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ABSTRACT
Existing ABR algorithms face a significant challenge in esti-
mating future capacity: capacity can vary widely over time,
a phenomenon commonly observed in commercial services.
In this work, we suggest an alternative approach: rather
than presuming that capacity estimation is required, it is
perhaps better to begin by using only the bu↵er, and then
ask when capacity estimation is needed. We test the viabil-
ity of this approach through a series of experiments spanning
millions of real users in a commercial service. We start with
a simple design which directly chooses the video rate based
on the current bu↵er occupancy. Our own investigation re-
veals that capacity estimation is unnecessary in steady state;
however using simple capacity estimation (based on immedi-
ate past throughput) is important during the startup phase,
when the bu↵er itself is growing from empty. This approach
allows us to reduce the rebu↵er rate by 10–20% compared
to Netflix’s then-default ABR algorithm, while delivering a
similar average video rate, and a higher video rate in steady
state.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]: Computer-
Communication Networks—General

Keywords
HTTP-based Video Streaming; Video Rate Adaptation Al-
gorithm

1. INTRODUCTION
During the evening peak hours (8pm–1am EDT), well over

50% of US Internet tra�c is video streamed from Netflix and
YouTube [16, 17]. Unlike traditional video downloads that
must complete fully before playback can begin, streaming
video starts playing within seconds. Each video is encoded
at a number of di↵erent rates (typically 235kb/s standard
definition to 5Mb/s high definition) and stored on servers
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Figure 1: Video streaming clients experience highly
variable end-to-end throughput.

as separate files. The video client—running on a home
TV, game console, web browser, DVD player, etc.—chooses
which video rate to stream by monitoring network condi-
tions and estimating the available network capacity. This
process is referred to as adaptive bit rate selection or ABR.

ABR algorithms used by such services balance two over-
arching goals. On one hand, they try to maximize the video
quality by picking the highest video rate the network can
support. On the other hand, they try to minimize rebu↵er-
ing events which cause the video to halt if the client’s play-
back bu↵er goes empty.

It is easy for a streaming service to meet either one of the
objectives on its own. To maximize video quality, a service
could just stream at the maximum video rate R

max

all the
time. Of course, this would risk extensive rebu↵ering. On
the other hand, to minimize rebu↵ering, the service could
just stream at the minimum video rate R

min

all the time—
but this extreme would lead to low video quality. The design
goal of an ABR algorithm is to simultaneously obtain high
performance on both metrics in order to give users a good
viewing experience [7].

One approach is to pick a video rate by estimating fu-
ture capacity from past observations. In an environment
with constant throughput, past observations are reliable to
predict future capacity. However, in an environment with
highly variable throughput, although past observations still
provide valuable ballpark figures, accurate estimation of fu-
ture capacity becomes challenging. Figure 1 is a sample
trace reported by a Netflix video player, showing how the
measured throughput varies wildly from 17Mb/s to 500kb/s.
Each point in the figure represents the average throughput
when downloading a video chunk. This variation has a sig-
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nificant impact on customers: approximately 10% of our
sessions experience at least this much variation, and 22% of
sessions experience at least half as much variation.1 Vari-
ation can be caused by many factors, such as WiFi inter-
ference, congestion in the network, congestion in the client
(e.g. anti-virus software scanning incoming http tra�c), or
congestion at an overloaded video server.

In part due to highly variable throughput, current ABR
algorithms often augment their capacity estimation with an
“adjustment” based on the current level of the playback
bu↵er [6, 20]. Informally, the idea is that this adjustment
should make the rate selection more conservative when the
bu↵er is at risk of underrunning, and more aggressive when
the bu↵er is close to full. As we will see in Section 2, design-
ing an optimal adjustment in a highly variable throughput
environment is challenging; it is very hard to find an ad-
justment function that prevents rebu↵ering without being
overly conservative. However, the notion of bu↵er-based ad-
justment used in current schemes is quite suggestive: note
that the occupancy of the playback bu↵er is the primary
state variable we are trying to manage. This inspires the
following question: namely, can we take the design to its
logical extreme, and choose the video rate based only on the
playback bu↵er occupancy?

In this paper, we consider using only the bu↵er to choose a
video rate, and then ask when capacity estimation is needed.
We observe two separate phases of operation: a steady-state
phase when the bu↵er has been built up, and a startup phase
when the bu↵er is still growing from empty. Our analysis
and experiments show that capacity estimation is not needed
during the steady state. We can rely only on the current
bu↵er occupancy to pick a video rate, allowing for a sim-
ple function to map current bu↵er occupancy to video rate.
On the other hand, as we will see in Section 6, during the
startup phase—just like the slow-start algorithm in TCP—
the bu↵er occupancy carries little or no information about
current network conditions. As a result, crude capacity es-
timation is helpful to quickly ramp up the video rate and
drive the algorithm into the steady state.

In this paper, we show—both formally and through a
deployment in the commercial Netflix service—that our al-
gorithms can avoid unnecessary rebu↵ering events and yet
achieve a high average video rate. We test this approach in
a Netflix browser-based video player, a popular commercial
streaming service, and present results from two A/B tests
with over half a million real users each, on three continents,
over two weekends during May-September 2013. Our exper-
iments allow us to evaluate the viability of the bu↵er-based
design. We find that this design approach can reduce the
rebu↵er rate by 10–20% compared to Netflix’s then-default
ABR algorithm, while improving the steady-state video rate.

In Section 2, we first dig into the implication of highly
variable throughput on ABR algorithm design. This discus-
sion motivates the bu↵er-based approach. In Section 3, we
introduce the broad class of bu↵er-based algorithms (BBA),
and identify the criteria to achieve our design goals in the
ideal setting. In Section 4, we design a very simple baseline
algorithm to test the viability of this approach in the steady-
state. The baseline algorithm reduces the rebu↵er rate by a
promising 10–20% relative to a production algorithm. Nev-
ertheless, the rebu↵er rate is still larger than our empirical

1We define variation to be the ratio of 75th to 25th percentile
throughput; which is 5.6 for this trace.

lower bound and delivers a lower average video rate than
the control algorithm.

