
Toward Systematic Detection and Resolution of
Network Control Conflicts∗

Dennis Volpano
Department of Computer Science

Naval Postgraduate School
volpano@nps.edu

Xin Sun
School of Computing &
Information Sciences

Florida International University
xinsun@cs.fiu.edu

Geoffrey G. Xie
Department of Computer Science

Naval Postgraduate School
xie@nps.edu

ABSTRACT
The problem of detecting and resolving control conflicts has
started to receive attention from the networking commu-
nity. Corybantic [16] is an example of recent work in this
area. We argue that it is too coarse grain in that it does
not model the combined operational objectives of multiple
controller functions. This paper proposes a finer grain ap-
proach where a network control function is represented as a
deterministic finite-state transducer. The machine runs on
inputs provided by an SDN controller and outputs instruc-
tions that update the network as needed to meet objectives.
Standard proof techniques and algorithms can be leveraged
to analyze properties of these machines. Specifically, their
intersection describes precisely the stable operating region of
a network when the machines operate in parallel. The stable
region comprises conditions under which no control function
is in the process of updating the network.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—network management; D.2.4 [Software Engi-
neering]: Software/Program Verification—formal methods,
correctness proofs

Keywords
transducers, SDN, controller function interaction

1. INTRODUCTION
By making the control plane programmable and centraliz-

ing it, software defined networking (SDN) builds upon well-
established software development principles such as modular
design and open APIs in an attempt to contain the growing
complexity and cost of network management. In the last five
years, a number of network controller functions have been
conceptualized, each of which targets a single or narrow set

∗Approved for public release; distribution is unlimited.

(c) 2014 Association for Computing Machinery. ACM acknowledges that this con-
tribution was authored or co-authored by an employee, contractor or affiliate of the
United States government. As such, the Government retains a nonexclusive, royalty-
free right to publish or reproduce this article, or to allow others to do so, for Govern-
ment purposes only.
HotSDN’14, August 22, 2014, Chicago, IL, USA.
Copyright 2014 ACM 978-1-4503-2989-7/14/08. . . $15.00.
http://dx.doi.org/10.1145/2620728.2620745.

of operational objectives, such as power manager [9], load
balancer [1], bandwidth allocator [2,17], application control
manager [5], and virtual machine (VM) migrator [7, 15].

The proliferation of single-objective controller functions
is both encouraging and daunting. On the one hand, it has
successfully elevated the level of abstractions for network
operation from device-level configuration to service-level re-
quirements. On the other hand, it fosters independent devel-
opment of functions that can interact in unpredictable ways
and de-stabilize a network. For example, consider the net-
work in Figure 1. Suppose the operator runs two controller
functions: one aims to balance load per destination across
links v and w, and the other aims to turn off E if it’s un-
der utilized (assuming that E consumes more power than F).
The power-save function is at odds with the load-balancing
function. The latter’s objective is to balance load even if
traffic is light at each router. So both routers must remain
on. The power-save function will see this as an opportunity
to shift flows to F and turn off E, which can trigger load
balancing to turn it back on. So even under constant op-
erating conditions, power to E can flipflop indefinitely with
these two functions. This is an example of oscillation caused
by multiple functions. Oscillation can also occur within a
single function under constant conditions. This may be due
to poor design or be intentional. For instance, the function
may be implementing a circular scheduling algorithm for
access to a shared medium like a software-defined wireless
access network. We consider here oscillation caused by mul-
tiple functions. This kind of oscillation is also a challenge
for network functions virtualization (see pg. 11 of [4]).

The problem of detecting and resolving control conflicts
has started to receive attention from the networking com-
munity. Corybantic [16] is an example of recent work in this
area. However, Corybantic’s approach is too coarse grain
in that it avoids modeling combined operational objectives
of competing controller modules. For example, when mul-
tiple modules propose actions in response to an event such

E

F	

v	

w des)na)on	

Figure 1: Unequal cost (power) load balancing

67

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2620728.2620745&domain=pdf&date_stamp=2014-08-22

as a significant load increase over a link, Corybantic uses
a policy-based approach to select only one of the proposals
to implement. This approach is suboptimal from the per-
spective of meeting operational requirements because a) it
discards possible solutions where multiple proposals with-
out conflicts may be implemented at the same time; and b)
it requires each controller module to determine the accept-
ability of the winning proposal (from another module) with
an abstract currency that does not accurately measure how
well the module will be able to meet its own objective.

A finer grain approach to detecting and resolving control
conflicts is needed. There are two important requirements.
First, a uniform representation of the operational objectives
is needed in order to reason about the joint effect of multiple
controller functions (Corybantic introduces an abstract cur-
rency for this purpose). Second, a controller function should
be represented in a way that facilitates formal reasoning and
makes key problems decidable. To this end, we propose a
new programming model for SDN controllers that is quite
different from current practice. The controller executes only
code that is produced algorithmically from operational ob-
jectives expressed independently of one another. The code
continuously observes the network and adjusts it in real time
as needed to satisfy the requirements. Properties of the code
are proved under the assumption that only the code can
change the network. For instance, we might be able to show
that there will never be an attempt to shift load to a router
that is off. But if other controller code can power down
devices then there’s no guarantee. Therefore, no manually-
written controller code using APIs like POX [12] is allowed,
nor is application-level access to network resources like that
provided by PANE [5].

In the next section, we describe a finer grain approach to
treating conflicts among operational objectives. Examples
are given for controlling power and load balancing. We show
how the approach can also be used to control a single device,
namely a MAC-learning switch. Then we discuss tradeoffs
of the approach in Section 5, followed by related and future
work in Sections 6 and 7.

2. A FINER GRAIN STRATEGY
We propose a controller function be modeled as a deter-

ministic finite-state transducer (DFT) [8]. A DFT is a prim-
itive computing machine that runs on inputs, computed by
an SDN controller, and outputs a sequence of instructions
to change the network as needed to meet the function’s ob-
jective. The inputs are measurements and other parameters
of a running network suitably discretized for the machine.
They include link utilization, end-to-end bandwidth require-
ments, flow-to-path assignments, etc. Inputs are supplied
once per “cycle” to a machine. The machine transitions ac-
cordingly and may produce output that changes network
configuration in some way. The minimum period of a cycle
is determined by the SDN controller’s ability to refresh the
measurements during that time. With one transition per
cycle, the machine has a crude form of clock that is useful
for implementing timeouts.

The advantage DFTs is that one can analyze properties
of them and their intersection to understand the scope of
interaction between controller functions. Important proper-
ties are decidable for these machines such as whether two
machines have a nonempty or finite intersection. It is possi-
ble to precisely describe the scope of interaction for a given

r2;	
 OffE	

H	

H	

r1;	
 ε	

r5;	
 OnE	

	
 Σ	
 −	
 H	

ZvLw	

ZvZw	

ZvHw	
 ZvLw	

ZvZw	

ZvHw	

r4;	
 ε	

r3;	
 ε	

r0;	
 ε	

H	

LvLw,	
 LvZw	

HvLw,	
 HvZw,	
 LvHw,	
 HvHw	

Figure 2: Link-local power-save transducer

network in advance to give an operator a sense of how their
network can behave. This comes from analyzing the inter-
section of DFTs. With proper handling of their output func-
tions, they can be intersected through a standard product
construction. An operator then gets a picture of what we call
the stable operating region of the network under the intersec-
tion. This is the set of conditions under which no controller
function is attempting to alter the network. Depending on
how narrow the region is, a decision can be made about
whether to deploy the functions simultaneously. One can ex-
periment with different combinations of controller functions
to see the stable regions they produce. Resolving conflicts
translates into choosing the right mix of machines or even
tuning them in order to achieve an acceptable stable region.
Moreover, useful properties of an intersection are obtained
for “free” from properties of the constituent machines. As
we shall see, the invariant for a state (p, q) of an intersec-
tion is obtained by merely conjoining the invariants proven
separately for states p and q in their respective machines.

2.1 Modeling a power-save function
Consider the network in Figure 1. Assume each link ex-

hibits a utilization rate that can vary over time. This rate
can be sampled on each cycle and is either high (H), low (L)
or zero (Z). Suppose a power-save machine tries to power
down E when the link utilization of links v and w is low or
zero for two consecutive cycles.1 Any new flows are then
routed to F. A DFT runs on a sequence of input symbols.
Here each symbol reflects the utilization rates of both links
v and w at the end of a cycle. For instance, HvLw is a
symbol that denotes a high and low utilization of v and w
respectively. Therefore the input alphabet of the machine is
Σ = {Hv, Lv,Zv} × {Hw, Lw,Zw}.

The power save transducer for the network in Figure 1 is
given in Figure 2; in a slight abuse of notation, H stands for
all symbols of Σ containing H. The output function produces
the empty output ε for all states except r2 and r5 where it
outputs OffE and OnE. The machine waits for two consec-
utive cycles where link w is experiencing heavy load before
restoring power to E. The final states r0 and r3 represent

1The choice of two cycles is completely arbitrary. It can be
whatever an operator wants.

68

stable operating states for the network where the machine
is not in the process of possibly powering down E. For r3, E
is powered down with low use of w, and for r0, both routers
are powered up with one or both links experiencing high
usage. Precisely, the following invariants can be shown for
these states by a straightforward mutual induction on the
length of input w:

1. the power-save transducer is in r0 on input w with
output y only if w ends with a member of H and y
ends with OnE, and

2. the power-save transducer is in r3 on input w with
output y only if w ends with ZvLw or ZvZw and y
ends with OffE.

It may seem curious that transitions are possible out of
r2, r3 and r4 with heavy load over v when E is supposedly
powered off in those states. The machine has been designed
this way because the attempt to turn E off may have failed
or been overridden. Thus it treats OffE (and OnE) more
as a request than a command. Alternatively, it could be
treated as a command and re-tried until it succeeds, a retry
maximum is reached, or conditions have changed making it
unnecessary. Power status would have to be added to the
input stream in this case. So the power-save function can
be modeled in many different ways. In fact, the decision to
disable a router can push downstream link utilization rates
higher. So a link-local approach such as the one described
here may be unacceptable. A path-based approach is con-
sidered in Section 3.

2.2 Modeling a load-balancing function
Suppose we also want to balance load per destination

across links v and w of the network in Figure 1. The load
balancing transducer for this network is given in Figure 3. It
has the same input alphabet as the power-save transducer;
B stands for symbols representing a load-balanced network:

{HvHw,ZvLw, LvLw, LvZw,ZvZw}

The only stable state is q0 for which it can be shown that
the load balancing transducer is in this state on input w
with output y only if w ends with a member of B and y
is empty or ends with F to E or E to F; the former means
move flows from F to E and the latter from E to F. This
machine remains in states q3 and q4 waiting indefinitely for
the balance to occur when in practice, a machine would wait
until there is a balance or a timeout occurs.

2.3 The intersection transducer
We want to know the stable operating region for the net-

work in Figure 1 under the power-save and load-balancing
machines. How narrow is this region? The intersection, or
more precisely the product, of the machines is computed for
this purpose. A portion of the product is shown in Figure 4.
It has a total of 13 reachable states with two final (stable)
states, namely r0q0 and r3q0 (not all transitions from r0q0
and r3q0 are shown). From the invariants above, we know
that the product is in state r0q0 on input w only if w ends
with a member of H ∩ B which is just {HvHw}. This tells
us that the product will be in this stable state only when
the utilization rates of both v and w are high. It will be in
stable state r3q0 only if w ends with ZvLw or ZvZw, that
is, when link v is not being used, perhaps because E is off,

B	

B	

q1;	
 ε	

q3;	

E	
 to	
 F	

ZvHw,	
 LvHw	

q6;	
 ε	

q4;	
 	

F	
 to	
 E	

q0;	
 ε	

HvZw,	
 Hv
Lw	

q5;	
 ε	

q2;	
 ε	

Hv
Zw

,	
 H
vL
w
	

HvZw	

HvLw	

B	

HvZw	

HvLw	

B	

ZvHw,	
 L
vHw	

B	

ZvHw	

LvHw	

ZvHw	

LvHw	

ZvHw	

LvHw	

B	

B	

Figure 3: Load balancing transducer

and w is not experiencing high usage. So the stable region
for the network is the disjunction of the conditions for these
two states.

Note that low utilization of both links can cause oscillation
since low, yet nonzero, usage of both links is not part of the
stable operating region produced by the product. To see
this, suppose powering off router E causes high utilization of
link w. Then starting from the start state r5q0, state r1q0
is revisited on input

LvLw LvLw ZvHw ZvHw ZvHw LvLw

All but the first symbol of this input will repeat indefinitely
if both links have low usage whenever both routers are on
(see red path in Figure 4). It is a subtle consequence of the
machines interacting of which an operator should be aware.

Now suppose an operator is later asked to provide redun-
dancy in the network by ensuring both routers are always
on. On the surface, this certainly appears to be at odds
with power saving but by how much? Will the network be
completely inoperable because of these competing concerns?
It may not because the answer depends on how the network
normally operates. All we can safely say is that the stable
operating region will likely be narrowed. To illustrate, con-
sider the redundancy transducer in Figure 5. There’s only

!"#$%&
'()&

!*#$%&
+&

!,#$%&
'-)&

./.0&

1/10&

2/.0&

1/10&

!3#4%&
+&

!$#$%&
+&

!5#$%&&
+&

2/.0&
2/20&

&
2/10&

1/.06&
2/.0&

1/106&&
2/20&
&
1/206&&
2/10&

!,#,%&
'-)&

!$#3%&&
7&89&)&

./.0& 2/.0&

2/106&
2/20&

./.0&

Figure 4: A portion of the product machine for the
power save and load balancing transducers

69

one stable state, s0, and it requires nonzero load on both
links to remain in it. So the product of all three machines
has only one stable state, namely r0s0q0, and it requires high
utilization of links v and w to stay there. This condition may
be too narrow to be a useful stable region. However, the
point here is that we discovered there is a network condition
under which all three machines can co-exist without causing
any oscillation.

3. PATH-BASED POWER SAVING
The power-save transducer in the preceding section works

at the granularity of links. Alternatively, we can use trans-
ducers to model controller functions at the granularity of
forwarding paths, for instance, if the network deploys an
MPLS like traffic engineering solution. We sketch here one
approach to a path-based transducer for power saving. Like
ElastricTree [9], it treats path capacities and flows in its
decision to alter power.

Consider the network in Figure 6. There are three possible
paths to the destination, P1, P2 and P3. Every flow in the
network is assigned to a path and consumes a portion of the
available bandwidth for that path. As long as all flows can
be serviced by P1 without forcing any flow’s consumption
below what it expects, router E can go dormant.

Inputs to the path-based transducer contain three ele-
ments: the current flow-path assignments, the bandwidth
each flow is currently experiencing and the utilization of each
path. To represent the latter two, we assume the network is
instrumented to produce totally-ordered symbols Z, L and
H. In the case of bandwidth, each is a range in which a flow’s
bandwidth lies during a cycle. The ranges may vary across
flows because what might be a high range for one may be
low for another depending on their service-level agreements.
There is another set of ranges for utilization which reflect
level of path usage in a cycle. For example, below is an
input symbol for the network in Figure 6 with two flows:

(P3,P1, L,H, Z,Z, L)

The first two elements convey flow-path assignments, the
next two convey current bandwidths experienced by each
flow, and finally the utilization of each path.

A portion of the transducer is shown in Figure 7 for two
flows f1 and f2. The transition to powering up E is made
when both flows occupy P1, f1 is experiencing bandwidth
in its lowest range and there’s insufficient capacity on P1 to
improve it (utilization there is H). The transducer moves
flow f2 to P3 after powering up E (a choice that in practice
would be based on P3’s capacity and f2’s expected service
level). Powering down E is triggered by P3 meeting f2’s
expected service level (f2’s bandwidth is high) without using
significant capacity (P3’s utilization is Z). Both flows then

s1;	
 OnF	
 s0;	
 ε	

HvLw,	
 LvHw	

HvHw,	
 LvLw	
 HvZw,	
 LvZw,	
 ZvZw	

HvLw,	
 LvHw,	
 ZvHw	

HvHw,	
 LvLw,	
 ZvLw	

s2;	
 OnE	

HvZw,	
 LvZw	

ZvLw,	
 ZvHw	

ZvZw	

HvLw,	
 LvHw,	
 HvZw	

HvHw,	
 LvLw,	
 LvZw	

ZvHw,	
 ZvLw,	
 ZvZw	

Figure 5: Redundancy transducer

P1	
 des'na'on	

P2	

P3	
 E	

Figure 6: Router E consumes more power

q3; ε"

P1, P1,"
L, L,"
H, Z, Z"

q4; ε"

q2; "
f2.move(P1); "

OffE"

q1; "
OnE;"

f2.move(P3) "

P1, P1,"
L, H,"
H, Z, Z"

P1, P1,"
Z, H,"
H, Z, Z"

P1, P3,"
H, H,"
L, Z, H"

P1, P3,"
H, H,"
L, Z, Z"P1, P3,"

H, H,"
L, Z, H"

P1, P1,"
L, L,"
H, Z, Z"

Figure 7: Path-based power-save transducer

occupy P1 again. Note that unlike our previous examples,
there is no hysteresis implemented by this transducer. A
more practical machine would implement a more elaborate
backoff scheme before touching E.

4. A MAC-LEARNING SWITCH
DFTs can also be used as building blocks for device-specific

control functions. Their product then gives the desired con-
trol function and also reveals a stable region for the device
with respect to that function.

For example, a MAC-learning switch handler is given in
[3]. It learns the input port for each non-broadcast source
MAC address. If the destination port is known, the handler
installs a forwarding rule and instructs the switch to send
the packet by that rule, otherwise flood it. The control
of flooding can be designed completely apart from that of
forwarding. The former is about when to flood and the latter
about when to update the location of a given MAC address.

Suppose that a given destination MAC address M can be
located at port 2 or 3 of a switch. We define an input alpha-
bet {nil, 2, 3} where on a given cycle, nil is signaled by the
switch if M was not detected as the source address of any
frame received at either port, 2 is signaled if M was detected
at port 2, and so on. The transducer to control forwarding is
given in Figure 8. In state q1, instruction FWD 2 is output,
indicating that frames destined for M should be forwarded
to port 2. There are three stable states, two for when M
continues to reside behind one of the two ports, and q0 for
when M ’s destination port remains unknown. The trans-
ducer to control flooding is given in Figure 9. It waits three
consecutive cycles without seeing traffic from M before issu-
ing a flood instruction directing the switch to flood frames
destined for M . Their product is given in Figure 10.

70

q0;$ε$ q1;$
FWD2

q3;$ε$

q4;$ε$

q2;$
FWD3

3
nil$

2

2$

nil$

3

2

23

nil$

Figure 8: Forwarding transducer

Flood

nil$

r0;$ε$

r3;$
Flood$ r2;$ε$r4;$ε$

nil$

nil$

2,3
r1;$ε$

nil$

nil$
2,3

2,3

Figure 9: Flooding transducer

5. DISCUSSION
The SDN controller programming paradigm proposed in

this paper is a major departure from current practice. Trans-
ducers replace controller applications written in say Python
or C++. A controller platform provides a measurement API
and runtime system for transducers. The API provides the
input streams for the transducers, which in turn use another
API to issue instructions for updating the network. There
are no event handlers, other than the transducers, sending
instructions. So what are the pros and cons of using DFTs?

Some expressiveness is obviously lost when controlling a
network using a DFT versus a Python application. A DFT
is limited to recognizing network conditions that can be de-
fined as regular sets. This rules out conditions that require
unbounded counting. For example, the condition that the
total number m of ingress frames at a switch equals its egress
count n at the end of every cycle is not regular, as m and
n are unbounded. Bounds would make it regular but even
practical bounds would likely make a DFT impractical here
since it would be exponentially large in the length of its bi-
nary inputs. More experience is needed to determine how
extensive regular conditions are in practice.

The biggest advantage of DFTs over Python and C++
code is the ability to decide problems like emptiness of in-
tersection (empty implies no stable region). This problem
isn’t even semi-decidable for Python or C++ since one can
express in them a parser for any context-free set. Another
benefit of DFTs is that it’s much easier to prove properties
about them as they admit straightforward inductive proofs.
Reasoning about a Python program is far more complicated.
Canini et al. [3] describe a system for model checking appli-

q0r0

q0r1

 nil

q1r0; FWD 2

 2

q2r0; FWD 3

 3

q0r4 nil

 2

 3

q3r0

 nil

 2

 3

q4r0

 nil

 2

 3

q0r2

 nil

 2

 3

 nil

 2

 3

 nil

 2

 3

q0r3; Flood

 nil

 2

 3

 nil

 2

 3

Figure 10: Transducer for MAC-learning switch

cations written in Python or C++ for the NOX controller
platform [6]. These programs can perform arbitrary compu-
tation and maintain state so techniques like symbolic execu-
tion of them are used to reveal relevant inputs in an attempt
to reduce the size of the state space.

Scalability of DFTs will depend on the measurement API
and the instruction API which will have to provide support
for high-level operations like graceful switch shutdown and
transfers of flows from one path to another. Product ma-
chines should scale well. The product of two DFTs with
state sets Q1 and Q2 and alphabet Σ can be constructed in
worst-case time |Q1|×|Q2|×|Σ| and will not have more than
|Q1|× |Q2| states. While more experience is needed, we sus-
pect that in practice the product will usually have far fewer
reachable states. For example, the product of the power save
and load balancing transducers (a portion of which is shown
in Figure 4) has only 13 reachable states out of 42 (6 × 7)
potentially reachable states.

6. RELATED WORK
Corybantic [16] is perhaps the most closely related work as

was discussed earlier. Operational objectives in Corybantic
are not formulated in a way that permits their interaction
to be analyzed in any rigorous way. Other efforts have for-
mulated objectives more formally, thus facilitating detection
and resolution of conflicts between them automatically. Ex-
amples include FML [10], VeriFlow [14] and NetPlumber [13]
among others. FML is a relational language for specifying
flow policy in which policy conflicts are resolved automati-
cally. Veriflow and NetPlumber check in real time for com-

71

pliance of flow rule updates. These efforts concern flow-level
objectives based on policy or properties like absence of loops
and black-holes, reachability, and avoiding/enforcing way-
points. None of them though can detect oscillation caused
by satisfying multiple objectives since oscillation is not a
violation of flow policy.

PANE [5] provides an API for end users to request special
network treatment for certain flows, including access control,
bandwidth reservation, path control and rate-limits. PANE
resolves conflicts in different users’ requests by consulting
pre-defined policies regarding their privileges. Expressing
operational objectives, like power conservation and load bal-
ancing, and their interaction as discussed in this paper, are
outside the scope of PANE.

7. FUTURE WORK
A key design question is what events transducers will be

allowed to observe and how often? A measurement API is
needed that allows a transducer to register for events of in-
terest. Model checking may help in designing transducer
input alphabets. Relevant inputs, derived by symbolic exe-
cution of existing Python controller code, exercise different
control paths through the code [3]. That would seem to
make them good candidates for input symbols, especially if
the transducer mirrors the logic of the code. An input sym-
bol might be associated with many concrete inputs, each of
which could be used by the transducer in outputs only.

Initially we expect transducers will continue to be de-
signed by hand per network, as was done in this paper, using
logic distilled from today’s controller modules as a guide.
The open source python-automata project [11] has provided
a good code base for tools to intersect and analyze determin-
istic transducers. But more automated support is needed.
Ideally, there would be a compiler for each control function
that would take network information relevant to meeting the
control function’s objective and output a transducer for that
objective and the given network.

8. CONCLUSION
Network stability in the face of diverse control and opti-

mization mechanisms is becoming a challenge. More precise
techniques are needed to take the guesswork out of deter-
mining how these mechanisms impact stability. This paper
introduces one such technique. It gives operators a better
basis for customizing control functions per network. As was
shown in Section 2.3, the stable operating region may turn
out to be too narrow to be useful when combining controller
functions. It is imperative that an operator be able to see
how mixing different functions can impact their network, as
the impact can vary under the same set of functions.

9. ACKNOWLEDGMENTS
Early discussions with Franck Le about network oscilla-

tion helped inspire this work. We would like to thank him
and also the reviewers for their helpful comments.

10. REFERENCES
[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan,

N. Huang, and A. Vahdat. Hedera: Dynamic Flow

Scheduling for Data Center Networks. In Proceedings
of USENIX NSDI, 2010.

[2] H. Ballani, P. Costa, T. Karagiannis, and A. I.
Rowstron. Towards Predictable Datacenter Networks.
In Proceedings of ACM SIGCOMM, 2011.

[3] M. Canini, D. Venzano, P. Pereš́ıni, D. Kostić, and
J. Rexford. A NICE Way to Test OpenFlow
Applications. In Proceedings of USENIX NSDI, 2012.

[4] M. Chiosi, D. Clarke, and et al. Network Functions
Virtualisation – Introductory White Paper. In SDN
and OpenFlow World Congress, 2012.

[5] A. Ferguson, A. Guha, C. Liang, R. Fonseca, and
S. Krishnamurthi. Participatory Networking: An API
for Application Control of SDNs. In Proceedings of
ACM SIGCOMM, 2013.

[6] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. Nox: Towards an
Operating System for Networks. SIGCOMM
Computer Comm Rev, 38:105–110, 2008.

[7] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun,
W. Wu, and Y. Zhang. Secondnet: A Data Center
Network Virtualization Architecture with Bandwidth
Guarantees. In Proceedings of ACM CoNEXT, 2010.

[8] E. Gurari. An Introduction to the Theory of
Computation. Computer Science Press, 1989.

[9] B. Heller, S. Seetharaman, P. Mahadevan,
Y. Yiakoumis, P. Sharma, S. Banerjee, and
N. McKeown. Elastictree: Saving Energy in Data
Center Networks. In Proceedings of USENIX NSDI,
2010.

[10] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell,
and S. Shenker. Practical Declarative Network
Management. In Proceedings of the 1st ACM
Workshop on Research on Enterprise Networking,
Barcelona, Spain, 2009.

[11] https://code.google.com/p/python-automata.

[12] http://www.noxrepo.org/pox/about-pox/.

[13] P. Kazemian, M. Chang, H. Zeng, G. Varghese,
N. McKeown, and S. Whyte. Real time network policy
checking using header space analysis. In Proceedings of
USENIX NSDI, 2013.

[14] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey. VeriFlow: Verifying Network-Wide
Invariants in Real Time. In Proceedings of USENIX
NSDI, pages 15–27, 2013.

[15] L. Liu, H. Wang, X. Liu, X. Jin, W. B. He, Q. B.
Wang, and Y. Chen. Greencloud: A New Architecture
for Green Data Center. In Proc. 6th ACM Int’l Conf
on Autonomic Computing and Communications
Industry Session, 2009.

[16] J. A. Mogul, A. AuYoung, S. Banerjee, L. Popa,
J. Lee, J. Muidgonda, P. Sharma, and Y. Turner.
Corybantic: Towards the Modular Composition of
SDN Control Programs. In Proc. of ACM Workshop
on Hot Topics in Networking, 2013.

[17] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and
D. Guedes. Gatekeeper: Supporting bandwidth
guarantees for multi-tenant datacenter networks. In
Proceedings of USENIX WIOV, 2011.

72

