
Using MAC Addresses as Efficient Routing Labels in Data
Centers

Arne Schwabe
University of Paderborn
Warburger Straße 100

33098 Paderborn, Germany
arne.schwabe@uni-paderborn.de

Holger Karl
University of Paderborn
Warburger Straße 100

33098 Paderborn, Germany
holger.karl@uni-paderborn.de

ABSTRACT
A number of new technologies such as cloud services and/or
virtualization have changed data center networks in the last
few years. The benefits of the techniques are clear but
the downside is that more forwarding entries are needed in
network switches to support these techniques. Unfortunately,
the number of forwarding entries in switches have a hard
limit.
We give a formal problem definition for minimizing the

number of forwarding entries and a proof that the problem
is NP complete.
We show that the destination MAC address can be used as

a universal label in software-defined networks and the ARP
caches of hosts can exploited as an ingress label table, reduc-
ing the size of the forwarding tables of network devices. We
have the additional advantage of not requiring a special type
of data center network or additional hardware capabilities.
We demonstrate that our technique can solve the problem

of FIB sizes by introducing a greedy scheme for all pairs
ECMP with a minimal number of FIB entries.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Network
Architecture and Design

Keywords
Software Defined Networking; Data Plane; OpenFlow;Label
routing

1. INTRODUCTION
In a modern switch, forwarding is implemented in hard-

ware to forward at line rate. A key component of forwarding
is the lookup table which is implemented by using Ternary
Content-Addressable Memorys (TCAMs). TCAMs are ex-
pensive in energy and hardware cost. This limits the number
of forwarding entries a switch can store in hardware. For-
warding in a data center is the lookup of the destination
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSDN’14, August 22, 2014, Chicago, Illinois, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2989-7/14/08 ...$15.00.
http://dx.doi.org/10.1145/2620728.2620730.

MAC address. MAC addresses of hosts are usually unstruc-
tured and each host needs an entry in the forwarding table.
Reducing the number of entries will save costs and energy.
Usually, the number of required entries is reduced either by

using compression/combining multiple entries or by storing
only a subset of the entries in hardware tables. Combining
multiple entries is difficult and even good approaches only
achieve compression rates of 50% [10]. The other approach,
to store only a subset of the entries in the hardware tables,
introduces an additional delay whenever a packet arrives
which has no corresponding entry in the hardware table and
an entry has to be fetched, e.g., from a central controller as
in SDN or locally computed. Both solutions only alleviate
the problem and provide no real solution. For these reasons
the commercial switches currently have to provide a very
large number of possible entries.
The root of the problem is the lookup of unstructured

addresses. One solution is to avoid the lookup of MAC
addresses and instead perform the lookup on a label which
can be controlled and given a structure. The idea of using
labels to improve or enable forwarding hardware is quite old,
dating back at least to ATM and MPLS. To benefit most
from using labels for forwarding, labels should be added
to the packets as early as possible and removed as late as
possible. Typically, the ingress switch adds the label to
a packet and the egress switch strips the labels from the
packets. This allows all switches between the ingress and
egress switch to benefit from doing label lookups instead of
MAC address lookups.
The label can be added in two ways. The first way is to

encapsulate the packet, e.g., adding an MPLS header, on
the ingress switch and decapsulate the packet on the egress
switch. The second way is to replace the content of a header
field with the label at the ingress switch and, if necessary,
reverse the replacement at the egress switch. Approaches
specially designed for the problem in the data center like
Portland [8] use the second approach and replace the source
and destination MAC addresses of the packets.
Using labels for forwarding shrinks the forwarding table

when structured labels are used. Structured labels enable
assigning similar labels to packets forwarded in the same way
and thus one forward entry can be used to match multiple
labels. Adding/removing labels needs multiple entries at
the ingress and egress switches. The work of adding ad-
dresses to the packets is even duplicated at the hosts and
the ingress/egress switches. The hosts add source and des-
tination MAC addresses according to their own addresses