We identify two reasons for the lower performance. First,
our baseline algorithm does not address variable bit-rate
(VBR) video encoding; we adapt our algorithm with a sim-
ple fix to handle VBR in Section 5. Second, and more impor-
tantly, our baseline algorithm is optimized for steady-state.
During the startup phase (the first few minutes of viewing),
the bu↵er is close to empty and contains less information
while in a transient phase. Although the performance of the
baseline bu↵er-based algorithm suggests capacity estimation
is not necessary in steady state, simple capacity estimation is
useful in the startup phase. In Section 6, we validate this hy-
pothesis by implementing techniques to improve video qual-
ity in the startup phase by estimating the immediate past
throughput. Together, our two improvements maintain the
reduction in rebu↵er rate by approximately 10–20%, while
improving the video rate during steady state, and leaving
the average video rate essentially unchanged. Finally, in Sec-
tion 7, we propose mechanisms to minimize rate switching
while providing some protections against temporary network
outages.

2. THE CHALLENGES OF A HIGHLY VARI-
ABLE ENVIRONMENT

In an environment with stable capacity, past observations
yield good estimates of future capacity. But if capacity is
varying widely, estimating future capacity is much harder.
Many techniques have been proposed to leverage the bu↵er
occupancy to work with inaccurate capacity estimates. In
this section, we first look into the dynamics of the playback
bu↵er and understand how the bu↵er occupancy encodes
the relation between the selected video rate and the system
capacity. We then consider how the bu↵er occupancy is
used to adjust inaccurate capacity estimates: essentially, the
algorithm becomes more“aggressive”when the bu↵er is close
to full, and more “conservative” when the bu↵er is close to
empty. While appealing, we find that if capacity is highly
variable (as we find it to be in practice), it is hard to prevent
rebu↵ering events with only an adjustment to the capacity
estimate.

However, the design of bu↵er-based adjustments is sug-
gestive, and motivates our design. In particular, our design
begins by using only the bu↵er occupancy to pick a video
rate, and then considers when capacity estimation is needed.
The pure bu↵er-based approach is su�cient when the bu↵er
contains enough information about the past capacity trace,
i.e., in steady state. On the other hand, simple capacity es-
timation proves valuable when the bu↵er contains little in-
formation, i.e., when the bu↵er is still growing from empty
a few minutes after the session starts.

2.1 Dynamics of the Playback Buffer
Figure 2 shows the dynamics of the playback bu↵er in the

client. The bu↵er occupancy is generally tracked in seconds
of video. Every second, one second of video is removed from
the bu↵er and played to the user. The bu↵er drains at unit
rate (since one second is played back every second of real
time). The client requests chunks of video from the server,
each chunk containing a fixed duration of video (four seconds
per chunk in our service). The higher the video rate, the
larger the chunk (in bytes).
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Figure 2: The relationship between system capacity,
C(t), and video rate, R(t), in a video playback bu↵er.
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Figure 3: Current practice adjusts the estimation
based on the bu↵er occupancy.

If the ABR algorithm overestimates the capacity and picks
a video rate, R(t), that is greater than the system capacity,
C(t), then new data is put into the bu↵er at rate C(t)/R(t) <
1 and so the bu↵er decreases. Put another way, if more
than one chunk is played before the next chunk arrives, then
the bu↵er is depleted. If the ABR algorithm keeps request-
ing chunks that are too big for the network to sustain (i.e.,
the video rate is too high), eventually the bu↵er will run
dry, playback freezes and we see the familiar “Rebu↵ering...”
message on the screen.

2.2 Working with Inaccurate Estimates
Many techniques have been proposed to work with in-

accurate estimates, by incorporating information about the
playback bu↵er. Some leverage control theory to adjust the
capacity estimation based on the bu↵er occupancy [6, 20],
some smooth the quality degradation according to the bu↵er
occupancy [15], and some randomize chunk scheduling de-
pending on the bu↵er occupancy to have better samples of
the channel [10].

At a high level, we can capture existing approaches using
the abstract design flow in Figure 3. The client measures
how fast chunks arrive to estimate capacity, Ĉ(t). The es-
timate is optionally supplemented with knowledge of the
bu↵er occupancy, which we represent by an adjustment fac-
tor F (B(t)), a function of the playback bu↵er occupancy.
The selected video rate is R(t) = F (B(t))Ĉ(t); di↵erent de-
signs use di↵erent adjustment functions F (·).

When the bu↵er contains many chunks, R(t) can safely
deviate from C(t) without triggering a rebu↵er. The client
can“aggressively” try to maximize the video quality by pick-
ing R(t) = Ĉ(t).

But when the bu↵er is low, the client should be more
“conservative”, deliberately underestimating capacity so as
to pick a lower video rate and quickly replenish the bu↵er. In
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video for 200s. Note that the bu↵er occupancy was
not updated during rebu↵erings.

this case, designing the adjustment function is much harder,
as the following analysis shows. Consider the case when
there is only one chunk in the bu↵er. The requested chunk
(V seconds) must arrive before the current chunk plays,
else the bu↵er will run dry. In other words, we require
V R(t)/C(t) < B(t), where V R(t) is the chunk size in bytes.
Thus, the selected video rate R(t) needs to satisfy:

R(t) <

✓
B(t)
V

◆
C(t)

to prevent rebu↵ers. Replacing the selected video rate R(t)
with F (B(t))Ĉ(t) in the above inequality, we get the follow-
ing requirement on F (B(t)) to avoid rebu↵ers:

F (B(t)) <

✓
B(t)
V

◆ 
C(t)

Ĉ(t)

!
for all t. (1)

This tells us we must pick F (V ) to be smaller than the
worst case ratio of C(t) to Ĉ(t). Unfortunately, C(t)/Ĉ(t)
is tiny if the throughput is varying wildly; and since we have
to choose F without knowing the actual capacity that will
be observed, it leads to a very conservative algorithm. For
example, in Figure 1, the ratio C(t)/Ĉ(t) can be as small as
0.03 (500 kb/s < C(t) < 17 Mb/s). In other words, for this
session, we need to pick F (V )  0.03 to prevent rebu↵ers,
and the video rate will be just 3% of the rate we could pick
with an accurate estimate. Worse, if F (.) makes us pick
a rate lower than the minimum video rate available, the
constraint becomes impossible to meet.

In practice, large throughput variation within a session is
not uncommon. A random sample of 300,000 Netflix sessions
shows that roughly 10% of sessions experience a median
throughput less than half of the 95th percentile throughput.
When designing an ABR algorithm, the service provider
needs to choose a F (·) that works well for all customers,
with both stable and variable throughput.

