
Application-aware Data Plane Processing in SDN

Hesham Mekky
University of Minnesota

Minneapolis, MN
hesham@cs.umn.edu

Fang Hao
Bell Labs Alcatel-Lucent

Holmdel, NJ
fang.hao@alcatel-

lucent.com

Sarit Mukherjee
Bell Labs Alcatel-Lucent

Holmdel, NJ
sarit.mukherjee@alcatel-

lucent.com
Zhi-Li Zhang

University of Minnesota
Minneapolis, MN

zhzhang@cs.umn.edu

T V Lakshman
Bell Labs Alcatel-Lucent

Holmdel, NJ
t.v.lakshman@alcatel-

lucent.com

Abstract
A key benefit of Software Defined Networks is fine-grained
management of network flows made possible by the exe-
cution of flow-specific actions based upon inspection and
matching of various packet fields. However, current switches
and protocols limit the inspected fields to layer 2-4 headers
and hence any customized flow-handling that uses higher-
layer information necessitates sending the packets to the
controller. This is inefficient and slow, adding several switch-
to-controller round-trip delays. This paper proposes an ex-
tended SDN architecture that enables fast customized packet-
handling even when the information used is not restricted to
L2-L4. We describe an implementation of this architecture
that keeps most of the processing in the data plane and limits
the need to send packets to the controller even when higher-
layer information is used in packet-handling. We show how
some popular applications can be implemented using this
extended architecture and evaluate the performance of one
such application using a prototype implementation on Open
vSwitch. The results show that the proposed architecture
has low overhead, good performance and can take advantage
of a flexible scale-out design for application deployment.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations; C.2.4 [Computer-Communication Networks]:
Distributed Systems; C.2.3 [Computer-Communication
Networks]: Network Architecture and Design

General Terms
Design, Measurement, Performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSDN’14, August 22, 2014, Chicago, IL, USA.
Copyright 2014 ACM 978-1-4503-2989-7/14/08 ...$15.00.
http://dx.doi.org/10.1145/2620728.2620735.

Keywords
Software-Defined Networking; OpenFlow; Open vSwitch; Data
Plane

1. INTRODUCTION
Software Defined Networking (SDN) is a new paradigm

permitting application-aware management of networks. Two
key aspects of SDNs are: (i) a flexible flow-based forward-
ing abstraction that can be used for programming the data
plane(e.g., OpenFlow switches)using an open API, (ii) a
logically-centralized control plane abstraction that can be
used by network applications, network “apps”, to perform
network-wide operations without low-level configuration of
individual network elements. SDNs are currently being de-
ployed for managing large data center networks that need to
be application-aware [8] and for wide-area application-aware
traffic engineering [6, 7].

To keep the data plane simple and efficient, the current
SDN architecture makes the switches stateless and acts only
on layer 2-4 packet-header information even though many
applications can benefit from a more extended architecture
that permits stateful actions on higher layer information.
Also, to avoid delays in flow-processing, pre-installation of
flow forwarding rules in the switches is done when possible.
When this is not possible, installation of rules right after
examining the first packet at the controller (rather than ex-
amining multiple packets of a flow) is preferred.

While this architecture and mode of operation can effi-
ciently meet the needs of a variety of networking tasks, like
routing or address rewriting, a variety of other ubiquitous
functions will benefit from an extended architecture permit-
ting stateful operations and use of information deeper in
the flow. The widely used NAT function needs to main-
tain state for keeping track of available IP addresses and
ports. A content-aware request routing (L7 load balancing)
app redirects client requests to an appropriate server from a
server pool using information about the requested content.
This requires inspecting packets beyond L4 headers. Also,
this information is not available in the first packet of the
request, and so the request routing rule cannot be set up in
the switch even after examining the first packet of the flow.

Clearly, stateful processing using higher-layer information
is possible using the current SDN architecture – packets be-
longing to a flow can be forwarded to the controller till the

13

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2620728.2620735&domain=pdf&date_stamp=2014-08-22

corresponding controller app has enough information to in-
stall the needed rules in the switches. This sacrifices effi-
ciency and slows down the system. Alternatively, dedicated
middleboxes can be used to perform stateful operations but
this limits the flexibility and benefits of SDN.