115

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2620728.2620730&domain=pdf&date_stamp=2014-08-22

and ARP tables; the switches will then replace the addresses
according to their tables.
Modifying the hosts (respectively, their operating system)

to directly write the right MAC addresses (containing the
labels) is the apparent solution but modifying hosts is often
unacceptable. Without modifying the hosts, the source MAC
addresses are always the hosts’ own addresses which cannot
be controlled. But the ARP table of the hosts is filled
from ARP replies and this can indeed be controlled. The
question arises how far this limited control over the hosts
can be exploited to eliminate the duplicate work and further
improve the gain from using labels for forwarding. We will
show in this paper that this is indeed feasible and desirable.
In the remainder of the paper, we will first, in Section 2,

compare the different approaches and how these approaches
deal with problem and then, briefly in Section 3, recap
switch lookup capabilities for forwarding packets. Based
on these capabilities we will define in Section 4 a model
which describes the minimal number of forwarding entries
for a given network and then show the NP-completeness of
the problem in Section 5. In Section 6 we will show that
rewriting the MAC addresses at ingress switch is not needed
and that we can use MAC addresses as labels with a greater
flexibility than other approaches. To solve the problem we
present an ILP formulation of the problem and also provide
a greedy heuristic. In the last two sections we will evaluate
the algorithm and give a conclusion.

2. RELATED WORK
Reducing the size of the forwarding information base (FIB)

has been studied for various different scenarios and require-
ments. A very general approach is to use compact routing
algorithms designed for arbitrary networks. For example, the
compact routing scheme of [11] has a table size of Õ(n1/2)
with a stretch factor of 3.

One very general proposal aiming to reduce the FIB table
size is Pathlet routing [4]. Pathlet routing sets out to re-
duce the FIB size/complexity of inter-domain routing while
retaining the flexibility of the policy routing possible when
using BGP. Pathlet routing achieves this flexibility by adding
labels to the packets that encode parts of the path and al-
lows each AS to decide trade-offs between the number of FIB
entries and complexity of the implemented routing policy.
The question arises if FIB reduction techniques aimed

at inter-AS communication [12], [3] can be applied to the
data center FIB reduction discussed here. Common to both
problems is that the identifier used for forwardeding, MAC
addresses in the data center and IP prefixes in the inter-
AS communication are unstructured. Directly translating
these proposals does not work well because it makes switches
to ASes and the directly connected MAC addresses to the
networks of the AS. Carefully adapting the proposals to data
center networks is not straightforward and thus creates new
protocols.
Instead of matching the header directly with TCAMs, the

approach in [9] uses Bloom filters for matching addresses.
Bloom filters can have false positives. The approach avoids
false positives by requiring a large number of alternative
paths between communication pairs and implementing a
strategy that avoids forwarding over paths which trigger
false positives. The requirement of a special type of network
and the modification of hardware to support Bloom filters
make this approach only viable in some scenarios.

PortLand [8] assigns each switch a hierarchical level of
either core, aggregation or edge. A part of the network con-
sisting of aggregation switches and edge switches are called a
“pod”. For every host, the pod and edge switch are encoded
into a “pseudo mac” address. Portland uses the pseudo MAC
address for forwarding packets on the aggregation and core
switches. Ingress switches rewrite the source MAC addresses
to the pseudo MAC address. The egress switches replaces the
pseudo MAC with the real address of the host again. Port-
Land maintains a one-to-one mapping between pseudo MAC
addresses and hosts. The strict encoding of host positions
into the MAC address also limits PortLand to topologies
matching PortLand’s network model.
While PortLand maps one IP address to exactly one

MAC address, first hop redundancy protocols (HSRP[6] or
VRRP[7]) let multiple IP addresses share a single MAC ad-
dress for receiving packets on the failover IP gateway address
but their own MAC address for forwarding packets to the
hosts. Using this “virtual” MAC address has the advantage
that packets with this MAC address will always be accepted
by the routers and the ARP table of the client, always has
a valid entry as long as one of the routers is still working.
When forwarding a packet to a client a router will use its
own MAC address.

3. BACKGROUND
This background section recaps the important aspects of

lookup tables in switch hardware.

3.1 Lookup hardware
In a switch an incoming packet is matched against the FIB

of the switch. This is done by looking up multiple header
fields from the packet itself as well as using meta information
including the ingress port of the packet. The lookup is either
made as an exact match, e.g., an IP address equaling 1.2.3.4,
or as a wildcard match such as an IP address matching
5.6.0.0/16, often combined with a priority to give longer
prefix entries a higher priority.
This matching is implemented using TCAMs and allows

fields to match against 0, 1 and “don’t care”, usually written
as X. As an example the wildcard 11100XXX XXXXX1100
matches all 16-bit words beginning with 11100 and ending
with 110.

