skip to main content
10.1145/2618243.2618271acmotherconferencesArticle/Chapter ViewAbstractPublication PagesssdbmConference Proceedingsconference-collections
research-article

Offline cleaning of RFID trajectory data

Published:30 June 2014Publication History

ABSTRACT

An offline cleaning technique is proposed for translating the readings generated by RFID-tracked moving objects into positions over a map. It consists in a grid-based two-way filtering scheme embedding a sampling strategy for addressing missing detections. The readings are first processed in time order: at each time point t, the positions (i.e., cells of a grid assumed over the map) compatible with the reading at t are filtered according to their reachability from the positions that survived the filtering for the previous time point. Then, the positions that survived the first filtering are re-filtered, applying the same scheme in inverse order. As the two phases proceed, a probability is progressively evaluated for each candidate position at each time point t: at the end, this probability assembles the three probabilities of being the actual position given the past and future positions, and given the reading at t. A sampling procedure is employed at certain steps of the first filtering phase to intelligently reduce the number of cells to be considered as candidate positions at the next steps, as their number can grow dramatically in the presence of consecutive missing detections. The proposed approach is experimentally validated and shown to be efficient and effective in accomplishing its task.

References

  1. A. I. Baba, H. Lu, X. Xie, and T. B. Pedersen. Spatiotemporal data cleansing for indoor RFID tracking data. In MDM (1), pages 187--196, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Y. Bai, F. Wang, P. Liu, C. Zaniolo, and S. Liu. RFID data processing with a data stream query language. In ICDE, pages 1184--1193, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  3. D. Bleco and Y. Kotidis. RFID data aggregation. In GSN, pages 87--101, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. S. S. Chawathe, V. Krishnamurthy, S. Ramachandran, and S. Sarma. Managing RFID Data. In VLDB, pages 1189--1195, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. H. Chen, W.-S. Ku, H. Wang, and M.-T. Sun. Leveraging spatio-temporal redundancy for RFID data cleansing. In ACM SIGMOD, pages 51--62, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in Practice. Statistics for Engineering and Information Science. Springer, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  7. B. Fazzinga, S. Flesca, F. Furfaro, and E. Masciari. RFID-data compression for supporting aggregate queries. ACM Trans. Database Syst., 38(2):11, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. B. Fazzinga, S. Flesca, F. Furfaro, and F. Parisi. Cleaning trajectory data of RFID-monitored objects through conditioning under integrity constraints. In EDBT, pages 379--390, 2014.Google ScholarGoogle Scholar
  9. H. Gonzalez, J. Han, H. Cheng, X. Li, D. Klabjan, and T. Wu. Modeling massive RFID data sets: A gateway-based movement graph approach. IEEE Trans. Knowl. Data Eng., 22(1):90--104, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. H. Gonzalez, J. Han, X. Li, and D. Klabjan. Warehousing and Analyzing Massive RFID Data Sets. In ICDE, pages 83--88, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. H. Gonzalez, J. Han, and X. Shen. Cost-conscious cleaning of massive RFID data sets. In ICDE, pages 1268--1272, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  12. I. Hong and A. T. Murray. Efficient measurement of continuous space shortest distance around barriers. Int. J. of Geographical Information Science, 27(12):2302--2318, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. H. Hussein, H. Lu, and T. B. Pedersen. Reasoning about RFID-tracked moving objects in symbolic indoor spaces. In SSDBM, page 9, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. R. Jeffery, M. Garofalakis, and M. Franklin. Adaptive cleaning for RFID data streams. In VLDB, pages 163--174, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. C. S. Jensen, H. Lu, and B. Yang. Graph model based indoor tracking. In Mobile Data Management, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. N. Khoussainova, M. Balazinska, and D. Suciu. Towards correcting input data errors probabilistically using integrity constraints. In MobiDE, pages 43--50, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. C. H. Lee and C. W. Chung. Efficient storage scheme and query processing for supply chain management using RFID. In ACM SIGMOD, pages 291--302, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. Letchner, C. Ré, M. Balazinska, and M. Philipose. Access methods for markovian streams. In ICDE, pages 246--257, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Letchner, C. Re, M. Balazinska, and M. Philipose. Approximation trade-offs in markovian stream processing: An empirical study. In ICDE, pages 936--939, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  20. C. Ré, J. Letchner, M. Balazinska, and D. Suciu. Event queries on correlated probabilistic streams. In ACM SIGMOD, pages 715--728, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. T. Tran, C. Sutton, R. Cocci, Y. Nie, Y. Diao, and P. J. Shenoy. Probabilistic inference over RFID streams in mobile environments. In ICDE, pages 1096--1107, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. F. Wang and P. Liu. Temporal Management of RFID Data. In VLDB, pages 1128--1139, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. Xie, J. Yang, Y. Chen, H. Wang, and P. S. Yu. A sampling-based approach to information recovery. In ICDE, pages 476--485, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. B. Yang, H. Lu, and C. S. Jensen. Probabilistic threshold k nearest neighbor queries over moving objects in symbolic indoor space. In EDBT, pages 335--346, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. Yu, W.-S. Ku, M.-T. Sun, and H. Lu. An RFID and particle filter-based indoor spatial query evaluation system. In EDBT, pages 263--274, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. Zhang, D. Papadias, K. Mouratidis, and M. Zhu. Query processing in spatial databases containing obstacles. Int. J. of Geographical Information Science, 19(10):1091--1111, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  27. Z. Zhao and W. Ng. A model-based approach for RFID data stream cleansing. In CIKM, pages 862--871, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Offline cleaning of RFID trajectory data

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            SSDBM '14: Proceedings of the 26th International Conference on Scientific and Statistical Database Management
            June 2014
            417 pages
            ISBN:9781450327220
            DOI:10.1145/2618243

            Copyright © 2014 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 30 June 2014

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            SSDBM '14 Paper Acceptance Rate26of71submissions,37%Overall Acceptance Rate56of146submissions,38%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader