
OpenVirteX: Make Your Virtual SDNs Programmable

Ali Al-Shabibi, Marc De Leenheer,
Ayaka Koshibe, Guru Parulkar

and Bill Snow
Open Networking Laboratory
Menlo Park, CA 94025, US

{ali,marc,ayaka,guru,bill}@onlab.us

Matteo Gerola and Elio Salvadori
CREATE-NET

Povo, 38123 TN, Italy
{mgerola,esalvadori}@create-net.org

ABSTRACT
We present OpenVirteX, a network virtualization platform
that enables operators to create and manage virtual Soft-
ware Defined Networks (vSDNs). Tenants are free to spec-
ify the topology and addressing scheme of their vSDN, and
run their own Network Operating System (NOS) to control
it. Since OpenVirteX logically decouples vSDNs from the
infrastructure, it also enables the introduction of features
such as link and switch resiliency, and network snapshotting
and migration of these tenant networks. OpenVirteX builds
on the design of FlowVisor, and functions as an OpenFlow
controller proxy between an operator’s network and the ten-
ants’ network OSes. Our evaluations of this implementation
show that i) OpenVirteX is capable of presenting tenants
with configurable vSDNs while incurring a modest overhead
to the control channel, and ii) that our architecture enables
the introduction of features and enhancements such as link
resilience to tenant networks.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; C.2.3 [Computer-Communication
Networks]: Network Operations

Keywords
OpenFlow; Software-Defined Network; Network Virtualiza-
tion; Virtual Links; Resiliency; Address Virtualization; Topo-
logy Virtualization; Control Function Virtualization

1. INTRODUCTION
Network virtualization has emerged as one of the key ca-

pabilities of our computing and networking infrastructure.
Many approaches are being actively pursued with different
tradeoffs. In this paper, we present OpenVirteX (OVX),
which delivers Infrastructure as a Service (IaaS) in the con-
text of Software Defined Networks. It is highly desirable to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSDN’14, August 22, 2014, Chicago, IL, USA.
Copyright 2014 ACM 978-1-4503-2989-7/14/08 ...$15.00.
http://dx.doi.org/10.1145/2620728.2620741 .

decouple the network from its physical manifestation to pro-
vide virtualized network resources. These virtual networks
can offer strong isolation and have the ability to migrate,
snapshot, and to customise topology at instantiation time.
Such virtual networks could be instantiated along with the
compute resources to deliver true infrastructure on-demand.

Infrastructure providers are increasingly looking towards
network virtualization using SDN to better utilise their net-
working resources. In particular, network virtualization en-
abled by SDN allows infrastructure owners to lower the man-
agement complexity of their networks, while customising
their tenants’ network to better serve their needs.

Network Virtualization provides the concept of a virtual
network which is decoupled from the underlying physical
infrastructure, and both physical and virtual networks can
continue to use existing abstractions and protocols such as
TCP/IP. However network virtualization allows new fea-
tures or operations. For example, virtual networks can be
treated as services that can be instantiated, migrated, and
deleted. We created OVX as a network virtualization plat-
form that can i) provide address virtualization to keep ten-
ant traffic separate, ii) provide topology virtualization to en-
able tenants to specify their topology, and iii) deliver each
virtual network to the tenants’ NOS as Infrastructure on-
demand.

We present OVX as a network hypervisor that enables op-
erators to provide this form of network virtualization to their
customers. In specific, OVX builds on OpenFlow [13], and
our experiences with FlowVisor [15]. Like FlowVisor, OVX
functions as a proxy within the control channel, presenting
OpenFlow networks to tenants, while controlling the under-
lying physical infrastructure via the southbound OpenFlow
interface as shown in Figure 1.

By exposing OpenFlow networks, OpenVirteX allows ten-
ants to use their own NOS to control the network resources
corresponding to their virtual network. In other words,
OpenVirteX creates multiple virtual software defined net-
works out of one. Unlike FlowVisor, which simply slices the
entire flowspace amongst the tenants, OVX provides each
tenant with a fully virtualized network featuring a tenant-
specified topology and a full header space.

The rest of this paper is organized as follows. Section 2
presents our motivation for developing OVX, described with
respect to Network Function Virtualization and cloud com-
puting, while Section 3 presents related work. Section 4
discusses the architecture and core virtualization abilities
of OVX. The following Section 5 describes the main fea-
tures exposed by OVX. Section 6 presents preliminary per-

25

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2620728.2620741&domain=pdf&date_stamp=2014-08-22

Figure 1: System architecture.

formance results. Finally, Section 7 closes the paper with
discussions of future work.