Wildcard matches can be seen as an indicator function for
bit strings of length n:

t : {0, 1}n 7→ {0, 1}, t(x) =
{

0 wildcard matches x

1 otherwise

We define Tn to be the set of all possible wildcard functions
with n bits input size.

3.2 Forward Information Base
Regardless of the routing algorithm/forwarding strategy

used in the network, a FIB entry consists of a matching and
a forward action.
To replace two FIB entries with one entry, two conditions

have to be met. First, the matching of the new rule must
match everything the old two rules matched and not match
anything the old rules did not match. Second, the forwarding
actions of both entries have to be the same. If the output
actions differ, combining two entries will change the semantic.
Merging multiple FIB entries is often impossible since the

116

�

��

� �1

�2�3

Figure 1: Small network with three paths (thin
lines)

inputs (like the MAC addresses of hosts) have no structure
that allows grouping them together in a wildcard.

4. MODEL
To analyze and solve the problem of minimizing the forward

table size we need a formal definition of the problem which
simplifies the problem without restricting it.
When a packet is forwarded in a network, the packet is

forwarded to an outgoing port on each switch on its path
until the packet arrives at its destination. We use the paths
that the packets should be forwarded over and the graph
itself as the input for our problem.
For Ethernet link layer forwarding the forward action is

“output packet on port x” and fits perfectly into the model. A
more complex routing algorithm will install different forward
actions with the same egress port. This can be represented
in our model as two different outgoing edges going to the
same switch.
When constructing the wildcards to match the labels only

packets passing a switch need to be considered. For example,
in Figure 1 a wildcard for the edge (u, v) must match the
label of p1 and must not match the label of p2, but it is
irrelevant if the wildcard matches p3.

Path label assignment.
Let n be the number of bits used for the label. Given

a graph G = (V, E) and loop-free paths P ⊂ P(E). Does
a mapping m : P 7→ {0, 1}n exists so that for each edge
e = (u, v) a function te ∈ Tn exists with te(m(p)) = 1 if
e ∈ p and t(m(p)) = 0 if (u, w) ∈ p with w 6= v for all paths
p ∈ P .

5. COMPLEXITY OF THE PROBLEM
The path label assignment problem is NP-complete for

inputs of arbitrary networks. This section will give a proof
of this.
The existence of a polynomial-sized ILP program (see Sec-

tion 7.1) for the problem shows that the problem is insideNP
since ILP problems are solvable with anNP algorithm. To es-
tablish NP-completeness we will show that the 4-colorability
problem [1, 2] (can four colors be assigned to vertices so
that no edges connect vertices with the same color) can be
reduced to the path label assignment problem.
Let G = (V, E) be the input for the 4-colorability problem.

For each edge ei ∈ E we add a switch r in our model with two
output ports. Each vertex vj ∈ V is identified with a path
pj . For every edge ei in the graph, we add a router ri with
two output ports and assign to each one path corresponding
to one of the two vertices of the edge.
By choosing n, the number of label bits, as two, there are

four possible label values for each path (00, 01, 10 and 11).
Figure 2 shows the idea of the reduction. For a switch with
one path per output port each path must have a different
bit mask to be distinguishable.

1 2

3

5
4

1 2 3 4 5

Figure 2: Example transformation of a graph for
4-colorability

If the path label assignment problem has a solution, set
the colors of the vertices vi in G according to the bits of the
corresponding paths pi to solve the 4-colorability problem.
To show that this is indeed a coloring solution, assume that
this is not a valid solution for the 4-colorability problem.
Then an edge e = (u, v) exists which connects two nodes
with the same color. The paths corresponding to u and v,
pu and pv, have the same bit mask. Since pu and pv are
distinguishable in re they cannot have the same bit mask.
If the label assignment problem has no solution the 4-

colorability problem also has no solution. Again, assume the
bit mask problem has no solution but the 4-color problem
has a solution. Assign each color a bit mask and the bit
masks to the paths in the bit mask problem. Then, for each
switch the paths will have different bit masks and the bit
mask problem has a solution, establishing the contradiction.

6. MAC ADDRESSES AS LABELS
Using software-defined network (SDN) gives a much greater

control over the network. We use this greater freedom to
repurpose the destination MAC address as a flexible forward-
ing label. This use of the MAC address has the big advantage
that labeling packets can be offloaded to the host by the
ARP protocol rather than requiring a FIB entry to add the
label on every ingress switch.
Hosts on the network rely on ARP/NDP to learn the

MAC address of other devices. Instead of delivering the
ARP query/neighbor discovery packets to the hosts, an SDN
can intercept these packets. This allows us to respond with
arbitrary MAC addresses. Intercepting and modifying the
ARP request instead of attaching a separate label to the
packets has an important advantage: the host will put the
received MAC address into its own ARP cache and will put
the MAC destination address into all outgoing packets to
that particular IP address. This removes the need to label
the packets on the ingress switch. Effectively we use the
ARP table of the hosts to store the entries we otherwise need
to store in the FIB tables of the ingress switches.
Answering the ARP queries allows us to answer with a

label for the path to the destination IP address. If a different
host uses ARP to query the same IP we can respond with a
different MAC address. Effectively we have the possibility
not only to use structured MAC addresses for hosts but even
individually for each source and destination IP pair without
requiring additional FIB entries at the ingress and egress
switches.
When a packet arrives at the egress, the packet still carries

the label as destination MAC address. Without modifying
the destination host operating system, the host will drop the
packet since the destination MAC address is not matching
its own MAC address. Hence, the switch needs to replace
the destination MAC with the real MAC address. Figure 3

117

1.2.3.4
00:aa:aa

1.2.3.5
00:bb:bb

Who has 1.2.3.5 Who has 1.2.3.4
1.2.3.4 is
at 00:20:01

src 00:aa:aa
dst 00:10:01

src 00:aa:aa
dst 00:bb:bb

src 00:bb:bb
dst 00:aa:aa

src 00:bb:bb
dst 00:20:01

Network

Network

1.2.3.5 is at
00:10:01

Figure 3: Intercepting and modifying ARP packets
in a SDN network

shows the resulting packet flows. Having to do this extra step
to undo the labeling seems to contradict the idea of using
ARP to label packets. But the important difference is that
labeling has to be on every ingress switch, while rewriting
the MAC address needs only to be done on the egress switch.
Since the egress switch needs a FIB entry to forward the
packets to the port in any case, this only adds an additional
action to the already existing entry.
Using the destination MAC address as a forward label

clearly breaks the assumption that the source and destination
address of a host are always the same for the Ethernet layer.
The ARP table of the receiving host contains a label MAC
address for the source IP address instead of the real MAC
address of the host. Our approach does not modify the source
MAC address, which is the physical address of the sending
host, to avoid adding FIB entries in the ingress switch. For
a received packet the source MAC address will differ from
the address stored in the ARP table. Nevertheless, the host
will accept the packet; the first hop redundancy protocols
are working in a similar way, albeit in a much more limited
scope, and we do not violate the standards for Ethernet end
devices.

7. SOLVING THE PROBLEM
In this section we present two methods for solving the

problem. We first show an exact solution with a integer
linear program (ILP) and a greedy heuristic.

7.1 ILP solution
In this section we model the problem as an ILP. The

variables of the ILP are defined as followed:

tej value of bit j of wildcard te

xej bit j of wildcard te is a “don’t care”
pij value of jth bit of the label for path i

nejk bit k of path j label is not matched by te

dijk decision variable for nijk

We model the wildcard functions te by using te and xe. The
mapping of the path to an n-bit label is modeled by the pij

variables. All variables are binary. nijk can be changed to
an arbitrary float without changing the solution of the ILP

since the constraints will force the variables to be either 0 or
1.