An example from a Netflix session illustrates the problem.
Figure 4 shows an ABR algorithm that is not conservative

189



enough; it keeps requesting video at too high a rate after
the capacity has dropped. The client rebu↵ers and freezes
playback for 200 seconds. But notice that the rebu↵er is
entirely unnecessary because the available capacity C(t) is
above R

min

for the entire time series. In fact, if the network
capacity is always greater than the lowest video rate R

min

,
i.e., C(t) > R

min

, 8t > 0, there never needs to be a rebu↵er-
ing event — the algorithm can simply pick R(t) = R

min

so
that C(t)/R(t) > 1, 8t > 0 and the bu↵er keeps growing.
The main reason the client does not switch is that it over-
estimates the current capacity, and the adjustment function
is not small enough to o↵set the di↵erence. As a result, de-
spite the fact that capacity is su�cient to sustain R

min

, the
client does not find its way to that video rate in time.

2.3 The Buffer-Based Approach
The discussion above is suggestive. Despite the challenge

of finding the right adjustment, using bu↵er-based adjust-
ments in algorithms is quite appealing, because the playback
bu↵er is the exact state variable an ABR algorithm is try-
ing to control. For example, the easiest way to ensure that
the algorithm never unnecessarily rebu↵ers is to simply re-
quest rate R

min

when the bu↵er approaches empty, allowing
the bu↵er to grow as long as C(t) > R

min

. Note in par-
ticular that in the scenario in the preceding section, this
approach would have avoided a rebu↵ering event. On the
other hand, as the bu↵er grows, it is safe to increase R(t)
up to the maximum video rate as the bu↵er approaches full.
This motivates our design: our starting point is a simple
algorithm design that chooses the video rate based only on
the playback bu↵er.
Inspired by this discussion, we design our algorithms as

follows. First, we focus on a pure bu↵er-based design: we
select the video rate directly as a function of the current
bu↵er level. As we find, this approach works well when the
bu↵er adequately encodes information about the past his-
tory of capacity. However, when the bu↵er is still growing
from empty (during the first few minutes of a session), it
does not adequately encode information about available ca-
pacity. In this phase, the pure bu↵er-based design can be
improved by leveraging a capacity estimate.
We call this design the bu↵er-based approach. This design

process leads to two separate phases of operation: During
the steady-state phase, when the bu↵er encodes adequate
information, we choose the video rate based only on the
playback bu↵er. During the startup phase, when the bu↵er
contains little information, we augment the bu↵er-based de-
sign with capacity estimation. In this way, our design might
be thought of as an “inversion” of Figure 3: namely, we be-
gin by using only the playback bu↵er, and then “adjust” this
algorithm using capacity estimation where needed.

3. BUFFER-BASED ALGORITHMS
We say that an ABR algorithm is bu↵er-based if it picks

the video rate as a function of the current bu↵er occupancy,
B(t). The design space for this class of algorithms is ex-
pressed by a bu↵er-rate plane where the bu↵er-axis is bu↵er
occupancy and the rate-axis is video rate. The region be-
tween [0, B

max

] on the bu↵er-axis and [R
min

, R
max

] on the
rate-axis defines the feasible region. Any curve f(B) on
the plane within the feasible region defines a rate map, a
function that produces a video rate between R

min

and R
max

given the current bu↵er occupancy.

3.1 Theoretical Criteria for Design Goals
From this feasible region, our goal is to find a class of map-

ping functions that can: (1) avoid unnecessary rebu↵erings,
and (2) maximize average video rate.

To start with, we make the following simplifying assump-
tions:
1. The chunk size is infinitesimal, so that we can change the

video rate continuously.
2. Any video rate between R

min

and R
max

is available.
3. Videos are encoded at a constant bit-rate (CBR).
4. Videos are infinitely long.

We can show that any rate maps that are (1) continuous
functions of the bu↵er occupancy B; (2) strictly increasing
in the region {B : R

min

< f(B) < R
max

}; and (3) pinned at
both ends, i.e., f(0) = R

min

and f(B
max

) = R
max

, will meet
the two design goals. In other words, we can achieve our
goal by picking any rate map that increases the video rate
from lowest to highest as the bu↵er increases from empty to
full. We leave the formal proof in our technical report [9],
and we summarize the proof here:

No unnecessary rebu↵ering: As long as C(t) � R
min

for all t and we adapt f(B) ! R
min

as B ! 0, we will never
unnecessarily rebu↵er because the bu↵er will start to grow
before it runs dry.

Average video rate maximization: As long as f(B) is
(1) increasing and (2) eventually reaches R

max

, the average
video rate will match the average capacity when R

min

<
C(t) < R

max

for all t > 0.
Next, we explore how to remove the assumptions above,

then validate the approach with the Netflix deployments in
Section 4, 5 and 6.

3.2 Real World Challenges
In practice, the chunk size is finite (V seconds long) and

a chunk is only added to the bu↵er after it is downloaded.
To avoid interruption, we always need to have at least one
chunk available in the bu↵er. To handle the finite chunk
size, as well as some degree of variation in the system, we
shift the rate map to the right and create an extra reservoir,
noted as r. When the bu↵er is filling up the reservoir, i.e.,
0  B  r, we request video rate R

min

. Once the reservoir is
reached, we then increase the video rate according to f(B).
Also because of the finite chunk size, the bu↵er does not stay
at B

max

even when C(t) � R
max

; thus, we should allow rate
map to reach R

max

before B
max

. We call the bu↵er between
the reservoir and the point where f(B) first reaches R

max

the
cushion, and the bu↵er after the cushion the upper reservoir.

Since many video clients have no control over TCP sockets
and they cannot cancel an ongoing video chunk download,
we can only pick a new rate when a chunk finishes arriv-
ing. If the network suddenly slows down while we are in
the middle of downloading a chunk, the bu↵er might run
dry before we get the chance to switch to a lower rate.
Thus, we need to aim to maintain the bu↵er level to be
above the reservoir r, so that there is enough bu↵er to ab-
sorb the variation caused both by the varying capacity and
by the finite chunk size. As a result, f(B) should be de-
signed to ensure a chunk can always be downloaded before
the bu↵er shrinks into the reservoir area. Based on these
observations, we say f(B) operates in the safe area if it al-
ways picks chunks that will finish downloading before the
bu↵er runs below r, when C(t) � R

min

for all t. In other
words, V f(B)/R

min

 (B � r). Otherwise, f(B) is in the
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Figure 5: The rate map used in the BBA-0 bu↵er-
based algorithm.

risky area. Overall, the class of functions that we consider
take the piecewise form described in Figure 5. We illustrate
there the reservoir, the cushion, and the upper reservoir. We
also illustrate the notion of safety described in the previous
paragraph: we plot the boundary of the safe area as the red
dashed line in the figure. Any f(B) below the boundary will
be a safe choice.

