, while the analytical side can put emphasis on
user-friendly and concise expression of statistical analyses.
In this paper, we contribute a proof-of-concept integration
and a micro-benchmark evaluation aimed at showing the
potential of such an integration. The remainder of this paper

is organized as follows: In the following Section 2, we give
an extensive overview over related work. Section 3 then dis-
cusses the generic challenges for in-process data sharing. We
describe our proof-of-concept integration of MonetDB and
R in Section 4. Finally, we present the results of the experi-
ments we have performed using our integration in Section 5
and conclude in Section 6.

2. RELATED WORK
The improvement of large-scale data management within
statistical software packages has already enjoyed much at-
tention. There are several distinct classes of approaches: We
have identified socket-based interfaces to various databases,
extensions of the statistical software itself, embeddings of
differing directions, solutions for a subset of the problem and
distributed data management frameworks.

The perhaps most prolific approach is to use a standard-
ized database interface such as JDBC or ODBC to access
data from the statistical environment. This is for example
supported in the statistical packages R, SPSS and STATA.
The basic procedure is to establish a database connection
through these standardized interfaces, and then to send SQL
queries to the relational database and retrieve result sets
into the statistical environment. This approach has two
major drawbacks: First, users have to make themselves fa-
miliar with SQL and the relational model in order to retrieve
data. Second, data transferred between the process space of
the database and the statistical software has to be copied
multiple times and likely to be serialized and parsed in the
process. As we have will see in our evaluation in Section 5,
this severely limits the amount of data that can be trans-
ferred. This is especially critical as extending a SQL interface
with new functionality is much to ask from a statistical ana-
lyst, and she will therefore tend to run her analysis within
the statistical environment, exacerbating the need for data
transfer. In the R ecosystem, database-specific connectors
exist for many commercial as well as Open-Source databases,
e.g. RPostgreSQL and RORACLE [5, 12].

In the class of extensions of the statistical environment itself,
the general trend is to provide a faster implementation of
particularly expensive data management operations. For
example, the data.table package for R vastly improves the
performance of data loading from raw CSV files, but also for
join and grouping operations [6]. The extension benefits from
a deep integration into R and strives for compatibility with
existing data management infrastructure. This makes it pos-
sible to enhance the performance of analytical programs by
adding the extension. However, the performance is achieved
by re-implementing classical relational algebra operators. It
is clear that the implementation of these operators has en-
joyed much more attention in a system solely dependent on
their performance. We will address this assumption with
experiments in Section 5. Also, the dataset being processed
has to fit into memory, which represents a serious constraint.
A very similar approach has been followed by the ff pack-
age [3]. However, the compatibility with the existing data
management infrastructure was dropped. Hence, analysis
programs will have to be rewritten in order to benefit from
the optimized data management provided by the extension.
Nevertheless, the extension also provides functionality absent
in the original infrastructure.

We have already argued for the in-process embedding of data
management and the statistics environment. This approach
has two possible directions, one that embeds the statistics
environment within the database, so that analytical functions
become available from the database (SQL) interface. The
REmbeddedPostgres is an example of this group, where the
R environment was embedded into the PostgreSQL database,
such that functions operating on single records, aggregates
and triggers can be implemented using R and its contributed
libraries [10]. A more recent example is the embedding of
R into the Oracle commercial database [8]. We however
propose the inverse embedding direction here, where the
database is embedded into the statistics environment. The
most widely used representative of this class is RSQLite,
which is also subject of our evaluation. SQLite is a compact
implementation of a relational database that is designed to
be embedded in other programs. Hence, embedding it in
R faced fewer challenges than those described in Section 4.
All those approaches share a common limitation: The data
retrieved from the database tables has to be converted from
the database-internal format into the R format. This re-
quires at least one copying and processing step. Contrary,
this overhead is completely unnecessary in the approach we
propose. The most comprehensive integration presented so
far is that of the SAP HANA database and R. Here, R scripts
are executed as part of the database query execution plan [7].
Also, shared memory is used to transfer data and query
results between the database and R. While not requiring
serialization, conversion and copying still has to take place.
In a distributed environment, R has also been embedded
into MySQL with an additional CORBA-based coordination
layer for coordination with a user session [4].

Also related are database-supported solutions for specific
computational issues in statistical computations. Large-scale
calculations on arrays or matrices are an example for such a
specific issue. RIOT is a proposed approach to achieve trans-
parent IO efficiency which also maps an R problem into the
SQL realm [18, 19]. The authors also discuss the fundamen-
tal issues behind achieving the sought-after IO transparency.
Large-scale array processing from within the statistical envi-
ronment through third-party data management systems has
also been described for distributed processing, for example
in the Presto system, where functions can be executed in
parallel over a single logical array [17]. Interestingly, they
also note the importance of the zero-copy mechanism for
efficient data sharing between the statistical and the data
management system. However, having built their data man-
agement from scratch, they were able to avoid some of the
pitfalls we have encountered in Section 4.

3. SAME-PROCESS DATA SHARING
From a conceptual point of view, the integration of two
independent systems within a single process is simple: Multi-
threading facilities provided by the operating systems allow
a large number of independent execution contexts, hence
systems that previously were running in a single process
can be moved into independent executions threads within a
single process. Access to shared resources such as the network
system, the file system etc. is still managed by calls to the
operating system, which also provides synchronization and
isolation between the threads. In practice however, several
challenges do exist:

First of all, the placement of two systems in the same address
space usually requires recompilation, unless special relocat-
able object files are available. Even if library versions are
available, they are unlikely to export all the necessary opera-
tions. This means that the source code of both systems has
to be available. Then, a new binary is produced by compiling
both systems together. However, it is far from certain that
first, both systems use a compatible programming environ-
ment and second, their programming code actually can be
compiled together. For example, two separate C programs
could both contain an error() function to handle program
errors. If no special care is taken, the existence of the symbol
in both code bases precludes compilation. There are static
source code analysis methods to catch some of these name
clashes (given sane coding practices), but integration prob-
lems will still appear in the linking phase. Overall, the effort
to make the two systems compile and link together is highly
dependent on the implementation of both systems.

Once both systems are successfully linked and started, the
actual passing of data has to be considered. The method
of choice would be the calling of a function in the data
management system by the analytics software to request
data. Once the data is available, the data management
system in turn calls a method in the analytics package to
notify it of the data being available. Alternatively, the data
management system can be initialized, the query run, and
shut down again from the context of the calling routine in the
analytics package. If the desired data is only available within
a function call, and not as a result, it would be possible to
modify the code in such a way that the data management
solution would be forced to wait on a semaphore until the
data is no longer needed. The form in which data is passed
is by reference. This means that rather than putting the
entire data on the stack as a function parameter, the memory
address (which is valid for both systems, since they run in
the same address space) is passed. This allows the analytics
system to simply de-reference the address pointer and access
the data there. Another issue remains however. Low-level
memory allocation requires the explicit free()-ing of memory
that is not used any more. Yet, the data management system
has no way of knowing whether the analytical system still
requires access to the shared data. Hence, the task of freeing
the memory that contains the shared data has to be taken
over by the analytical system or by way of an additional
notification mechanism in the data management part.

Figure 1 shows the described communication pattern. Within
the continuous space of virtual memory, both the statistical
tool as well as the database are loaded. The statistical tool
initiates the interaction by sending a SQL query by means
of function call to the database (1). The database then
starts processing the query and produces a result set in a
compatible binary format (2). Finally (and crucially), the
data is not returned in serialized form of or by copying, but
instead by only passing a pointer (here: 0x10000000) to the
starting address of the query response within memory to the
statistics application (3). The statistics application can now
directly access the data in memory. Of course, the figure
oversimplifies the process, as every result set column would
have their independent starting address, all of which would
have to be passed over. In addition, the receiving program
needs to know the number of elements in the arrays, and the

0x00000000

Statistics Database

SELECT...?

0x00000000

Statistics Database Query Result

0x10000000

0x00000000

Statistics Database Query Result

0x10000000

0x10000000!

(1)

(2)

(3)

Figure 1: Communication Flow within Process Space

type of each entry in bytes in order to read the data. From
the type, the length of each entry can be determined.

Of course, by running both systems on a single machine,
otherwise common issues such as differing endianness are
avoided. However, different programing languages can use
different binary encoding for their values. Nevertheless, there
is a (small) set of data types with a almost universally agreed-
on encoding. Fortunately, those are also the ones with most
relevance to statistical analyses: integers of various lengths
(short,int,long), and standardized floating point numbers
(float,double) [2, 1]. The compatibility in encoding even
between programming environments is due to CPU support
for these data types, such that operations on them can
be calculated by the CPU in a single instruction. Hence,
regardless of the system used, there is a good chance that
the basic data is encoded in one of these types. The cited
standards also include conventions for special values, for
example infinity or the special value NaN (“Not a Number”)
for divisions by zero.

But one complication still exists: Both relational databases
as well as statistical analysis software have a notion for an
unknown value, or missing data (NA/NULL). The way this is
encoded on an in-memory level is typically through additional
values that represent the non-existing value. These are not
included in the number representation standards, therefore
every system has its own convention about which specific
value is regarded as a missing value. Of course, it is very likely
that different values are used. Hence, it would be beneficial
to filter those values out on the data management side before
passing the pointer. There might however be a shortcut: For
numerical values, the NA value is usually represented by taking
a magic value, for example the smallest or highest possible
legal value for the C type. Since this value is hopefully
defined at a single location in both systems, there could be
a small modification to change this value to be compatible
and recompile.

Another issue concerns more complicated data structures
such as character strings or complex objects. While the
representation of single strings as null-terminated charac-

ter arrays is universally used, we are focusing on arrays of
values. There are several alternatives to represent arrays
of strings. For example, an array of pointers into separate
null-terminated arrays for each entry could be used to store
a string array, possible re-using memory addresses for dupli-
cate elimination. Another option would be to use a larger
string vector that contains several null-terminated strings
and an offset array to access each entry. Another possibility
yet would be a non-traditional string layout, e.g. using a
start pointer/length structure. Many more representations
are possible, and it is therefore unrealistic to expect similar
in-memory representations of string vectors. Similar issues
exist for other complex data types, especially as program-
ming language borders are crossed. Fortunately, the most
common statistical calculations involve variables that are
either already numerical or can easily be mapped to numeric
arrays. We will focus on those types in the following.

While we can now reasonably (and possibly only partially)
assume compatible encoding of single values, we are ulti-
mately interested in bulk processing of large amounts of data.
Both statistical and database systems are built on a tabular
data abstraction, which is equal to or closely related to the
relational model as a list of named columns of various types.
If a row-oriented storage layout is used, the different data
types force a large amount of additional structuring bits to
be added to make it clear where the row starts, where the
fields start, where the fields end, and where the row ends.
This can be best compared with CSV-like formats, only on a
binary level. However, it has been shown, that a columnar or
decomposed storage model allows far higher efficiency with
regards to analytical processing [9, 16].