2. USE CASES
Nowadays network functions, such as firewall, DPI, load-

balancing and authentication, are implemented in dedicated
hardware appliances. Network Function Virtualization(NFV)
[7] [1] is a new and promising approach to offering such net-
work functions in software/VMs to reduce capex and opex
and allow more flexibility. We believe network functions will
be implemented as scalable elastic services realized using a
virtual network of VMs. As such, NFV will require dynamic
virtual networks management. OVX aims to provide such
an unified service orchestration layer.

Another key motivation for OVX is to facilitate transition
to the cloud. Consider the scenario where an enterprise has
constructed a large network service complete with a man-
agement and monitoring solution, and is now considering
moving its physical infrastructure to the cloud. Porting its
management and monitoring solution to fit the resources
available in the cloud may be cost-prohibitive for the en-
terprise. Ideally, the enterprise would be able to create or
instantiate a virtual network that is identical to the phys-
ical network that it has built in-house. This requirement
is at the core of OVX’s philosophy. Indeed, the ability to
instantiate virtual networks of arbitrary topology as well as
provide custom addressing is the main requirement around
which OVX was built.

3. PREVIOUS WORK
FlowVisor [15] is a software platform for slicing an Open-

Flow network into multiple resource pools, or slices. Each
slice has its own NOS and is associated with a subset of the
network resources encompassing some or all of the switches

and links. Network slicing with FlowVisor does have several
limitations. All slices essentially share the same flow or ad-
dress space, and thus a slice does not have a completely
separate and independent address space. FlowVisor also
does not allow a slice to have an arbitrary (virtual) network
topology; it can only offer (a subset of) the physical topo-
logy. Additionally, FlowVisor provides isolation amongst
the slices that it controls by allocating non-overlapping sec-
tions of the packet header space to each slice’s flow space.
Unfortunately, misconfiguration can cause the flow spaces
to overlap, in which case FlowVisor is unable to provide
isolation for affected slices.

VeRTIGO [9] is an extension to FlowVisor which provides
topology virtualization. It allows the tenant to specify vir-
tual links in the network slice. Since Vertigo is based on
FlowVisor it is unable to provide each tenant with a full
isolated address space.

Another approach to network virtualization is described
in FlowN [10]. This platform leverages a database storage
system to maintain a mapping between the physical and
virtual realms. However, since each tenant’s logic must be
embedded in in the FlowN controller, a tenant is constrained
to developing their application with the FlowN framework.
OVX allows the tenant to use his own NOS by exposing an
OpenFlow interface northbound. More importantly, FlowN
encapsulates each tenants’ traffic into a VLAN to achieve
address space isolation, thereby removing the VLAN header
from the headerspace available to the tenant.

4. ARCHITECTURE
OVX is a network virtualization platform capable of spawn-

ing virtual networks with OpenFlow semantics. These vir-
tual networks may have arbitrary topology and addressing
schemes, configured as per tenant request. Requests are con-

26

veyed via API calls to OVX, with a tool such as a network
embedder. Figure 1 shows how a network embedder and
OVX would work in concert to realise a requested virtual
network. First, a user specifies a virtual network’s address-
ing scheme, topology, and NOS link (e.g. vSDN request) to
the embedder, which generates a virtual-to-physical map-
ping using information from OVX. Next, this mapping is
passed to OVX, which in turn instantiates the virtual net-
work on the physical topology.

The decision to separate the problem of embedding the
virtual network onto the physical one from that of network
virtualization was made early on for the following reasons:

1. There has been significant research in the area of net-
work embedding algorithms (such as D-Vine, R-Vine
[8] and VTPlanner [14]) which we can leverage, rather
than try to add to this field;

2. We want OVX to have the ability to run in a stan-
dalone manner; and

3. We want our network hypervisor to be completely fo-
cused on efficient and correct network virtualization.

4.1 Internal OVX Architecture
Internally, OVX relies on a loose decoupling of virtual el-

ements from the physical counterparts. In order to achieve
this, OVX models all virtual and physical elements and
maintains the mapping between them as shown in Figure 2.
This mapping is provisioned by the embedder. The area in
Figure 2 above the dotted line deals only in virtual terms
while the area below deals only in physical terms. All vir-
tual network elements are mapped to at least one physical
element. The mapping itself does not specify how the vir-
tualization is actually implemented. In fact, each element
implements its virtualization how it desires, i.e. a virtual
link may use MPLS tags or MAC rewriting as we have cur-
rently implemented. As each virtual element is simply a
pointer onto some real network element; we can disable, en-
able, modify and/or reorganize virtual network elements at
runtime.

4.2 Topology Virtualization
As mentioned earlier, OVX allows the tenant or user of

the system to specify his own arbitrary topology. This topo-
logy could be simple, i.e., a big switch, or a more elaborate
network with many alternative paths for fault tolerance. In
essence, these topologies do not have to correspond to the
actual physical network, but rather, exactly match what the
tenant desires. By design, the only limitation enforced by
OVX is that a single physical switch cannot be partitioned
into multiple virtual switches. To expose a virtual topo-
logy, OVX resolves LLDP messages coming from the NOS.
In particular, when an LLDP message arrives at a virtual
switch element with a certain outport specified in its body,
OVX ”knows” where the other end of that link is. Therefore,
OVX forges an LLDP ”response” packet and sends it back
to the NOS, thereby creating the illusion of a link at the
NOS. This LLDP mechanism is beneficial for the following
reasons:

1. The number of LLDP packets travelling in the data
plane remains constant no matter how many virtual
networks exist, and

LLDP Resolution

NOS Message
Handling

vNetwork vLink

vAddress

vSwitch vPort

Link

Address

Switch Port

Network

LLDP Discovery

NOS Message
Handling

Northbound
OpenFlow
Interface

Southbound
OpenFlow
Interface

APIMAP

NOS IO
Loop

Switch IO
Loop

Figure 2: Internal OVX architecture.

2. Enables OVX to expose any virtual topology to the
NOS.

4.3 Address Virtualization
OVX grants tenants the ability to choose address assign-

ments for their end hosts, allowing multiple, potentially over-
lapping IP address blocks to exist in the same physical net-
work. To differentiate hosts, OVX generates globally unique
tenant IDs for each tenant, and for each host, a physical ad-
dress that encodes the host’s membership using the tenant
ID. The physical address used is a combination of MAC
and IP headers. We use IP rewriting when the NOS pushes
layer 3 rules and MAC rewriting when the NOS pushes layer
2 rules. This is done for the following reasons:

1. We do not want to modify the semantics of the rules
pushes by NOSes, and

2. We want to support both layer 2 and 3 virtual net-
works.

Collisions of addresses are avoided by installing flow rules
to rewrite addresses at the edge switches of the network,
from tenant-assigned address to physical IP address at the
ingress edge, and vice-versa at the egress edge.

As OVX rewrites packets at the edge of the network, it
imposes a negligible overhead on the dataplane. Evidently,
we cannot support the scenario where all tenants want to
use the entire IP or MAC space since we reserve some bits
in those headers to encode the tenant identifier. The trans-
lation process is illustrated in Figure 3.

Importantly, this procedure is invisible to a tenant’s NOS
or hosts, implying that a NOS used to control a virtual net-
work created by OVX doesn’t need to be modified in any
way to properly function. In addition to preventing address
aliasing in a transparent way, the mapping created by the

27

Figure 3: The IP translation enforced by OVX happens into
the edge switches for data packets and between OVX and
the NOS for control packets.

procedure is used by OVX to demultiplex northbound con-
trol messages so that they reach the correct tenant networks.

4.4 Control Function Virtualization
We enable each virtual network to have its own NOS and

applications that can program the virtual network switches.
OVX is responsible for mapping various control functions
for the virtual network on to the corresponding physical
network. In some cases OVX would translate a relatively
simple control operation on a virtual network into multiple
actions on the physical control plane. OVX can do this by
leveraging its advantageous position in the control network,
i.e., it can intercept control packets, and therefore multiplex
different control planes onto one. This gives the ”illusion”
that every NOS is the only OS running in the system.

5. FEATURES
The design decisions in OVX are intended to easily pro-

vide extensibility. The loose coupling of virtual and physical
components in the form of N:1 key-value mappings, intro-
duces significant amounts of flexibility. The liberties that
can be taken in how virtual components can be mapped to
physical counterparts is key to a few core vSDN features:

• Topology customization: vSDN topologies need not be
isomorphic to the infrastructure, or be restricted to its
subgraph. A virtual link may encompass multiple con-
tiguous hops, and virtual switches may abstract away
parts or all of a network.

• Resiliency: A virtual link or switch can be mapped
onto multiple physical components to provide redun-
dancy. A resilient virtual link is characterized by mul-
tiple physical paths between the points corresponding
to the virtual link endpoints. A virtual switch that
abstracts away portions of the physical network may
take advantage of redundancies in the topology (e.g.
multiple paths) to provide multiple paths between its
ports.

• Dynamic vSDN reconfiguration: The reconfiguration
of a tenant network is reduced the manipulation of
key-value pairs. This is a simple operation since the
mapping is logically centralized in the global map, and
key-value pairs employ references as opposed to storing
the component representations. Since the mappings
themselves do not store any network state, these can
be changed at runtime.

In addition, it is implied that vSDNs can be made
portable across different operator networks given that
they i) support the same control protocol as OVX, and
ii) the vSDN topology can be mapped onto the network
without partitioning switches.

5.1 Persistence
Each network and network element maintains a collection

of preservable attributes. This enables persistence by allow-
ing OVX to record and store this information in persistent
storage, so that vSDNs can be torn down and re-created at
a later time. In addition to giving OVX the ability to ”save”
and ”recover” vSDN configurations, persistence serves as a
first step towards the ability to snapshot tenant networks.

5.2 Troubleshooting
The extensive rewriting of control messages complicates

the already difficult process of troubleshooting networks.
However, the central position of OVX in the control chan-
nel enables it to integrate with network debuggers such as
NetSight [11] by providing connections into vSDNs and in-
stantiating special-purpose ports on virtual switches. These
ports can be used to mirror control messages directly to Net-
Sight or a similar tool, and as with other virtual constructs
provided by OVX, can be dynamically created and config-
ured.

6. RESULTS
We present only some preliminary results for our solution,

tested in a controlled environment. The tests discussed here
focus on control channel overhead introduced by OVX, and
virtual network generation time. To measure overhead, we
used cbench [2], a control plane benchmarking tool. In this
test, cbench was configured to spawn a number of switches
equal to the number of virtual networks, each switch hav-
ing five hosts with unique MAC addresses. Every virtual
network is an exact copy of the physical one, in order to
have a clear comparison with FlowVisor and FlowN. The
tests have been run on a commodity laptop equipped with
2.3GHz quad-core Intel Core i7 (turbo boost up to 3.5GHz)
with 16GB 1600MHz memory and 512GB PCI-e based flash
storage.

Figure 4 shows the latency introduced by OVX, FlowVi-
sor, and FlowN, and the reference case where no virtual-
ization software is used and the packets are sent directly
from the switch to the controller (Floodlight). The results
show that, compared with other platforms, OVX offers bet-
ter performance than similar virtualization platforms and
only adds around 0.2 ms latency to the control channel. Im-
portantly, the delay added is independent of the size of the
physical network and the number of virtual networks.

Table 1 shows the time needed to create and configure
a virtual network up to the point where the network OS
has connected. The physical network is the Internet2 NDDI

28

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 20 30 40 50 60 70 80 90 100

L
a
te

n
c
y
 (

m
s
)

No. of virtual networks and switches

FlowN
FlowVisor

OpenVirteX
w/o virtualization

Figure 4: Latency comparison of OVX, FlowVisor, FlowN
and Floodlight.

No. of switches Physical clone Big switch
API DB API DB

21 1.363 .761 .418 .301
53 3.679 1.908 .787 .459

121 10.099 4.18 .847 1.078

Table 1: Virtual network provisioning time in seconds for
various sizes of the physical topology. Virtual networks can
be created through the API or loaded from persistent storage
(DB).

topology, which has 11 core switches spread across the US
and fat tree-based datacenter networks (with varying num-
ber of switches) attached to the cores. Rapid creation of
virtual networks is required to support IaaS environments,
which OVX clearly can offer with provisioning times in the
order of several (tens of) seconds. Also note how the cre-
ation time of a big switch virtual network encompassing the
complete physical network does not depend on the size of
the physical topology. Contrast this to the virtual clone of
the physical network, where we have to recreate the one-
to-one mapping from virtual to physical for each individual
network element.

Finally, we have deployed OVX on Internet 2 (I2), a nation-
wide research network located in the US, to demonstrate its
capabilities in a live physical WAN. We run two vSDNs, one
a copy of the I2 topology and the other, a single giant switch.
Each vSDN was controlled by its own NOS, ONOS [4] and
Floodlight, respectively, which ran unique functions that ap-
plied accross the I2 WAN.

7. CONCLUSION & FUTURE WORK
In this paper, we presented OVX which provides pro-

grammable vSDNs. These vSDNs are customizable in terms
of topology and addressing scheme used, and each tenant can
control his virtual SDN with the NOS of his choice.

Although the current version of OVX presents all the core
features expected from a network virtualization platform, we
are currently designing three additional functionalities that

will improve the usability and the performance of the tool.
In particular, we are focusing on:

• Snapshotting and migration of vSDNs: in a virtualiza-
tion environment, the ability to preserve the state and
data of a Virtual Machine (VM) at a specific point in
time has become a key functionality. This allows not
only fast recovery in case of failure, but also eases the
migration and duplication of a working VM in other
locations [12]. The information stored in OVX allows
to reproduce this feature into the network infrastruc-
ture, not only saving the configuration of the vSDNs
but also the status of the data plane, e.g., all the Open-
Flow rules active in all the devices at a certain point
of time, thus allowing the tenant to step back to a pre-
vious working state and/or to migrate the vSDN to
another location without reconfiguring it.

• Evolving beyond OF1.0: we are replacing the stan-
dard java openflowj library, strictly tied to OF1.0, with
LOXI [5]. LOXI is a marshalling and unmarshalling
engine that generates version-agnostic OpenFlow li-
braries in multiple languages. Leveraging on the clear
separation between virtual and physical environment
implemented in OVX, we plan to implement OF1.3 in
the southbound interface, while exposing OF1.x to the
tenants, thus allowing common open source OF1.0 con-
trollers like NOX and Floodlight to run on an OF1.3
network.

• vSDN-based Quality of Service: the only solution to
limit bandwidth usage for a specific vSDN in OF1.0
is to statically assign a specific port queue to the vir-
tual network. This approach is not feasible in a real
network, since the configuration of minimum and max-
imum bandwidth per queue is static and vendor depen-
dent. However, once the migration to LOXI, and thus
to OF1.3, will be completed, OVX will use flow-based
(e.g. vSDN-based) meters to enforce QoS for the vir-
tual networks, thus offering to the tenants a fully iso-
lated environment with performance guarantees.

We believe OVX has a promising future in the network
virtualization space. To maximize its impact, we will re-
lease OVX, along with the network embedder, as open source
software in the foreseeable future. Furththermore, work is
in progress to integrate OVX with OpenStack [6], and cre-
ate a powerful IaaS platform that can orchestrate compute,
storage and network resources. This will finally lead to de-
ployment of OVX in OpenCloud [1], where it will be a key
building block to realize NFV functionality at scale.

8. REFERENCES
[1] OpenCloud website - http://www.opencloud.us.

[2] Oflops website -
http://www.openflow.org/wk/index.php/Oflops.

[3] Floodlight website -
http://www.projectfloodlight.org/floodlight/.

[4] ONOS website - http://tools.onlab.us/onos.html.

[5] LOXI website -
https://github.com/floodlight/loxigen/wiki/Open-
FlowJ-Loxi.

[6] OpenStack website - https://www.openstack.org.

29

[7] M. Chiosi et. al. Network functions virtualisation.
Technical report, ETSI, October 2012.

[8] M. Chowdhury, M. R. Rahman, and R. Boutaba.
Vineyard: Virtual network embedding algorithms with
coordinated node and link mapping. IEEE/ACM
Transactions on Networking, 20(1):206–219, February
2012.

[9] R. Doriguzzi Corin, M. Gerola, R. Riggio,
F. De Pellegrini, and E. Salvadori. Vertigo: Network
virtualization and beyond. In EWSDN 2012, October
2012.

[10] D. Drutskoy, E. Keller, and J. Rexford. Scalable
network virtualization in software-defined networks. In
IEEE Internet Computing, March/April 2013.

[11] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières,
and N. McKeown. I know what your packet did last
hop: Using packet histories to troubleshoot networks.
In Proceedings of the 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
14), pages 71–85, Seattle, WA, 2014. USENIX.

[12] E. Keller, S. Ghorbani, M. Caesar, and J. Rexford.
Live migration of an entire network (and its hosts). In
11th ACM Workshop on Hot Topics in Networks,
2012.

[13] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. ACM SIGCOMM Computer
Communication Review, 32(2):69–74, April 2008.

[14] R. Riggio, F. De Pellegrini, E. Savadori, M. Gerola,
and R. Doriguzzi Corin. Progressive virtual topology
embedding in openflow networks. In The Fifth
IFIP/IEEE International Workshop on Management
of the Future Internet (ManFI), 2013.

[15] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar. Can the
production network be the testbed? In Operating
Systems Design and Implementation, October 2010.

30