This paper proposes an extended application-aware SDN
architecture that generalizes the standard OpenFlow for-
warding abstractions to include stateful actions that use
L4-L7 information. For efficient implementation despite the
more general packet-handling, we need to keep some appli-
cation logic locally at the switches (instead of limiting the
application logic to only the controller). The switches in our
system are augmented to have a stateful app processing ca-
pability that uses higher layer information in packets. The
controller application installs app-specific packet-processing
actions in the augmented switches’ app table (which we de-
fine in Section 2.3). This table is similar in spirit to the
OpenFlow flow table. However, new flow forwarding rules
for incoming packets can be generated locally within the
switch by executing the packet processing logic installed by
the controller. This architecture has several advantages:

• In most cases, the packets need not go to the controller
for determining flow actions. This reduces the switch-
to-controller delays involved in flow establishment.

• In case of service chaining, application-aware switches
can replace dedicated appliances and allow packets to
be treated on their shortest paths, eliminating ineffi-
cient traffic detouring. Moreover, the same switch can
apply the processing logic of multiple apps, potentially
avoiding the need of tracking flows between apps.

• It enables uniform central control on application-aware
flow processing with a built-in scale-out data plane.

Examples of new data plane functions that can be imple-
mented using this extended architecture include TCP splic-
ing, NAT, L7 server selection, firewall and so on. We use
examples to illustrate how these new data plane functions
can be composed and controlled by various network apps
running on top of the controller to enable application-aware
decision making. Together, they realize in software many
common application-level flow processing and decision mak-
ing functions. We present a prototype implementation of an
example of application-aware service on top of Open vSwitch
(OVS). In our implementation, the switches incorporate the
ability to route requests to different servers based on the re-
quested content. They fall back on the controller only when
the requested-content to content-server mapping is not lo-
cally available. Through experiments, we show that the ex-
tra packet processing latency caused by the apps on the
switch is low, and the response time to serve uests is fast.

2. SYSTEM ARCHITECTURE
Virtual switches, such as OVS that run in hypervisors,

have become commonly available in data centers. They of-
fer an ideal platform for our design since they open up the
opportunity of inserting app processing logic in the data
path via software extensions. We design a solution that ex-
tends OVS to be application-aware while conforming with
the existing OpenFlow. We also attempt to make the design
modular, with a clean interface to the existing OVS imple-
mentation, that allows new apps to be plugged in easily.

OpenFlow	 API	

Connec/on	
Manager	

Open	 vSwitch	

Flow	 table	
Pipeline	 	 App	 table	

App	 1	 App	 2	

Controller	

App	 1	 App	 2	

Kernel	
Flow	 Table	

Controller	 app	 module	
keeps	 global	 state	

Dataplane	 app	 module	
keeps	 local	 state	

User	 space	

1 1

1 2

1 3

1 4

5 5

1 6
1 7

1 8

Figure 1: System Architecture

2.1 Existing Open vSwitch (OVS)
Figure 1 shows the high-level architecture of the system.

The four main components of the existing OVS implemen-
tation are shown on the left, including connection manager,
OpenFlow API, user space flow table pipeline and the kernel
flow table. The flow table pipeline contains one or more flow
tables, each with flow rules that specify how the matching
packets should be processed. A packet can be processed by
multiple flow tables by following the“goto” instruction in the
rules. To speed up packet processing, the kernel flow table
caches the flow actions so that active flows can be directly
processed in the kernel.

The solid blue arrows (Steps 1-5) show how the packets
can be processed by the application at the central controller
in the existing OVS implementation. An incoming packet
is first matched with the kernel flow table. If there is no
match, the packet is sent up to the flow table pipeline in
the user space. A table-miss rule is contained in each ta-
ble in the pipeline, which tells what to do when the packet
does not match any other rules in the table, e.g., to be sent
to another table or to the controller. In the latter case,
the OpenFlow API calls the connection manager to encap-
sulate the packet in a Packet_In message and send it out.
When the controller receives the Packet_In message, one
or more applications running on the controller may process
the message and install rules in the flow table pipeline via
a Flow_Mod message so that later packets of the flow can be
processed on the switch.

2.2 Design Choices
To make the data plane application-aware, our basic idea

is to intercept the packet before sending it to the controller,
so that application processing logic can be applied to the
packet locally without leaving the switch. We have consid-
ered the following three options:

1. Intercept the messages between the controller and OVS
at the connection manager, and call application han-
dling logic from there.

2. Intercept the packet after the flow table lookup, but
before messages are generated.

14

3. Add app actions directly into the flow table, so that
packets can be processed by calling such app actions
when they match the rule.

Option 1 can provide nice isolation between applications
and the existing OVS code. However, it may lead to signif-
icant redundancy in packet processing. For instance, when
the application intercepts the Packet In message from the
switch to controller, it needs to decapsulate the already en-
capsulated message and recover the original data fields. The
application also needs to implement its own flow table so
that it can look up the policy rules for the packet. Both
message decap/encap and flow table operations add extra
development cost and performance overhead.

Option 3 is the most efficient since the app actions are
treated the same as native OpenFlow actions. But the main
issue is that in order to achieve fast processing, app actions
should be implemented at both user and kernel space. Since
application logic is typically much more complex than sim-
ple actions such as drop/forward and it may require keeping
persistent application state, this approach requires signifi-
cant code change in OVS. Such app actions may also be
more time consuming and make packet processing less pre-
dictable. Nevertheless, this is a viable approach if the action
is simple; one example is given in Section 3.

We believe Option 2 is the best choice for most applica-
tions since it avoids drawbacks of both 1 and 3. In order
to intercept the packets right after the standard flow table
matching, we use the last flow table in the pipeline as a spe-
cial app table, shown in Figure 1. All table-miss rules with
the action of “output to controller” are modified to “goto
app-table”, so that all packets that are originally processed
by the controller will instead first pass through the app ta-
ble. Unlike the standard flow table, special app actions can
be called from the app table to handle the packets. Such
app actions are implemented as application functions. The
dotted arrows (Steps 6-8) in Figure 1 show how the pack-
ets are “detoured” to the app table in the new architecture.
Next, we discuss details of the design by using this option.

2.3 App Table and App Actions
The app table is operated in the same way as the standard

OpenFlow flow table. Packets are matched with the rules
contained in the entries, and the corresponding actions are
executed for the corresponding matching rule. If matching
fails in the app table, the table-miss rule can be used to
send the Packet_In message to the controller. The SDN
controller installs and removes rules from the switch app
table by using the standard OpenFlow Flow_Mod command.

The app actions are specified as vendor actions in the
OpenFlow protocol [3]. The app table rules run only at the
OVS user space; they are not installed in the kernel mod-
ule to avoid slowing down the fast path packet processing
of Open vSwitch. An app action may do any combination
of the following operations: (1) determine the actions to be
taken for the current packet; (2) modify its local persistent
state; (3) generate or modify the rule set to be installed in
the standard OpenFlow flow tables for processing this flow
for future packets; (4) remove flows from standard Open-
Flow flow tables; (5) generate a packet out to other switches;
and (6) send Packet In, Flow Removed, or app update ven-
dor messages to the controller.

Operations (3) to (6) are completed by calling the set
of API functions exposed from the OpenFlow API mod-
ule (Figure 1 Step 8), which include add_flow, del_flow,
packet_in, packet_out

”
flow_removed, and app_update.

Each app also provides a message callback handler, so that
it can be called from OpenFlow API when the controller
sends messages to the app. Message exchanges between the
controller and local app modules are encapsulated in the
OpenFlow vendor messages.

2.4 App Chaining and Execution
Multiple apps can be chained together to implement com-

plex network services. The order of app actions are deter-
mined based on the service policies. Each app action may
modify the packet header and its metadata, and also gen-
erate or modify the instructions and actions that are to be
installed in the standard flow table. Such instructions and
actions are temporarily stored in the scratch pad, an array
that is shared by all apps. The first app that processes a
flow allocates an entry for the flow in the scratch pad. This
entry stores the rule set that is generated by the apps for
this flow. The last app action in any app chain is always
Install, which installs the rule set into the standard flow ta-
bles. Install also frees the allocated flow entry in the scratch
pad. The flow’s metadata contains the index of the flow in
the scratch pad and two flags: break and flow removal.

An app can prevent later apps in the chain from execution
by using break flag. For example, the firewall app can decide
to drop the packet and set break=true, so that the following
load balancer app can ignore the packet. Note that all the
app actions are still invoked – we do not change the Open-
Flow semantics or the OVS implementation, but the apps
ignore the packet when they see break being set. However,
the Install app always executes regardless of the flag, un-
less the rule set in the scratch pad is empty. Usage of flow
removal flag is described next.

2.5 Flow Installation and Removal
A flow entry in the standard flow table may be installed by

the switch apps or the SDN controller. Ideally, only the in-
staller of each flow should be informed of the flow removal, so
that appropriate action can be taken to keep track of the flow
state when necessary. To do so, we make a small change in
the Flow-Removed message generation function: instead of
generating the message to the controller, it generates a fake
packet that conforms to the flow definition but bears the flow
removal flag in its metadata. This packet is then submitted
to the app table. Since this packet will match the same app
table rule that has generated the flow entry, the correspond-
ing responsible apps will be invoked, which can then perform
their own flow removal handling. Unmatched packets will be
handled by the table-miss rule. We also change the table-
miss action to a special Unmatch app action, which sends
regular unmatched packet using Packet_In message to the
controller, and converts the fake packet to Flow-Removed
message and sends it to the controller. The latter case is for
handling removal of controller installed flows.

15

2.6 An Example: Firewall & Load Balancer
We use the following example to illustrate how the new ar-

chitecture works. Suppose the network policy requires “any
web traffic to server x needs to go through the firewall and
then the load balancer”. The firewall rule specifies that only
web traffic is allowed, and maximum number of active TCP
connections is 1000. The load balancing rule is to distribute
the load to servers s1 and s2 by hashing according to the
source IP address.

To implement this policy, the controller inserts the fol-
lowing rule to the app table: (dst_ip=x, tcp, dport=80:

fw,lb,fwd,install), where fw, lb, fwd, and install will call
Firewall, Load Balancer, Forward, and Install app functions,
respectively. When a new flow (src_ip=a, sport=6000,

tcp, dst_ip=x, dport=80) arrives, it will be delivered from
the kernel to the first flow table in the user space. Then the
table-miss rule will submit the packet to the app table. Since
it matches the flow, the four apps will be called in sequence:

Firewall: It keeps track of the number of active flows
by using a static local variable nFlow. Suppose current
nFlow < 1000, then the following flow rule is generated and
stored in the scratch pad: (src_ip=a, sport=6000, tcp,

dst_ip=x, dport=80: null); and nFlow is incremented.
The empty action set indicates the flow is accepted but
no action is defined. Firewall also sets “Continue” flag and
stores the rule’s index in the packet metadata.

Load Balancer: It selects the server’s address using
hash(src_ip). Suppose the hashing result is s1, then the
flow rule in the scratch pad is replaced as: (src_ip=a,

sport=6000, tcp, dst_ip=x, dport=80: set dst_ip=s1).
In addition, it changes the dst_ip field of the current packet
header from x to s.

Forward: It looks up its routing table to find the out-
put port pt1 based on s1. It then updates the rule in the
scratch pad as: (src_ip=a, sport=6000, tcp, dst_ip=x,

dport=80: set dst_ip=s1, out pt1).
Install: It retrieves the rule from the scratch pad and

calls API function add_flow to install the flow into the flow
table pipeline. It also calls packet_out to send the current
packet out to pt1.

As a result, the apps have jointly generated the flow rule
according to the network policy without going to the con-
troller. This rule stays in the flow table pipeline and may
be also cached in the kernel.

Note that Firewall drops the flow when nFlow > 1000. In
that case, it sets “Break” flag in metadata and generates the
following rule: (src_ip=a, sport=6000, tcp, dst_ip=x,

dport=80: drop). This causes Load Balancer and Forward
to ignore this packet. At the end, Install will install the drop
rule into the flow table pipeline.

When this flow expires, a fake packet with fields (src_ip=a,
sport=6000, tcp, dst_ip=x, dport=80) is triggered and
submitted to the app table, with metadata containing the
flow removal flag. All apps will be executed so they can up-
date their current local state. In this example, the firewall
will decrement nFlow.

3. EXPERIMENTAL STUDY
In order to validate the proposed architecture, we build a

proof-of-concept prototype of the Content-Aware Server Se-
lection app. We use OVS v1.10.0 and Floodlight as the base
for the switch and the controller, respectively, and mod-

ify them to instill application awareness. We extend the
OVS kernel module to implement TCP seq/ack rewriting
(i.e. splicing) action, since it is simple and has to be applied
to every packet. More complex but less frequently invoked
actions including TCP Handshake and Server Selection are
implemented as app actions at the user space.

3.1 Content-aware Server Selection
In this application a client’s web request to a virtual IP

address, vip of a server pool, is redirected to an appropriate
server dynamically based on the url of the request. This is
done in two steps. First, the datacenter gateway router dis-
tributes the client requests to multiple front-end OVSes by
using ECMP. Second, the front OVS selects the server based
on url of the request, and forwards the packet through the
back-end OVS to the server. On the return path, the packet
is forwarded by the back-end OVS directly to the client.
This is similar to the layer 4 load balancing solution pro-
posed in [10], except that here we enable server selection
based on layer-7 information.

Figure 2 shows a simple mapping of the app onto the
proposed architecture with intermediate message flow. For
simplicity, it omits the gateway router and first stage ECMP
based load distribution, and just shows two Open vSwitches:
SW1 as front-end and SW2 as back-end. Standard Open-
Flow flow tables are shown in solid lines, and app tables are
shown in dashed lines. In our proof-of-conecpt implemen-
tation the Server Selection app resolves vip to one of the
servers S1 or S2. Initially the controller adds default rules
to submit table-misses to the app table in both SW1 and
SW2. In addition, the Server Selection controller app adds
flow entries into the app table as shown in the figure.

When a client request arrives at SW1, the app table rule
fires and SW1 performs the tcp Handshake with the client
to advance to the http get request. During this phase
(steps 1-3), SW1 uses syn cookies to preserve the connection
state, and stops execution of Server Selection by inserting a
“break” after packet-out-ing the syn-ack packet. Only after
the http get request packet arrives, the execution “contin-
ues” to Server Selection which extracts the requested url
and uses that to find the appropriate server from the server
pool. If the mapping is not available locally at the switch,
it sends the packet to the controller, which resolves and re-
turns the mapping back to SW1 (say S1), as shown in steps
5 and 6 of Figure 2b. Server Selection function writes a for-
warding rule for the rest of the connection into the standard
flow table of SW1 that rewrites the destination vip to S1
and forwards the packet towards S1 (see Figure 2b).

When the switch in front of S1 (i.e., SW2) receives the
packet, it matches the app table rule. It then invokes the tcp
Handshake function that plays back the handshake with S1
based on the header fields of the packet. During this phase,
right after receiving the syn-ack from S1, it can compute
the deltas used for TCP splicing, and therefore it installs
the appropriate rewrite rules in the standard flow table of
SW2 (see Figure 2c). When S1 replies, SW2 performs tcp
splicing to adjust the sequence and acknowledgement gaps
for the connection to go through transparently between the
client and S1. SW2 is also tasked with snat-ing S1’s address
to the virtual address vip.

16

Controller	

SW1	 SW2	

Server	 Selec/on	

1.SYN	 Client	

srcIP=Ext,dstIP=VIP,
dstTp=80	

TCP	 Handshake,	
Server	 Selec/on	

table-‐miss	 packet-‐in	

2.SYN-‐ACK	

table-‐miss	 goto(AppTable)	

IP=S1	 TCP	 Handshake	

IP=S2	 TCP	 Handshake	

table-‐miss	 packet-‐in	

table-‐miss	 goto(AppTable)	

S1	

S2	

(a)

Controller	

SW1	 SW2	

Server	 Selec/on	

3.	 ACK	
C	

srcIP=C,dstIP=VIP,	
srcTp=xxxx	

Set	 vip	 to	 S1,	
forward	 to	 S1	

table-‐miss	 goto(AppTable)	

srcIP=Ext,dstIP=VIP,
dstTp=80	

TCP	 Handshake,	
Server	 Selec/on	

table-‐miss	 packet-‐in	

4.HTTP	

table-‐miss	 goto(AppTable)	

IP=S1	 TCP	 Handshake	

IP=S2	 TCP	 Handshake	

table-‐miss	 packet-‐in	

S1	

S2	

(b)

Controller	
S1	

SW1	 SW2	

Server	 Selec/on	

S2	

C	

S1	 à	 C	 rewrite	 seq	 &	 IPs,	 forward	

C	 à	 S1	 rewrite	 ack	 &	 IPs,	 forward	

table-‐miss	 goto(AppTable)	

IP=S1	 TCP	 Handshake	

IP=S2	 TC	 Handshake	

table-‐miss	 packet-‐in	

7.	 HTTP	

srcIP=C,dstIP=VIP,	
srcTp=xxxx	

Set	 vip	 to	 S1,	
forward	 to	 S1	

table-‐miss	 goto(AppTable)	

srcIP=Ext,dstIP=VIP,
dstTp=80	

TCP	 Handshake,	
Server	 Selec/on	

table-‐miss	 packet-‐in	

(c)

Figure 2: Content-aware server selection. (a) App-rule installation and TCP handshake with client, (b) Flow-rule
insertion at SW1, (c) TCP handshake with S1 and flow-rule insertion at SW2

3.2 Experimental Results
First, we verify that modifying the TCP seq/ack numbers

by a delta does not incur any more overhead than normal
OpenFlow actions such as setting the TCP source port. The
OVS in this setup receives packets on a port, applies the pre-
installed rules, and then forwards the packets to the output
port. We use 10 Gbps cards to saturate the OVS datapath.
We measure the average packet delay under sustained traf-
fic rate and show the results in Figure 3. As shown in the
figure, the two new data plane actions (“seq rewrite” and
“ack rewrite”) incur the same overhead as standard Open-
Flow actions, which establishes that adding TCP sequence
number translation is not affecting the datapath speed.

In the next experiment, we evaluate the overall data plane
performance by comparing webpage download time perceived
by the client for two different configurations. The first con-
figuration is the standard OpenFlow operation where both
SW1 and SW2 have all the rules pre-installed in the stan-
dard flow table without data plane apps enabled. This is
used as a baseline for comparison. The second configura-
tion uses the application-aware data plane, where the TCP
Handshake and Server Selection functions are executed at
the switches (refer to Figure 2). We use httperf [9] for the
evaluation. As shown in Figure 4, we find that when the
client request arrival rate is relatively small, overhead due to
application-awareness is very low even with additional rule
processing at the user space level by the OVS. As request

Figure 3: Data plane Performance for TCP splicing

arrival rate increases, we observe the divergence from the
baseline scenario. This is because as request rate increases,
more packets get queued for user space processing, leading
to longer page download time. Note that our current code
is not yet fully optimized. And more importantly, the OVS
v1.10.0 that we currently use is single-threaded at the user
space level. Hence we believe there is significant potential
for throughput improvement in our implementation. We are
presently optimizing the code and migrating it to the latest
Open vSwitch version that supports multi-threading at the
user space level, which will improve the performance.

17

Figure 4: Data plane performance for page downloads

4. RELATED WORK
Network services have traditionally been implemented by

steering flows through a chain of middleboxes. SDN enables
dynamic middlebox chaining, although tracking the flows
that traverse through the middleboxes remains a challenge
because the packets may be altered along the way. Novel
approaches have been proposed to address this problem by
using either statistical inferencing [11] or explicit tags in
packet headers [2]. However, inferencing may cause errors
and finding unused fields in the packet headers for the tag
may not always be possible. In our approach, service chain-
ing is implemented by chaining apps on the same switch,
and hence avoiding the need for explicitly tracking flows.

Middlebox virtualization has also been studied extensively [1,
4, 12]. For example, ETTM proposes to implement middle-
box functions in special end-host modules [1]. Unlike pre-
vious approaches, we propose to integrate service functions
into the SDN data plane for a unified network, service con-
trol, and ease of management.

Prior work has also been done to use SDN for traffic engi-
neering [6, 7], layer-3 [5, 14] and layer-4 load balancing [10].
Our work builds on existing work to address application
awareness in the SDN data plane, and addresses layer-7 load
balancing problems.

Recently, AVANT-GUARD has been proposed to protect
SDN networks against SYN floods by implementing TCP
splicing in SDN switches [13]. Our focus is on a general
framework for different types of applications, and can ad-
dress security applications as well.

5. DISCUSSION AND CONCLUSIONS
This paper is only a first step towards enabling application-

aware SDN data plane. There are still many interesting is-
sues to be addressed. First, the architecture should allow
data plane apps to be added dynamically without recom-
piling the entire OVS code or stopping its execution. We
are currently experimenting what dynamic loading mecha-
nism to use and what API to provide. Second, we need
to explore the potential of this mechanism by investigating
more network service applications. Although the current
API seems to be able to address common app requirements,
it remains to be validated or improved through more use
cases. Third, the recent DPDK based OVS implementation
opens up new possibilities. Certain applications that require
per-packet payload scan (e.g. IDS/IPS) may not fit in our
current design since they would invoke app actions at the
user space for almost every packet and hence eliminate the

performance benefit of the kernel flow table. But this may
not be a problem under DPDK since all operations are done
at the operating system user space.

6. ACKNOWLEDGMENTS
The authors thank anonymous reviewers for comments

that helped improve the paper. This research was supported
in part by DTRA grant HDTRA1-09-1-0050, NSF grants
CNS-10171647 and CNS-1117536, and a CNS-1346688/Raytheon
Subcontract.

7. REFERENCES
[1] C. Dixon, H. Uppal, V. Brajkovic, D. Brandon,

T. Anderson, and A. Krishnamurthy. ETTM: A
Scalable Fault Tolerant Network Manager. In Proc. of
NSDI, 2011.

[2] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and
J. C. Mogul. Enforcing Network-Wide Policies in the
Presence of Dynamic Middlebox Actions using
FlowTags. In Proc. of NSDI, 2014.

[3] O. N. Foundation. OpenFlow Switch Specification
(Version 1.3.0). June 2012.

[4] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella.
Toward Software-defined Middlebox Networking. In
Proc. of HotNets-XI, 2012.

[5] N. Handigol, S. Seetharaman, M. Flajslik, A. Gember,
N. McKeown, G. Parulkar, A. Akella, N. Feamster,
R. Clark, A. Krishnamurthy, et al. Aster* x:
Load-Balancing Web Traffic over Wide-Area
Networks, 2009.

[6] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer. Achieving
High Utilization with Software-driven WAN. In Proc.
of SIGCOMM, 2013.

[7] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4:
Experience with a Globally-deployed Software Defined
Wan. In Proc. of SIGCOMM, 2013.

[8] T. Koponen, K. Amidon, P. Balland, M. Casado,
A. Chanda, B. Fulton, I. Ganichev, J. Gross,
P. Ingram, E. Jackson, A. Lambeth, R. Lenglet, S.-H.
Li, A. Padmanabhan, J. Pettit, B. Pfaff,
R. Ramanathan, S. Shenker, A. Shieh, J. Stribling,
P. Thakkar, D. Wendlandt, A. Yip, and R. Zhang.
Network Virtualization in Multi-tenant Datacenters.
In Porc. of NSDI, 2014.

[9] D. Mosberger and T. Jin. httperf – A Tool for
Measuring Web Server Performan. In Proc. of the
Internet Server Performance Workshop, 1998.

[10] P. Patel, D. Bansal, L. Yuan, A. Murthy,
A. Greenberg, D. A. Maltz, R. Kern, H. Kumar,
M. Zikos, H. Wu, C. Kim, and N. Karri. Ananta:
Cloud Scale Load Balancing. In Proc. of SIGCOMM,
2013.

[11] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar,
and M. Yu. SIMPLE-fying Middlebox Policy
Enforcement Using SDN. In Proc. of SIGCOMM,
2013.

[12] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and
G. Shi. Design and Implementation of a Consolidated
Middlebox Architecture. In Proc. of NSDI, 2012.

[13] S. Shin, V. Yegneswaran, P. Porras, and G. Gu.
AVANT-GUARD: Scalable and Vigilant Switch Flow
Management in Software-defined Networks. In Proc. of
CCS, 2013.

[14] R. Wang, D. Butnariu, and J. Rexford.
OpenFlow-based server load balancing gone wild. In
Proc. of USENIX HotICE, 2011.

18