One of the reasons why the columnar data representation
has been found superior in those use cases is the more “nat-
ural” mapping of single columns to environment-provided
data structures. In particular, the concept of an indexed
array of values of a single type is a basic feature of almost
all programming environments, and expensive function calls
are not as common. Furthermore, there is an obvious and
widespread storage layout of these arrays within the con-
ceptually continuous address space such that array elements
are simply stored back-to-back without additional dividing
bits [2]. Dividers are not necessary since the width of the
single element type in number of bytes is known in advance.
Of course, this only applies to fixed-length types. Again,
these types are fortunately the most commonly used ones in
statistics.

Finally, we have to discuss concurrent access to the query
result and the persistence of changes to the data. If data are
directly being accessed using a pointer there is no general
way of prohibiting writes to these memory locations. The
major issue here is that it is not clear whether the data for
which the pointer is passed is part of the permanent data.In
the case of main memory databases, the contents of main
memory are the base data that has been loaded into the
database. If for example an entire table or a subset of it
is requested, there is no reason why the database should
copy the data in order to create a result set. Therefore, if a
pointer to the base data is given to the analytical package,
modifications can potentially change (or even corrupt!) the
data. This is especially true in the aforementioned case of

main memory databases. Whether it is safe to allow write
access to the passed data therefore completely depends on
the implementation of the data management solution. A
compromise to protect the database from corruption would
be to rely on a low-level copy-on-write mechanism of the
operating system for memory-mapped data or a raw copy of
in memory. These copies may affect only small selections of
slices of tables (optimized operations that give a read-only
view on the table). As the database system chooses at which
point it will use one allocation method or the other, a trade-
off has to be found between the overhead of accessing the
virtual memory and the overhead of punctual copy of views if
we want to ensure the integrity of the database. Then all the
write operations become local to the statistical environment.
Another option is to use additional synchronization mecha-
nisms to perform a safe modification of the data. However,
this would require extensive modification of both systems.
It is thus safest if a read-only access pattern is assumed for
now, even there are no possibilities of enforcing this once the
pointer has been passed over.

4. EMBEDDING MONETDB AND R
From the previous section, we could see that an in-process
integration between a database and a statistical software
package is theoretically feasible. However, we have also
seen numerous potential issues, that could make zero-copy
data integration impossible, because at least a single-pass
conversion would be required. To continue our studies on the
matter, we have chosen to attempt the described integration
using two representatives of both system classes. For the data
management part, we have selected MonetDB, an open source
columnar relational database that is focused on analytical
queries [9]1. For the part of statistical analysis, we chose the
R environment for statistical computing [14]. The advantage
of both systems is their focus on the issue at hand as well as
the free availability of their source code. As described above,
the availability of the source code is a crucial precondition
for in-process integration.

It should be noted that we have embedded MonetDB into R,
not the other way around and this for two reasons. First, the
changes described below are less invasive. R-core has only
been slightly modified and the databases produced or read
by the embedded version of MonetDB are fully compatible
with the default version. Second, the use of MonetDB for
data management is fully transparent to R users. The two
systems communicate using simple function calls. The system
is started up by first starting R. Whenever the first database
operation is required, the database system is initialized, the
data is loaded, the query is run, and the result set retrieved.
As the R process is terminated, so is MonetDB. Of course,
this will add a small initialization overhead to the execution
time of the first query.

In MonetDB, relational tables are stored as a set of “Binary
Association Tables” (BATs). Each table thus consists of
a set of BATs. Furthermore, database operators such as
selections, projections, joins etc are operating on BATs and
also produce BATs as output. Each BAT consists of two
(potentially large) arrays, referred to as “head” and “tail”.

1MonetDB is developed at the CWI Database Architectures
group, where this research was also performed.

The head contains the row indices of the values stored in the
BAT, and the tail the actual values of varying type. If the
head array is continuous, it is omitted in favor of a starting
offset in order to save memory. In addition, BATs have a
header structure that contains meta data about the data
stored, such as length, type etc. Within the database, BATs
are passed around using a pointer to the header structure,
which in turn contains pointers to the head (if applicable)
and to the tail. Figure 2 shows this data structure: The
meta data is held in independent memory areas that contain
pointers to the actual data in simple arrays. The database
also keeps track of the number of references to a single BAT,
and removes them from memory if that count drops to zero.
Of course, client programs expect a table as a response to a
SQL query. Hence, in the last step of query processing, the
resulting BATs are recombined to produce a relational table
by joining the columns together on their row indices. Then,
the result is serialized and sent to the client. MonetDB also
contains a pluggable optimizer architecture, where different
algorithms can be enabled to adapt the query execution plan.

BAT
Descriptor

Column
Descriptor

0 1 2 ...

42 43 44 ...Column
Descriptor

Arrays

head

tail

Reference

Figure 2: MonetDB Binary Association Table (BAT)

On the other side, R uses a universal data type called “Sym-
bolic Expression” (SEXP) for all values [15]. There are a
number of subtypes that hold specific kinds of data. Here, we
are only interested in the vector types, for example INTSXP,
REALSXP to hold integer and floating point values, respec-
tively. Due to the vectorized nature of R, no concept of single
values exists, these are represented as vectors of length one.
Every vector-typed SEXP is a collection of values, which is
coincidentally stored in an array of primitive types. Each
SEXP contains a header structure which describes the type
of the data in the value. In the case of an INTSXP, the
header is immediately followed by a primitive value array as
shown in Figure 3.

42 43 44 ...
Reference

SEXP Header

Array

Figure 3: R Symbolic Expression (INTSXP)

It is this similarity in storage layout that makes a zero-copy
integration possible. R also supports an “external pointer”
data type, which at first glance would be perfect to store
the BAT pointer “leaked” from MonetDB. However, built-in
R operations cannot operate on this type of objects, so the
preferred solution was to “dress up” a MonetDB BAT as an
R SEXP. This way, we can move data into R and use both
built-in and contributed analysis methods on it, without the
analysis methods noticing that they actually operate on a
BAT. Otherwise, at least a single copy/conversion step would
be required. To perform this underhanded trick, we have
extended R’s memory management system with a way to
construct a SEXP from a given vector without reallocating.

BAT
Descriptor

Column
Descriptortail

42 43 44 ...
Reference

SEXP HeaderR

Reference
MonetDB

Figure 4: Dual-Role BAT/SEXP

We have added a small “optimizer” to MonetDB, which
changes every query execution plan insofar that it removes
the final joining of the result columns together as well as
the serialization of the resulting table onto the client socket.
Instead, a new function inside the R realm is called. This
function gets the reference to the result BAT as well as
the SQL name and type of the result column passed as
parameters. From this point, we can hand over to a in-
place allocation function. A major difficulty here was that R
expects the SEXP header directly preceding the data array.
Since it is impossible to allocate space in front of a pointer
without reallocating and copying, we have also modified
MonetDB’s memory management to allocate space to fit the
SEXP header in front of every MonetDB tail array. These
changes were done in such a way that they do not interfere
with the “normal” database operations. The exact size of the
SEXP header is dependent on the hardware architecture, but
can be calculated by sizeof(SEXPREC_ALIGN). For example,
on a Intel 64 Bit platform, the header requires 40 bytes of
memory. Therefore, we offset the pointer into this area by the
space the SEXP header requires, and let MonetDB continue.
This way, as R gets the pointer, it can safely decrement it
by the size of the SEXP header and write the header in
front of the data array. After this “redressing” of the BAT
is finished, the resulting SEXP is indistinguishable (except
for the attached finalizer) from native R data vectors. This
state with the native array being both part of a BAT as
well as a SEXP is shown in Figure 4. Now, all R-internal
operations on data vectors such as filtering, calculations etc.
are supported. Furthermore, the vast amount of contributed
R packages that operates on vectors can also be used. As
discussed in the previous section, it is also possible to handle
NA values by changing the “magic” values for the various
numerical types to the same number.

While the data is now available as an ordinary R SEXP con-
taining for example integer data, freeing the memory after
R is finished processing the data is another concern. As
mentioned, R has a garbage collector that will destroy non-
referenced objects and free the associated memory region.
However, we could not use this finalizer, as a BAT consists
of more than the tail array. R does support natively custom
finalizer functions for objects, but unfortunately only for
the objects of the aforementioned “external pointer” types.
Hence, we had to make a slight change in the R memory
manager. This change only prevents the garbage collector
from executing a low-level free on specially marked SEXP.
Furthermore, we have found a method of attaching a custom
finalizer to this object by referencing an external pointer ob-
ject (mentioned above) as an attribute of the dual-use BAT/-
SEXP. Once an object is garbage-collected, its attributes
will lose their reference and will also be garbage-collected,
which will lead to the call of the custom finalizer in the next
collection iteration. This process allows a safe destruction of

the SEXP created (without reallocation) using our extension
in R’s memory management system mentioned above. In our
case, the finalizer just decrements the MonetDB reference
counter for the affected BAT and thus leads to the BAT
being destroyed (if required). Again, these changes do not
affect other parts of R, not even the collection phase of the
garbage collector, or third-party extension packages at all.

From a user’s perspective, we wrap the embedded database
engine into a function call with the SQL query as the parame-
ter and a R data.frame structure as return value, compatible
to the standardized R database interface [13]. In addition,
we re-use the deep database integration layer for R we have
presented in our previous work [11]. There, we have shown
how R users can interact with data stored inside a relational
database in an almost native way. We overloaded R-internal
data management operations to modify an underlying SQL
query. This SQL query was then sent to the database, the
query processed, and the result set was delivered back to
R, where it is converted into the R type to hold tabular
data, the data.frame. Previously, the connection between
the MonetDB and R used a TCP socket. We were able to
re-use and update this work for the embedded version and
the simple R code below demonstrates the ease of use of the
user interface. No actual data has to be copied or modified
at all, the only data modifications regard the addition of
meta data and data organization structures. Still, users are
able to use the embedded database without realizing that
they do. This way, we gain both high performance and SQL
transparency.