In Section 4, we test this concept by deploying a baseline
algorithm with fixed-size reservoir and cushion.

4. THE BASELINE ALGORITHM
To test the bu↵er-based approach, we first construct a

baseline algorithm with a relatively simple and naive rate
map. We implement the algorithm in Netflix’s browser-
based player, which has a 240 second playback bu↵er and
downloads the ABR algorithm at the start of the video ses-
sion. Although this player enjoys a bigger bu↵er (240s) than
players on embedded devices, it does not have visibility into,
or control of, the network layer.

As a baseline algorithm, we first set the size of reservoir to
be 90s (a value we thought would be big enough to handle
VBR). To maximize the bu↵er distance between neighbor-
ing rates while leaving some room for the upper reservoir, we
then set the f(B) to be a linear function that reaches R

max

when the bu↵er is 90% full (216 seconds). Note that a rate
map by itself does not fully define the algorithm: the rate
map is continuous, while streamed video rates are discrete,
R

min

, R
2

, R
3

...R
m�1

, R
max

. We therefore adapt the rate fol-
lowing a simple rule: stay at the current video rate as long
as the rate suggested by the rate map does not cross the
next higher (Rate

+

) or lower (Rate�) discrete video rate. If
either“barrier” is hit the rate is switched up or down (respec-
tively) to a new discrete value suggested by the rate map.
In this way, the bu↵er distance between the adjacent video
rates provides a natural cushion to absorb rate oscillations,
making the video rate a little “sticky”. This algorithm, to-
gether with the rate map we just defined, constructs our first
bu↵er-based algorithm. We call this algorithm BBA-0 since
it is the simplest of our bu↵er-based algorithms. The de-
tailed pseudo-code can be found in our technical report [9].

4.1 Experiments
We randomly picked three groups of Netflix users around

the world to take part in the experiments between Septem-
ber 6th (Friday) and 9th (Monday), 2013.

Group 1 is our Control group and they use Netflix’s then-
default ABR algorithm.2 The Control algorithm has steadily
improved over the past five years to perform well under many
conditions. The Control algorithm directly follows the de-
sign in Figure 3: it picks a video rate primarily based on
capacity estimation, with bu↵er occupancy as a secondary
signal. It is representative of how video streaming services
work; e.g. Hulu [8] and YouTube [21] are based on capacity
estimation. Netflix tra�c represents 35% of the US peak
Internet tra�c and they serve 40 million users world-wide.
For these reasons, we believe the Netflix Control algorithm
is a reasonable algorithm to compare against.

Group 2 always stream at R
min

, and we call this degener-
ate algorithm R

min

Always. Always operating at the lowest
video rate minimizes the chances of rebu↵ering, giving us a
lower bound on the rebu↵er rate to compare new algorithms
against. For most sessions R

min

= 560kb/s, but in some
cases it is 235kb/s.3

Group 3 uses our new BBA-0 algorithm.
All three user groups are distributed similarly across ISPs,

geographic locations, viewing behaviors and devices. The
only di↵erence between the three groups of clients is the
rate selection algorithm; they share the same code base for
other mechanisms, such as prebu↵ering, CDN selection, and
error handling. As a result, all three groups share similar
join delay and error rate, allowing us to concentrate on the
quality metrics during playback.

Even though testing against a range of other complex al-
gorithms would not be possible in this testing environment,
it’s unprecedented to be able to report video performance re-
sults from a huge commercial service, such as Netflix, and we
believe the insight it o↵ers into a real system is invaluable.
During our experiments each group of users viewed roughly
120, 000 hours of video. To compare their performance, we
measure the overall number of rebu↵ers per playhour and
the average delivered video rate in each group.

4.2 Results
Rebu↵er Rate. Figure 6(a) plots the number of rebu↵ers
per playhour throughout the day. Figure 6(b) simplifies a
visual comparison between algorithms by normalizing the
average rebu↵er rate to the Control group in each two-hour
period. Peak viewing hours for the USA are highlighted in
yellow. Error bars represent the variance of rebu↵er rates
from di↵erent days in the same two-hour period. The R

min

Always algorithm provides an empirical lower bound on the
rebu↵er rate. Note that because the users in the three
groups are di↵erent and their environments are not exactly
the same, R

min

Always only approximates the lower bound
for the other groups. The first thing to notice from the figure
is that R

min

Always and BBA-0 always have a lower rebu↵er
rate than the Control algorithm. The di↵erence between the
Control algorithm and the R

min

Always algorithm suggests
that 20–30% of the rebu↵ers might be caused by poor choice
of video rate.

2The ABR algorithm in commercial services keeps evolving,
and so Netflix’s current algorithm is now di↵erent.
3In our service, R

min

is normally 235kb/s. However, most
customers can sustain 560kb/s, especially in Europe. If a
user historically sustained 560kb/s we artificially set R

min

=
560kb/s to avoid degrading the video experience too far.
The mechanism to pick R

min

is the same across all three
test groups.
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(b) Normalized number of rebu↵ers per playhour.

Figure 6: Number of rebu↵ers per playhour for the
Control, R

min

Always, and BBA-0 algorithms.

During the middle-of-night period in the USA just af-
ter peak viewing (6am–12pm GMT), BBA-0 matches the
R

min

Always lower bound very closely. At 10am GMT, even
though BBA-0 has a lower average rebu↵er rate than R

min

Always, the di↵erence is not statistically significant.4 These
two algorithms perform equally during this o↵-peak period,
because the viewing rate is relatively low, overall Internet
usage is low, and the network capacity for individual ses-
sions does not change much. The rebu↵er rate during these
hours is dominated by random local events, such as WiFi
interference, instead of congested networks.