Further, we define for an edge e = (u, v) the function
s(pj , e) to be 1 iff pj includes an edge (u, w) with w 6= v.

xek ≥ pjk − tik (1)
xek ≥ tek − pjk (2)

k = 1 . . . n, ∀e∀pj : e ∈ pj

b∑
k=1

xek ≥ 1 ∀e (3)

nejk ≤ tek − pjk + (1− dejk) ·M (4)
nejk ≤ pjk − tek + dejk ·M (5)
nejk ≤ 1− xek (6)

n∑
k=1

nejk ≥ 1 (7)

k = 1 . . . n, ∀e∀pj : s(pj , e) = 1

The first block of constraints (1-3) makes sure that a
wildcard for an edge matches all labels of paths containing
that edge (e ∈ pj). Constraints 1 and 2 ensure that tek and
pjk (bit k of wildcard and path label) are the same if xik

is 0 (not a “don’t care”). Constraint 3 ensures that every
wildcard has a least one bit that is not set to “don’t care”.

To ensure that the wildcard only matches labels it should
match, Constraint 7 ensures that at least one bit of a label
exists that is not matched. Constraints 4 and 5 ensure
that nijk can be only 1 if pjk and tek have different values.
Constraint 6 furthermore ensures that nijk is 0 if the kth is
a “don’t care”.
The ILP has no optimization goal since the problem is

either solvable or not.

7.2 Greedy Heuristic
Unfortunately, calculating an optimal solution using the

ILP does not yield a solution for any problem instances in a
reasonable time except for very small ones (less than a 10
vertices) . To implement the idea in a real-world scenario, a
faster algorithm is needed.
The Ethernet MAC address has no variable length but a

fixed number of 48 bits. Laying 16 bit aside to differentiate
multiple (virtual) hosts behind a single switch port gives a
usable amount for the label of 32 bit. An approximation
algorithm should gracefully adapt to a situation where a
perfect solution requiring the only n-bit wildcards is not
possible.
To achieve this goal we designed a greedy algorithm. The

idea is to set one bit after another for every edge in a way
that brings the solution closer to requiring only one wildcard
per link. For each bit we will consider the switches in a
random order and assign the bit values to the path in a
locally optimal way.
The algorithm works as follows: uniformly at random select

an edge e. Determine the bits that all paths that include the
edge have in common. Use these bits as a wildcard on all
other edges of the same switch. Put any path that matches
the wildcard in the set U . This set U now contains the paths
that cannot be distinguished from e with the wildcard. If
the set of U is empty, move to the next edge. Otherwise,

118

11100

10101
11001

0111

10100
0011

e1

e2

e3

Figure 4: Node with six paths and four already as-
signed bits, common bits in bold, next bits in gray

set the unset bit of the paths in U so that the set U is
minimized. Continue with the algorithm until either the set
of indistinguishable edges is empty for every edge or when
the number of bits is reached.
As an example, consider Figure 4 where the first four bits

are already set. A wildcard using the common bits of all
paths including edge e1 is 1XX0 which matches one path of
e2 and one of e3. Adding 0 to the paths of e1 and 1 to the
paths of e2 and e3 makes the wildcard 1XX01 only match
only paths of e1.
After the bits have been set for every path and U is empty

for every edge only one wildcard is needed per edge. For the
infeasible case, we use a greedy second phase of the algorithm
to find a valid set of wildcards. Since using bits that are
common to all paths do not create an empty set U we split
the wildcard into two wildcards w0 and w1. We calculate the
sets U1 and U0 for all bits which are not common between
all paths. Then we choose the bit which minimizes U1 and
U0. We repeat this step until the sets Ui are empty for all
wildcards wi of the path.

8. EVALUATION
Our evaluation consists of two parts. The first part shows

that our method of using the destination MAC address as
labels without rewriting the source address (Section 6) works
as anticipated. The second part is an empiric evaluation of
the greedy heuristic in multiple network scenarios.
While our methods comply with the standards, the behav-

ior of the network is unusual from the operating system’s
perspective. We built a test bed using Mininet [5] and
connected various virtual and physical hosts with different
operating systems (Windows, Linux, Mac OS X and Cisco
IOS) to it and implemented our approach on the test bed.
Our findings confirmed that the operating systems will

accept IP packets for their own IP address as long as the
destination MAC address is right. The source MAC address
can be arbitrary. Or from an Ethernet layer-centric view,
the operating systems do not make assumptions about the
network addresses other than the receiving MAC address
should be its own address.
The second part is a simulation to evaluate the possibility

of reducing the number of needed flow table entries by using
the greedy algorithm described in Section 7.2.
For small or simple structured networks (for example, trees

with less than 100 switches) the greedy heuristic achieves
the optimal solution with one wildcard per edge.
As a more challenging example for the greedy heuristic