Listing 1: Returns a data.frame, result of the query:
SELECT c2 FROM t1 WHERE (c1 > 42)

c <− dbConnect (MonetinR () ,
”/abso lu t e/path/to/database ”)

mf <− monetinr . frame (c , ”t1 ”)
subset (mf , c1 > 42)$c2

With regards to the question of read and write sharing,
MonetDB uses memory-mapped files to store both base data
as well as most intermediate results. This leads to two
different kinds of behaviour with regard to the persistence
of changes to the data. If the query result is a part of
the base data column, changes to it will be written to disk
by the operating system. On the other hand, if data was
calculated as part of the query execution, it will be not
be made persistent. This inconsistency makes it difficult to
officially support writing to the shared data objects. However,
there is not much we can do to prevent writing, since we
have deliberately no control over data access to maximize
compatibility. Nevertheless, writing to the vector on the R
side should be avoided.

5. EXPERIMENTAL RESULTS
Since we were unable to find any R data access benchmark,
we have chosen to perform a series of micro-benchmarks
based on the most common data access tasks to evaluate the
potential benefits of the same-process integration of R and
MonetDB outlined above. We have chosen three competitive
large-scale data management solutions for R to be compared
with our proof-of-concept prototype:

• data.table, a R extension specifically designed for fast
data access

• MonetDB.R, the socket-based integration of MonetDB
and R presented in our previous work [11]

• RSQLite, an R integration of the embedded SQL database
SQLite.

From comparing these systems, we expect to see the im-
pact of highly optimized database systems to data access
performance (especially comparing data.table with the re-
lational systems) as well as the advantages of using column
stores (Prototype and MonetDB.R against RSQLite) as well as
the advantages of in-process integration (MonetDB.R against
prototype).

The four implementations were compared by testing four ba-
sic data management features. First, we tested the selection
of a subset of the rows from a table. Since the size of the
selection result is expected to have an impact on performance,
we have varied the selectivity of the selection between 1, 10
and 50 % of the data. We expect that handling large results
will be very difficult for the socket-based solutions. We have
also tested both selection and projection of a subset of rows.
Only a subset of the columns and only a subset of the rows
in the table were requested as result set. Here, column-based
solutions are expected to perform better than their row-
based counterparts. Another feature tested is aggregation,
or grouping in database terminology. Grouping tends to
become difficult as the amount of groups to be aggregated
becomes large. Hence, we have also varied the group size in
1, 500 and a variable group size that was equivalent to 10 %
of the rows in the data set. Here, the larger result sets will
be difficult to handle for the socket-based solution, but it is
unclear how the other contenders will fare. Finally, we have
tested another class of operations, the join (or “merge” in R
terms) of two tables by a shared attribute. Depending on the
algorithm used, the join performance is heavily influenced by
the relative sizes of the two tables. Hence, we have repeated
this experiment using a second table with both 1 and 10 % of
the size of the first table. All these operations are common to
many data analysis tasks, but are also common to relational
queries.

Furthermore, we have repeated all of those experiments
on four data sets of increasing size, 10 MB, 100 MB, 1 GB
and 10 GB. These data set sizes were chosen to show the
limits of the tested systems, and of course their capability to
handle large amounts of data. We suspect that “lightweight”
solutions such as RSQLite will be unable to handle the larger
data sizes particularly well. All data consisted of integer
columns with random values that were auto-generated as
required. For all experiments, we have collected the wall
clock time that the systems under test required to complete,
since this is the most obvious measure for user-facing systems.
Single experiment runs were limited to one hour of execution
time. All tests were run on a standard desktop computer
with 16 GB of main memory and a 3.4 Ghz Intel i7 CPU. The
operating system was Fedora Linux 18. The three systems
we have compared our approach to are openly available.
In the interest of repeatability, we have also published our
slightly modified R version and the modified and reorganized

1% Rows Selected 10% Rows Selected 50% Rows Selected

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10ms

100ms

1s

10s

1min

10min

10
 M

B

10
0

M
B

1
G

B

10
 G

B

10
 M

B

10
0

M
B

1
G

B

10
 G

B

10
 M

B

10
0

M
B

1
G

B

10
 G

B

Dataset Size (log)

E
xe

cu
tio

n
T

im
e

(lo
g)

●

●

●

●

data.table
RSQLite
MonetDB.R
Prototype

(a) Selection

1% Rows Selected 10% Rows Selected 50% Rows Selected

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

10ms

100ms

1s

10s

1min

10min

10
 M

B

10
0

M
B

1
G

B

10
 G

B

10
 M

B

10
0

M
B

1
G

B

10
 G

B

10
 M

B

10
0

M
B

1
G

B

10
 G

B

Dataset Size (log)

E
xe

cu
tio

n
T

im
e

(lo
g)

●

●

●

●

data.table
RSQLite
MonetDB.R
Prototype

(b) Selection and Projection

1 Group 500 Groups 10% Groups

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10ms

100ms

1s

10s

1min

10min

10
 M

B

10
0

M
B

1
G

B

10
 G

B

10
 M

B

10
0

M
B

1
G

B

10
 G

B

10
 M

B

10
0

M
B

1
G

B

10
 G

B

Dataset Size (log)

E
xe

cu
tio

n
T

im
e

(lo
g)

●

●

●

●

data.table
RSQLite
MonetDB.R
Prototype

(c) Grouping and Aggregation

1% Join Partner Size 10% Join Partner Size

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

10ms

100ms

1s

10s

1min

10min

10
 M

B

10
0

M
B

1
G

B

10
 G

B

10
 M

B

10
0

M
B

1
G

B

10
 G

B

Dataset Size (log)

E
xe

cu
tio

n
T

im
e

(lo
g)

●

●

●

●

data.table
RSQLite
MonetDB.R
Prototype

(d) Joining of two tables

Figure 5: Experimental Results

MonetDB database2. In the latter case, reorganization of
the folder structure and the build process was necessary to
fit R’s package structure. However, this allows us also to
compile and install the entire database the same way as any
other R package.

On to the results of the evaluation. All plots in this section
are structured as follows: Results for each of the different
configurations are plotted in their own box, with the par-
ticular configuration noted on top. Within each box, the
horizontal axis denotes the dataset size (on a logarithmic
scale) and the vertical axis describes the response time (also
on a logarithmic scale). For example, the configuration of
the selection experiment is the percentage of rows retrieved
from the data set. If the tested system took longer than
the timeout of one hour, the measurement is omitted alto-
gether. All reported timings are cold runs, that is, R and (if
applicable) the external database were restarted before every
test. The full results in absolute numbers are also given in
Appendix A.

2https://github.com/lajus

Figure 5(a) shows the result of the first experiment, where
the very basic transfer of increasing number of rows into R
was tested. We can see a very consistent pattern over all
data sets. Most notably, the largest result set was retrieved
by our prototype in around 110 s, with every other solution
taking at least two times more. However, the result set with
50 % of the data being retrieved showed data.table.to be
faster for the first three data sets. We attribute this to the
row recombination overhead in MonetDB. Also, a curious
pattern repeats itself over the first three data sets, where the
performance of data.table shows to be rather independent
of the result set size. This might be due to its lazy loading ap-
proach, where the actual data file is not loaded until accessed.
Since the data loading cost is constant, this might explain
this behavior. When comparing the data.table observations
to the closest running mate, RSQLite, we see that 10 % of
the data being transferred is the threshold where RSQLite

becomes slower than data.table. This can also be explained
by the aforementioned lazy bulk loading, which favors large
amounts of data retrieved, which in addition are then already
available within the R address space and in a compatible
format. Both these advantages are not present in RSQLite.
Furthermore, we can observe timeouts for MonetDB.R for the

https://github.com/lajus

two largest result sets. This comes as no surprise, when
comparing and extrapolating its behavior with the previous
data sets. MonetDB.R was just able to create and transfer the
largest result set for the 1 GB data set, and the 10 % of the
10 GB dataset is twice as large. Another important result
is the overall slow performance of MonetDB.R, which uses
socket communication and serialization. The large amount
of overhead can directly seen in the plot. This validates our
motivation for this research, as we have suspected that the
socket communication overhead might be responsible for a
large amount of total response time.

A very similar picture can be seen in Figure 5(b), where the
results of the selection/projection experiments are plotted.
We have predicted that the column-based solutions will show
an advantage here, and indeed the timings for our prototype
are less than in the previous experiment. While MonetDB.R

does in theory also profit from this the high socket overhead
drowns this advantage, except for very large result sets. This
comes to no surprise, as the socket overhead is high but
constant, and less data will eventually show an impact. Also,
we can see how the additional effort for projection increases
the difference between the row- and column-based solutions,
in particular our Prototype and RSQLite.

For the grouping experiments, the timings are plotted in
Figure 5(c). The group size of one has only a single value
as a result set. Hence, the socket overhead should be less.
We can see exactly this effect by comparing the performance
of MonetDB.R to the other systems. Surprisingly, we also see
our Prototype being slightly slower than data.table for the
single-value result sets. This is most likely due to the fact
that the single group precludes multi-threaded execution of
the grouping in MonetDB. Next, we can also observe very
similar performance for RSQLite and data.table, for the
larger amounts of groups in the first three data sets. This
hints at a very comparable implementation of the grouping
in these two systems. Still, the highly optimized code in
MonetDB was able to outperform both for these experiments.
For the largest data set, we can see how only MonetDB with
both integration methods was able to complete the largest
aggregation. Here, we can see the advantage of both a
highly-optimized relational database as well as the in-process
integration.

Finally, Figure 5(d) shows the timings for the joining of two
data sets. Joins are a core requirement and performance
bottleneck for relational databases, therefore it is little sur-
prising that our prototype outperformed all other systems for
all data set but the largest. Again, the socket overhead pre-
vented MonetDB.R from achieving a comparable performance.
Surprisingly, data.table shows a higher performance for
the larger join partner size. The reason for this discrepancy
might be the selection of another join algorithm (e.g. moving
from a hash join to a inner loop join) for the larger join part-
ner. Again, we observe timeouts for MonetDB.R and RSQLite

on the largest data set.

Overall, we can observe vast performance benefits for our
prototype, especially when comparing it with its socket-based
competitor, which otherwise is very similar. In particular,
handling large amounts of data and corresponding results
sets in particular was one of its strengths. We were sur-

prised and impressed by the high performance shown by the
data.table package, which was able to compete with our
prototype and beat RSQLite on most occasions. We also
confirm our expectation that the socket communication is
a major hindrance when large result sets are communicated
between systems. Also, the results for the more complex
operations such as groups and joins showed a clear advantage
for the columnar relational database.

6. CONCLUDING REMARKS
In this paper, we have tried to push the integration between
statistical software packages and data management tools as
far as possible. To the best of our knowledge, same-process
zero-copy data sharing is as far this integration can possi-
bly go. The potential benefits for large-scale data analyses
are obvious and numerous. From our discussion of previ-
ous work, it became clear that no previous system supports
this level of integration. From analyzing data storage in-
side virtual memory, we have argued that C-style arrays of
primitive types are likely to exist on the bottom layer of
many software solutions dealing with data. By coercing the
data management system into sharing the memory reference
to this low-level data structure and tricking the statistical
software into regarding this data structure as its own, an
integration of unparalleled performance would be possible,
despite some remaining issues such as undefined values and
write access to the shared data.

To investigate this point, we then performed a prototypi-
cal integration as described using the columnar relational
database MonetDB and the R environment for statistical
computing. We were able to masquerade low-level arrays
of primitive values in such a way that both a MonetDB
and R regarded them as their internal data structure. Our
experiments have shown that this combination can vastly
outperform other approaches, especially once a significant
amount of data has to be transferred between systems. Only
then the overheads for copying and data conversion become
dominant.

This insight already hints at the next challenge: Since the
shared data is indistinguishable from native objects, sec-
ondary data management operations will also be performed
by the statistics package without explicit intervention. How-
ever, the integration is based on the assumption that the
system best suited for a particular task should execute this
task. However, this would require to pass the possibly modi-
fied data back to the database, before other queries can be
run. While certainly possible, further modification of both
systems would be required. Also, the class of iterative data
analysis algorithms could require a very large number of
round-trips between the two systems. However, we can re-
peat our zero-copy method for the other direction of sharing
data as well. Here, we would create a temporary table and
create the BAT/Column descriptors accordingly. Then, the
complete round-trip between database and statistics environ-
ment is possible, and since no actual data is being copied,
the overhead for each iteration is constant.

With regards to the integration of statistical software such as
R into other database management systems than MonetDB,
we found that there are two main strategies: First, if the
low-level data representation for numerical arrays is based

on C arrays of primitive numeric types, the problem is re-
duced to properly manage memory and practical engineering
to allow both programs to run in the same address space.
Contrary, if the in-memory representations of data are con-
ceptionally different, for example as it is the case between
R and any row-based database management system, each
access to a vector from the statistical side has to be mapped
to a function call that operates on the alien data structure.
The host program then would need to implement a layer
of abstraction for the low-level vector accesses. This has
profound implications on performance due to the overheads
created by the data conversion and function calls for every
value. Furthermore, integrating such an abstraction layer
would require a massive rewrite of R in particular, and break
many contributed packages which rely on the memory layout
and direct pointer-based access. Due to these issues, such an
integration would be all but lightweight.

From a practicality standpoint, it might be more feasible to
invest in a single copying/conversion step, while still running
both processes in the same virtual memory address space.
This way, the missing value encoding and the read/write
problem could be avoided. Operating systems also already
use copy-on-write semantics if processes fork themselves, but
this functionality is not yet exported to user-space programs.
Of course, this conversion would have to be possible in both
directions, such that the analytical environment could pass
data back to the database. In both cases, a classical op-
timization problem arises, where two systems can produce
result-equivalent results, but not under the same timing pa-
rameters. The decision of where a operation should be run
can be very simple if data sharing is free, but as we have seen,
this might not be very practical. This then opens up a whole
new area of research problems, although one where previ-
ous work from related areas, e.g. in distributed databases
potentially could be reused.

Considering the applicability and possible generalization of
our work, we propose to pass pointers to C-style arrays
containing native types between statistical environment and
data management solutions. Obviously, this is only possible
if both systems use this data representation. However, due
to the properties of modern hardware, this representation
can avoid cache misses and function call overhead and is
able to saturate modern CPUs. Due to this reasons, the
representation of data in this manner has attracted much
attention in recent years and it is unlikely the differences in
memory access that favor columnar data processing vanish
anytime soon. However, statistical environments are far less
concerned with raw performance, here, user convenience and
a rich programming interface are key. Therefore, it is less
likely to find the array data representation in this context.
That being said, R’s massive gain in popularity in recent
years have make it the de-facto statistical environment. As we
have shown, R does use this array-style data representation.
Our work therefore applies to both the integration of R into
columnar data management system as well as to the more
generic integration of systems that benefit from sharing large
amounts of data that both use equivalent low-level data
representations.

Finally, we come back to our research question of whether it is
possible to integrate statistical and data management systems

in a way that does not require any data conversion or copying.
From the concepts and results we have presented in the paper,
we can conclude that this is certainly possible, although only
under some restrictions of varying seriousness. We argue that
our integration was prototypical and representative of the
issues that arise should such an integration be attempted.

Acknowledgments
We would like to thank Thomas Lumley of the R core team
and Sjoerd Mullender from the MonetDB team for their
invaluable help. Also, we thank the anonymous reviewers for
their insightful comments. H. Mühleisen is supported by the
COMMIT/ project funded by NWO.

7. REFERENCES
[1] IEEE Standard for Floating-Point Arithmetic. IEEE

Std 754-2008, pages 1–70, 2008.

[2] Intel 64 and IA-32 Architectures Software Developer’s
Manual, 06 2013.

[3] D. Adler, C. Gläser, O. Nenadic, J. Oehlschlägel, and
W. Zucchini. ff: memory-efficient storage of large data
on disk and fast access functions, 2013. R package
version 2.2-11.

[4] F. Chen and B. D. Ripley. Statistical computing and
databases: Distributed computing near the data. In
Proceedings of the 3rd International Workshop on
Distributed Statistical Computing (DSC 2003), 2003.