During peak hours, the performance with BBA-0 is sig-
nificantly worse than with the R

min

Always algorithm. Nev-
ertheless, the BBA-0 algorithm consistently has a 10–30%
lower rebu↵er rate than the Control algorithm. This perfor-
mance di↵erence is encouraging given the extremely simple
nature of the BBA-0 algorithm. Still, we hope to do better.
In Section 5 and 6, we will develop techniques to improve
the rebu↵er rate of bu↵er-based algorithms.
Video Rate. Figure 7 shows the di↵erence in the deliv-
ered video rate between Control and BBA-0. The daily av-
erage bitrate for the Control algorithm for each ISP can
be found in the Netflix ISP Speed Index [18]. Since R

min

Always always streams at R
min

(except when rebu↵ering),
its delivered video rate is a flat line and is excluded from
the figure. The BBA-0 algorithm is roughly 100kb/s worse
than the Control algorithm during peak hours, and 175kb/s
worse during o↵-peak hours. There are two main reasons

4The hypothesis of BBA-0 and R
min

Always share the same
distribution is not rejected at the 95% confidence level (p-
value = 0.25).
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Figure 7: Comparison of video rate between Control

and BBA-0.
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Figure 8: Average video switching rate per two hour
window for the Control and BBA-0 algorithms.

for the degradation in video quality. First, our BBA-0 algo-
rithm uses a large and fixed-size reservoir to handle VBR,
while the size of reservoir should be adjusted to be just big
enough to absorb the variation introduced by VBR. Second,
and more significantly, while the reservoir is filling up dur-
ing the startup period, our BBA-0 algorithm always requests
video at rate R

min

. Given that we picked a 90s reservoir, it
downloads 90 seconds worth of video at rate R

min

, which is
a non-negligible fraction of the average session length. We
will address both issues in Section 5 and 6.
Video Switching Rate. For bu↵er-based algorithms, the
video rate fluctuates as the bu↵er occupancy changes. How-
ever, as mentioned in Section 3, our algorithm uses the bu↵er
distance between adjacent video rates to naturally cushion
and absorb rate oscillations. Figure 8 compares BBA-0 with
the Control algorithm. Note the numbers are normalized to
the average switching rate of the Control group for each
two-hour period. The BBA-0 algorithm reduces the switch-
ing rate by roughly 60% during peak hours, and by roughly
50% during o↵-peak hours.

In summary, BBA-0 confirms that the bu↵er-based ap-
proach can reduce rebu↵er rate and video switching rate.
However, BBA-0 performs worse on video rate compared to
the Control algorithm. In the next section, we will develop
techniques to improve both rebu↵er rate and video rate by
considering the VBR encoding scheme.

5. HANDLING VARIABLE BITRATE (VBR)
In Section 4, the BBA-0 algorithm attempts to handle

VBR by setting the reservoir size to a large and somewhat
arbitrary value. Although BBA-0 reduces the rebu↵er rate
significantly compared to the Control, there is still room
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Figure 9: The size of 4-second chunks of a video en-
coded at an average rate of 3Mb/s. Note the average
chunk size is 1.5MB (4s times 3Mb/s).
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Figure 10: Two equivalent models of the streaming
playback bu↵er.

to improve when comparing to the empirical lower bound.
In addition, the average video rate achieved by the BBA-0
algorithm is significantly lower than the Control algorithm.
In this section, we will discuss techniques to improve both
rebu↵er rate and video rate by taking the encoding scheme
into consideration. A key advance is to design the reservoir
based on the instantaneous encoding bitrate.

In practice, most of the video streaming services encode
their videos in variable bitrate (VBR). When a video is en-
coded in VBR at a nominal video rate, the nominal rate rep-
resents the average video rate, and the instantaneous video
rate varies around the average value. As a result, the chunk
size will not be uniformly identical in a stream of a given
rate. Figure 9 shows the size of 4-second chunks over time
from a production video (Black Hawk Down) encoded at 3
Mb/s. The black line represents the average chunk size. As
we can see from the figure, the variation on chunk size can
be significant within a single video rate.

Given the variation on chunk size, we need to take the size
of each chunk into consideration and re-consider the bu↵er
dynamics under VBR. Because we can only select video rates
on a chunk-by-chunk basis, it is useful to consider the bu↵er
dynamics when observed at the time points when a chunk
finishes, as shown in Figure 10. Let r[k] be the video rate
selected for the k-th chunk and c[k] be the average system
capacity during the download of the k-th chunk. For the k-th
chunk from the stream of nominal video rate r, we denote the
chunk size as Chunk[r][k]. Since each chunk still contains
V seconds of video, the bu↵er now drains Chunk[r][k]/c[k]
seconds while it fills with V seconds of video.

5.1 Reservoir Calculation
Since the instantaneous video rate can be much higher

than the nominal rate in VBR, we could still encounter a

Rmin&

kb/s&
The&amount&of&buffer&
we&need&in&order&to&
avoid&rebuffer&

The&amount&of&buffer&
we&can&resupply&
during&this&period&

X&seconds&

Time&(s)&

Figure 11: Reservoir calculation: We calculate the
size of the reservoir from the chunk size variation.

rebu↵er event even when the capacity c[k] is exactly equal
to R

min

, unless we have enough bu↵er to absorb the bu↵er
oscillation caused by the variable chunk size. Thus, the size
of reservoir should be big enough to ensure the client can
continue playing at R

min

when c[k] = R
min

.
Assuming c[k] = R

min

, when the chunk size is larger than
the average, V R

min

, the video client will consume more
video in the bu↵er than the input. On the other hand, when
the chunk size is lower than the average, the bu↵er is con-
sumed more slowly than the input and the bu↵er occupancy
will increase. Thus, by summing up the amount of bu↵er the
client will consume minus the amount it can resupply during
the next X seconds, we can calculate the amount of reser-
voir we need. We dynamically adjust the reservoir based on
this prospective calculation over the lifetime of the stream.
Figure 11 summarizes how the calculation is done. In the
implementation, we set X as twice of the bu↵er size, i.e.,
480 seconds. The calculated reservoir size depends highly
on the specific video and the playing segment. As a practi-
cal matter, we bound the size of reservoir to be between 8
seconds to 140 seconds.

5.2 Chunk Map
Since the bu↵er dynamics now depend on the chunk size

instead of the video rate, we can generalize the rate-axis of
Figure 5 to the chunk-axis and map the bu↵er occupancy to
the chunk size directly. Each curve in the figure now defines
a chunk map, which maps the current bu↵er occupancy to
the maximal chunk size that the algorithm can download. In
the design space, the feasible region is now defined between
[0, B

max

] on the bu↵er-axis and [Chunk
min

, Chunk
max

] on
the chunk-axis, where Chunk

min

and Chunk
max

represent
the average chunk size in R

min

and R
max

, respectively.
Our algorithm can be generalized to use the chunk map:

the algorithm stays at the current video rate as long as the
chunk size suggested by the map does not pass the size of
the next upcoming chunk at the next highest available video
rate (Rate

+

) or the next lowest available video rate (Rate�).
If either of these “barriers” are passed, the rate is switched
up or down, respectively. Note that by using the chunk map,
we no longer have a fixed mapping between bu↵er levels and
video rates. This could result in a higher frequency of video
rate switches. We will address this issue in Section 7.

5.3 Results
We use the same setup as in Section 4 and select the same

number of users to use our VBR-enabled bu↵er-based algo-
rithm. We will refer to this algorithm as BBA-1, as it is our
second iteration of the bu↵er-based algorithm. This experi-
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(b) Normalized number of rebu↵ers per playhour.

Figure 12: The BBA-1 algorithm achieves close-
to-optimal rebu↵er rate, especially during the peak
hours.

ment was conducted along with the experiment in Section 4
between September 6th (Friday) and 9th (Monday), 2013.

Figure 12(a) shows the rebu↵er rate in terms of number
of rebu↵ers per playhour, while Figure 12(b) normalizes to
the average rebu↵er rate of the Control in each two-hour
period. We can see from the figure that BBA-1 comes close
to the optimal line and performs better than BBA-0. The
improvement over the Control is especially clear during peak
hours, where BBA-1 provides a 20–28% improvement in re-
bu↵er rate. Note that although BBA-1 has a lower average
rebu↵er rate than R

min

Always during 4–6am GMT, the
di↵erence is not statistically significant.5

Figure 13 shows the di↵erence in average video rate be-
tween Control, BBA-0, and BBA-1. As shown in Figure 13,
BBA-1 also improves the video rate compared to BBA-0 by
40–70kb/s on average, although it is still 50–120kb/s away
from the Control. This discrepancy in video rate comes from
the startup period, when the bu↵er is still filling up. If we
compare the average video rate of the first 60 seconds be-
tween BBA-1 and Control, BBA-1 achieves 700kb/s less than
the Control. Before the client builds up its bu↵er to the size
of the reservoir, BBA-1 always requests for R

min

, as it is
the only safe rate given the bu↵er occupancy. In the next
section, we will further improve the video rate by entering
into the risky area and develop techniques to minimize the
risk.

5The hypothesis of BBA-1 and R
min

Always share the same
distribution is not rejected at the 95% confidence level (p-
value = 0.74).
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Figure 13: The BBA-1 algorithm improved video
rate by 40–70 kb/s compare to BBA-0, but still 50–
120 kb/s away from the Control.
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Figure 14: Typical time series of video rates for
BBA-1 (red) and BBA-2 (blue). BBA-1 follows the
chunk map and ramps slowly. BBA-2 ramps faster
and reaches the steady-state rate sooner.

6. THE STARTUP PHASE
Most of the di↵erences in video rate between BBA-1 and

Control can be accounted for by the startup phase, i.e., after
starting a new video or seeking to a new point.6 During
the startup phase, the playback bu↵er starts out empty and
carries no useful information on available capacity. BBA-1
follows the usual chunk map, starting out with a low video
rate since the bu↵er level is low. It gradually increases the
rate as the bu↵er fills, as shown by the red line in Figure 14.
BBA-1 is too conservative during startup. The network can
sustain a much higher video rate, but the algorithm is just
not aware of it yet.

In this section, we test the following hypothesis. During
the startup, we can improve the video rate by entering into
the risky area; in the steady state, we can improve both
video rate and rebu↵er rate by using a chunk map. Our next
algorithm, BBA-2, tries to be more aggressive during the
startup phase, by incorporating a simple capacity estimation
into the startup behavior. When possible, BBA-2 ramps up
quickly and fills the bu↵er with a much higher rate than
what the map suggests.

This two phases of operation can be found in many net-
work protocols, such as the slow-start and congestion avoid-
ance phases in TCP. For TCP, when a connection starts,
the congestion control algorithm knows nothing about net-
work conditions from the sending window, and the window
is quickly opened to use available capacity until packet losses

6Note that the startup phase does not refer to the join delay.
The startup phase refers to the first few minutes after the
video has started.
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are induced. Similar to TCP, ABR algorithms get little or
no information from the playback bu↵er at the beginning
of a session. However, while ABR algorithms also ramp up
the video rate quickly, unlike TCP, they need to do it in a
controlled manner to prevent unnecessary rebu↵ers.

From Figure 10, we know that the change of the bu↵er,
�B = V � (ChunkSize/c[k]), captures the di↵erence be-
tween the instantaneous video rate and system capacity.
Now, assuming the current video rate is R

i

, to safely step
up a rate, c[k] needs to be at least R

i+1

to avoid rebu↵ers.
In other words, we require �B � V � (ChunkSize/R

i+1

).
Further, since videos are encoded in VBR, the instantaneous
video rate can be much higher than the nominal rate. Let
the max-to-average ratio in a VBR stream be e, so that
eR

i+1

represents the maximum instantaneous video rate in
R

i+1

. When the player first starts up, since there is no bu↵er
to absorb the variation, c[k] needs to be at least larger than
eR

i+1

in order to safely step up a rate. In other words, when
considering VBR and the bu↵er is empty, �B needs to be
larger than V � (ChunkSize/(eR

i+1

)) for the algorithm to
safely step up from R

i

to R
i+1

. According to Figure 9, the
max-to-average ratio e is around 2 in our system. Since
e = 2, R

i

/R
i+1

⇠ 2, and a chunk size can be smaller than
half the average chunk size (ChunkSize  0.5V R

i

), �B
needs to be larger than 0.875V s to safely step up a rate
when the bu↵er is empty in our system.
Based on the preceding observation, BBA-2 works as fol-

lows. At time t = 0, since the bu↵er is empty, BBA-2 only
picks the next highest video rate, if the �B increases by
more than 0.875V s. Since �B = V � ChunkSize/c[k],
�B > 0.875V also means that the chunk is downloaded
eight times faster than it is played. As the bu↵er grows, we
use the accumulated bu↵er to absorb the chunk size variation
and we let BBA-2 increase the video rate faster. Whereas at
the start, BBA-2 only increases the video rate if the chunk
downloads eight times faster than it is played, by the time
it fills the cushion, BBA-2 is prepared to step up the video
rate if the chunk downloads twice as fast as it is played. The
threshold decreases linearly, from the first chunk until the
cushion is full. The blue line in Figure 14 shows BBA-2
ramping up faster. BBA-2 continues to use this startup al-
gorithm until (1) the bu↵er is decreasing, or (2) the chunk
map suggests a higher rate. Afterwards, we use the f(B)
defined in the BBA-1 algorithm to pick a rate.
Note that BBA-2 is using �B during startup, which en-

codes a simple capacity estimate: the throughput of the last
chunk. This design helps make the algorithm more aggres-
sive at a point when the bu↵er has not yet accumulated
enough information to accurately determine the video rate
to use. Nevertheless, note that our use of capacity estima-
tion is restrained. We only look at the throughput of the
last chunk, and crucially, once the bu↵er is built up and
the chunk map starts to suggest a higher rate, BBA-2 be-
comes bu↵er-based—it picks a rate from the chunk map, in-
stead of using �B. In this way, BBA-2 enables us to enjoy
the improved steady-state performance of the bu↵er-based
approach, without sacrificing overall bitrate due to a slow
startup ramp.

6.1 Results
We ran our experiments during the same time period and

with the same pool of users as the previously described ex-
periments, which all occurred between September 6th (Fri-
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Figure 15: BBA-2 achieved a similar video rates to
the Control algorithm overall.
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Figure 16: BBA-2 achieved better video rate at the
steady state. The steady state is approximated as
the period after the first two minutes in each session.

day) and 9th (Monday), 2013. Figure 15 shows the di↵er-
ence in the average video rate between Control, BBA-1, and
BBA-2. From the figures, we see that BBA-2 does indeed
increase the video rate. With a faster startup-phase ramp,
the video rate with BBA-2 is almost indistinguishable from
the Control algorithm. This supports our hypothesis that
the lower video rates seen by BBA-0 and BBA-1 were due
to their conservative rate selection during startup. Further-
more, if we exclude the first two minutes as an approxima-
tion of the steady state, the average video rate of BBA-2
is mostly higher than Control, as shown in Figure 16. This
observation verifies our discussion in Section 3: The bu↵er-
based approach is able to better utilize network capacity and
achieve higher average video rate in the steady state.

Figure 17 shows absolute and normalized rebu↵er rate.
BBA-2 slightly increases the rebu↵er rate. BBA-2 operates
in the risky zone of Figure 5 and therefore will inevitably
rebu↵er more often than BBA-1, which only operates in the
safe area. Nevertheless, the improvements are significant rel-
ative to Control: BBA-2 maintains a 10–20% improvement
in rebu↵er rate compared to Control during peak hours.

So far, we have successfully relaxed the four idealized as-
sumptions made in Section 3. In BBA-0, we handle the
finite chunk size and discrete available video rates through
a piecewise mapping function. In BBA-1, we handle the
VBR encoding through a variable reservoir size and a chunk
map. In BBA-2, we further handle the finite video length
by dividing each session into two phases. BBA-2 still follows
the bu↵er-based approach in the steady state, but it uses a
simple capacity estimation to ramp up the video rate dur-
ing the startup. The results demonstrate that by focusing
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(b) Normalized number of rebu↵ers per playhour.

Figure 17: BBA-2 has a slightly higher rebu↵er rate
compared to BBA-1, but still achieved 10–20% im-
provement compared to the Control algorithm dur-
ing peak hours.

on the bu↵er, we can reduce the rebu↵er rate without com-
promising the video rate. In fact, the bu↵er-based approach
improves the video rate in the steady state.

In the following, we will further discuss how to extend the
bu↵er-based approach to tackle other practical concerns.

7. OTHER PRACTICAL CONCERNS:
RATE SWITCHES AND OUTAGES

In Section 5, we have shown that we can improve the
video rate by using a chunk map and dynamic reservoir cal-
culation. However, this choice makes the video rate change
frequently, as shown in Figure 18. Note that it is debat-
able as to whether video switching rate really matters to the
viewer’s quality of experience. For example, if a service of-
fers closely spaced video rates, the viewer might not notice
a switch. Nevertheless, in the following we will revise the
dynamic reservoir calculation and introduce a modified al-
gorithm, BBA-Others, to reduce the switching rate. We will
see that by smoothing the changes, we can at least match
the switching rate of the Control algorithm. BBA-Others
will also converge to a higher bu↵er occupancy than before,
providing some protection against temporary network out-
age.7

There are two main reasons our bu↵er-based algorithms
increase the frequency of video-rate switches. First, when we

7Temporary network outages of 20–30s are not uncommon;
e.g., when a DSL modem retrains or a WiFi network su↵ers
interference.
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Figure 18: After switching to chunk map, the video
switching rate of BBA-1 and BBA-2 is much higher
than the Control algorithm.

use the chunk map, there is no longer a fixed mapping func-
tion between bu↵er levels and video rates. Instead, bu↵er
levels are mapped to chunk sizes, and the nominal rate might
change every time we request a new chunk. Even if the bu↵er
level remains constant, the chunk map will cause BBA-1 to
frequently switch rates, since the chunk size in VBR encod-
ing varies over time. We can reduce the chance of switching
to a new rate—and then switching quickly back again—by
looking ahead to future chunks. When encountering a small
chunk followed by some big chunks, even if the chunk map
tells us to step up a rate, our new algorithm BBA-Others
will not do so to avoid a likely step down in the near future.
The further this modified algorithm looks ahead, the more
it can smooth out rate changes. If, in the extreme, we look
ahead to the end of the movie, it is the same as using a
rate map instead of a chunk map. In the implementation
of BBA-Others, we look ahead the same number of chunks
as what we have in the bu↵er. When the bu↵er is empty,
we pick a rate by only looking at the next chunk; when the
bu↵er is full, we look ahead for the next 60 chunks.8 Note
that BBA-Others only smooths out increases in video rate.
It does not smooth decreases so as to avoid increasing the
likelihood of rebu↵ering.

Figure 11 helps to explain the second reason. The reser-
voir size is calculated from the chunk size variation in the
next 480 seconds. Thus, the reservoir will shrink and expand
depending on the upcoming chunks. If large chunks are com-
ing up, the chunk map will be right-shifted; if small chunks
are coming up, the chunk map will be left-shifted. Even if
the bu↵er level remains constant, a shifted chunk map might
cause the algorithm to pick a new video rate. We reduce the
number of changes by only allowing the chunk map to shift
to the right, never to the left, i.e., the reservoir expands
but never shrinks. Since the reservoir cannot be shrunk, the
reservoir grows faster than it needs to, allowing us to allocate
the excess to protect against temporary network outage.