we built a CLOS network consisting of 2 core switches, 16

590 600 610 620 630 640 650
Number of Edges

2200

2400

2600

2800

3000

3200

3400

N
u
m
b
e
r
o
f
W
ild

ca
rd
s

Figure 5: Average number of wildcards used by the
greedy heuristic with 95% confidence intervals

pairs of distribution switches (2 up links each). Each distri-
bution pair switch had 8 top of rack switches connected to
it. The network has 320 links between the switches (or 640
as unidirected links). To test the robustness of the heuris-
tic we modified the graph by randomly removing links and
switches. As paths we calculated all shortest paths between
all switches. Using these paths the SDN controller can choose
the exact path between two end hosts purely by answering
an ARP reply and without having to install or modify any
FIB entries. The resulting number of wildcards compared to
edges in the network is plotted in Figure 5. In this complex
setup the heuristic manages to achieve an average of about
4-5 wildcards per outgoing edge. The number of required
wildcards is quite stable for the modified graphs as well.

9. CONCLUSION
We have formalized the problem of finding a optimal num-

ber of FIB entries for a network and proofed the complexity
of the problem.
We have shown that our techniques for reducing the num-

ber of needed flow table entries in a software defined network
are viable. A centrally managed network makes it possible
to use the destination MAC address as very lightweight label
that is applied for free by the connected hosts allowing very
small FIB tables and label routing. It also allows us to match
the limits defined by our formal definition. We have provided
a greedy algorithm which can be used to calculate labels for
arbitrary networks.

Acknowledgment
This work was partially supported by the German Research
Foundation (DFG) within the Collaborative Research Center
“On-The-Fly Computing” (SFB 901).

119

10. REFERENCES
[1] S. A. Cook. The complexity of theorem-proving

procedures. In Proceedings of the third annual ACM
symposium on Theory of computing, STOC ’71, pages
151–158, New York, NY, USA, 1971. ACM.

[2] D. P. Dailey. Uniqueness of colorability and colorability
of planar 4-regular graphs are np-complete. Discrete
Mathematics, 30(3):289 – 293, 1980.

[3] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. The
Locator/ID Separation Protocol (LISP). RFC 6830
(Experimental), Jan. 2013.

[4] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica.
Pathlet routing. In Proceedings of the ACM SIGCOMM
2009 Conference on Data Communication, SIGCOMM
’09, pages 111–122, New York, NY, USA, 2009. ACM.

[5] B. Lantz, B. Heller, and N. McKeown. A network in a
laptop: Rapid prototyping for software-defined
networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, Hotnets-IX,
pages 19:1–19:6, New York, NY, USA, 2010. ACM.

[6] T. Li, B. Cole, P. Morton, and D. Li. Cisco Hot
Standby Router Protocol (HSRP). RFC 2281
(Informational), Mar. 1998.

[7] S. Nadas. Virtual Router Redundancy Protocol
(VRRP) Version 3 for IPv4 and IPv6. RFC 5798
(Proposed Standard), Mar. 2010.

[8] R. Niranjan Mysore, A. Pamboris, N. Farrington,
N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya,
and A. Vahdat. Portland: a scalable fault-tolerant layer
2 data center network fabric. SIGCOMM Comput.
Commun. Rev., 39(4):39–50, Aug. 2009.

[9] C. E. Rothenberg, C. Macapuna, F. Verdi,
M. Magalhães, and A. Zahemszky. Data center
networking with in-packet bloom filters. In Proc.
SBRC, pages 553–566, 2010.

[10] O. Rottenstreich, M. Radan, Y. Cassuto, I. Keslassy,
C. Arad, T. Mizrahi, Y. Revah, and A. Hassidim.
Compressing forwarding tables. In IEEE Infocom, 2013.

[11] M. Thorup and U. Zwick. Compact routing schemes. In
Proceedings of the Thirteenth Annual ACM Symposium
on Parallel Algorithms and Architectures, SPAA ’01,
pages 1–10, New York, NY, USA, 2001. ACM.

[12] X. Yang, D. Clark, and A. W. Berger. Nira: A new
inter-domain routing architecture. IEEE/ACM Trans.
Netw., 15(4):775–788, Aug. 2007.

120