[5] J. Conway, D. Eddelbuettel, T. Nishiyama, S. K.
Prayaga, and N. Tiffin. RPostgreSQL: R interface to
the PostgreSQL database system, 2013. R package
version 0.4.

[6] M. Dowle, T. Short, S. L. with contributions from
A Srinivasan, and R. Saporta. data.table: Extension of
data.frame for fast indexing, fast ordered joins, fast
assignment, fast grouping and list columns., 2013. R
package version 1.8.10.

[7] P. Große, W. Lehner, T. Weichert, F. Färber, and
W.-S. Li. Bridging two worlds with RICE integrating R
into the SAP in-memory computing engine. PVLDB,
4(12):1307–1317, 2011.

[8] M. Hornick and T. Plunkett. Using R to Unlock the
Value of Big Data: Big Data Analytics with Oracle R
Enterprise and Oracle R Connector for Hadoop.
McGraw-Hill Osborne Media, 2013.

[9] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S.
Mullender, and M. L. Kersten. MonetDB: Two decades
of research in column-oriented database architectures.
IEEE Data Engineering Bulletin, 35(1):40–45, 2012.

[10] D. T. Lang. Scenarios for using R within a relational
database management system server. Technical report,
Bell Labs, 2001.

[11] H. Mühleisen and T. Lumley. Best of both worlds:
relational databases and statistics. In Proceedings of the
25th International Conference on Scientific and
Statistical Database Management, SSDBM, pages
32:1–32:4, New York, NY, USA, 2013. ACM.

[12] D. Mukhin, D. A. James, and J. Luciani. ROracle: OCI
based Oracle database interface for R, 2013. R package
version 1.1-10.

[13] R. S. I. G. on Databases. DBI: R Database Interface,
2013. R package version 0.2-7.

[14] R Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, 2013.

[15] R Core Team. R Internals. R Foundation for Statistical
Computing, 3.1.0 edition, 2014.

[16] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and S. B.
Zdonik. C-store: A column-oriented DBMS. In
K. Böhm, C. S. Jensen, L. M. Haas, M. L. Kersten,
P.-Å. Larson, and B. C. Ooi, editors, VLDB, pages
553–564. ACM, 2005.

[17] S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung, and
R. S. Schreiber. Presto: distributed machine learning
and graph processing with sparse matrices. In
Z. Hanzálek, H. Härtig, M. Castro, and M. F.
Kaashoek, editors, EuroSys, pages 197–210. ACM,
2013.

[18] Y. Zhang, H. Herodotou, , and J. Yang. RIOT:
I/O-efficient numerical computing without SQL. In
Proceedings of the 2009 Conference on Innovative Data
Systems Research, 2009.

[19] Y. Zhang and J. Yang. Optimizing I/O for big array
analytics. CoRR, abs/1204.6081, 2012.

APPENDIX
A. FULL EXPERIMENTAL TIMINGS
All timings are given in seconds.

10 MB d
a
t
a
.
t
a
b
l
e

R
S
Q
L
i
t
e

M
o
n
e
t
D
B
.
R

P
r
o
t
o
t
y
p
e

Selection
1% 0.07 0.01 0.15 0.01
10% 0.08 0.04 0.41 0.01
50% 0.10 0.22 2.48 0.02

Selection/
Projection

1% 0.07 0.01 0.15 0.01
10% 0.08 0.04 0.41 0.01
50% 0.10 0.22 2.48 0.02

Grouping
1 0.01 0.23 0.25 0.01

500 0.07 0.60 0.17 0.02
10% 0.75 0.79 0.35 0.05

Joining
1% 0.03 0.02 0.16 0.02
10% 0.09 0.16 0.64 0.02

100 MB

Selection
1% 0.50 0.07 1.07 0.02
10% 0.48 0.67 4.06 0.47
50% 0.57 3.04 93.21 2.22

Selection/
Projection

1% 0.47 0.04 0.46 0.01
10% 0.48 0.43 0.67 0.10
50% 0.57 1.98 32.47 0.59

Grouping
1 0.02 2.31 0.88 0.06

500 4.17 7.23 0.52 0.06
10% 10.78 8.33 4.08 0.73

Joining
1% 0.52 0.20 0.28 0.07
10% 0.32 69.66 0.64 0.25

1 GB

Selection
1% 4.33 0.70 4.19 0.08
10% 4.55 6.07 82.90 1.97
50% 5.29 28.30 540.60 14.53

Selection/
Projection

1% 4.12 0.51 2.24 0.09
10% 4.24 4.04 47.08 0.43
50% 5.06 21.44 22.21 2.28

Grouping
1 0.17 25.04 3.77 0.47

500 56.46 90.35 2.33 0.52
10% 145.29 117.95 72.09 10.82

Joining
1% 8.29 2.63 2.99 0.61
10% 3.33 2.57 48.55 1.23

10 GB

Selection
1% 109.18 7.97 164.53 1.25
10% 291.63 66.75 27.47
50% 636.89 337.47 111.25

Selection/
Projection

1% 105.09 5.04 47.71 0.47
10% 414.02 50.53 45.15 4.07
50% 334.62 245.27 23.14

Grouping
1 1.55 273.22 212.09 104.98

500 1102.49 207.00 92.63
10% 2595.01 1863.73

Joining
1% 980.11 1478.90
10% 247.42 1490.24

	Introduction
	Related Work
	Same-Process Data Sharing
	Embedding MonetDB and R
	Experimental Results
	Concluding Remarks
	References
	Full Experimental Timings