7.1 Results
As before, we randomly pick three groups of real users for

our experiment. One third are in the Control group, one
third always stream at R

min

, giving us an approximation
of the lower bound on rebu↵er rate, and one third run the
BBA-Others algorithm, which smooths the switching rate
by looking ahead and by only allowing the chunk map to

8Our bu↵er size is 240 seconds and each chunk is 4 seconds.
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Figure 19: BBA-Others smoothes the frequency of
changes to the video rate, making it similar to the
Control algorithm.
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Figure 20: BBA-Others achieves a similar video rate
during the peak hours but reduces the video rate by
20–30kb/s during the o↵-peak.

be right-shifted. The experiment was conducted between
September 20th (Friday) and 22nd (Sunday), 2013.

Figure 19 shows that the video rate changes much less
often with BBA-Others than with BBA-1 or BBA-2 (Fig-
ure 18). In fact, BBA-Others is almost indistinguishable
from Control—sometimes higher, sometimes lower.9 Fig-
ure 20 shows the video rate for BBA-Others. Since we does
not allow the chunk map to be left-shifted, BBA-Others
switches up more conservatively than BBA-2. Although the
video rate is almost the same as Control, we trade about
20kb/s of video rate compared to BBA-2 in Figure 15.10 As
other bu↵er-based algorithms, BBA-Others improves the re-
bu↵er rate, since we do not change the frequency of switches
to a lower rate. As shown in Figure 21, BBA-Others im-
proves the rebu↵er rate by 20–30% compares to the Control.

8. RELATED WORK
Understanding the Impact of Inaccurate Estimates.

Prior works have shown that sudden changes in available
network capacity confuse existing ABR algorithms, causing
the algorithms to either overestimate or underestimate the
available network capacity [1, 2, 5, 10, 12].

The overestimation leads to unnecessary rebu↵ers [1, 5].
In this paper, we show that 20–30% of rebu↵ers in a pro-
duction system are unnecessary. This observation motivates

9The numbers are normalized to the average switching rate
in Control for each two-hour window.

10This is only an approximation, since the tests in Figure 15
and 20 ran in two di↵erent weekends in September, 2013.
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Figure 21: BBA-Others reduces rebu↵er rate by 20–
30% compared to the Control algorithm.

the bu↵er-based approach. The underestimation not only
fills the bu↵er with lower quality video, but also leads to the
ON-OFF tra�c pattern: when the playback bu↵er is full,
the client pauses the download until there is space. When
competing with other TCP flows, the ON-OFF pattern can
trigger a bad interaction between TCP and the ABR algo-
rithm, causing a further underestimate of capacity and a
downward spiral in video quality [8]. When competing with
other video players, overlapping ON-OFF periods can con-
fuse capacity estimation, leading to oscillating quality and
unfair link share among players [2, 10, 12].

In our work, since we request only R
max

when the bu↵er
approaches full, the ON-OFF tra�c pattern appears only
when the available capacity is higher than R

max

. When
competing with a long-lived TCP flow, our algorithm con-
tinues to request R

max

when the ON-OFF pattern occurs,
avoiding the downward spiral. When competing with other
video players, if the bu↵er is full, all players have reached
R

max

, and so the algorithm is fair.
Bu↵er-aware ABR Algorithms. Others have pro-

posed using bu↵er level to adjust capacity estimation. Tian
et al. [20] uses a bu↵er and a PID controller to compute the
adjustment function applied to capacity estimates, balanc-
ing responsiveness and smoothness. Elastic [6] first measures
the network capacity through a harmonic filter, then drives
the bu↵er to a set-point through a controller. These prior
works reveal that bu↵er occupancy provides important infor-
mation for selecting a video rate. In this paper, we observe
that bu↵er occupancy is in fact the primary state variable
that an ABR algorithm should control. This motivates a
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design that directly chooses the video rate according to the
current bu↵er occupancy, and uses simple capacity estima-
tion only when the bu↵er itself is growing from empty.

Quality Metrics and User Engagement. User en-
gagement and quality of experience (QoE) are known to
depend on rebu↵ering rate and video rate [7, 11, 14], as
well as the delay before playing and how often the video
rate changes [7, 19]. Modeling user engagement is complex
and on-going [4, 14]. In this work, we focus on the tradeo↵
between rebu↵er events and video bitrate (with some con-
sideration for switching rate). The bu↵er-based approach
can serve as a foundation when considering other metrics.

Improving QoE through Other System Designs.
Although the distributed nature of client-side ABR algo-
rithms yields system scalability, the decisions of these algo-
rithms are reactive and optimize only the performance of a
single client. Thus, a centralized control plane is proposed to
optimize the global performance through aggregating mea-
surements [13]. The potential benefits from CDN augmenta-
tion mechanisms, such as CDN federation and peer-assisted
CDN-P2P hybrid model, are also investigated [3]. Our work
is complementary to these e↵orts and will benefit from them.

9. CONCLUSION
Existing ABR algorithms face a significant challenge in

environments where the capacity is rapidly varying (as is
observed in practice). In response, ABR algorithms often
adjust the capacity estimate based on the bu↵er occupancy,
becoming more conservative (resp., aggressive) as the bu↵er
falls (resp., grows). Motivated by the observation that accu-
rate estimation is challenging when capacity is highly vari-
able, we take this design to an extreme: we directly choose
the video rate based on the current bu↵er occupancy and
only use estimation when necessary. Our own investigation
reveals that capacity estimation is unnecessary in steady
state; however using (simple) capacity estimation (based on
immediate past throughput) is important during the startup
phase, when the bu↵er occupancy is growing from empty.
We test the viability of this approach through a deploy-
ment in Netflix, and the results show that our algorithm
can achieve a significant performance improvement.

More generally, our work suggests an alternative roadmap
for the development of ABR algorithms: rather than pre-
suming that capacity estimation is required, it is perhaps
better to begin by using only the bu↵er, and then ask when
capacity estimation is needed. Similar to the observations
we make in this paper, we might expect that in settings
where the startup phase is a significant fraction of the overall
video playback, estimation may be valuable (e.g., for short
videos). However, in all such cases, the burden of proof is on
the algorithm designer to ensure the additional complexity
is necessary.
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