
E D U C A T I O N F O R U M

W h e r e H a v e all t h e W o m e n G o n e ? 1

Where have all of the women gone? Some of us can remember years when computer science courses
were quite well-populated with women. Indeed, one of our faculty at Montana State University is
certain that the enrollment was about 40% women here at one point early in the '80s. Now we
are lucky to have a handful of women in our introductory courses, and only a few in the upper
division courses. Apparently, this phenomenon is mirrored across the country: a quick glance at
the last three SIGCSE Conference proceedings reveals paper and panel titles such as "Where Have
all the Women Gone and How Do We Keep Them fl'om Going?" (1995), "Gender Issues" (1996),
and "Gender Imbalance in Computer Science Programs, Etiology and Amelioration2: Views fl'om
U.S. Campuses and Elsewhere" (1997). In the 1997 panel just cited, the moderator states

" . . . I 've watched with growing alarm the drop in enrollment in our Computer Science
programs from a ratio of 1:1 in 1983, to a current ratio of 5:1. The lack of interest of

female students in Computer Science is still a very serious problem. . ."

What has happened? What can be done about it? Should anything be done about it?
This phenomenon has been a curiousity of mine for a long time, but it was only recently that

it moved beyond reminiscing about the good old days over coffee--contemplating what has gone
wrong-- to first steps towards actual involvement. An NSF project meant to address the larger
issue of women in all sciences was recently awarded to MSU entitled Science and Engineering for
All: Opening the Door for Rural Women a. One of the activities of the project was a summer faculty
institute, to which invitations were sent out to all science and engineering faculty, invitations that
came with a tasty little honorarium as bait. I bit. And now it appears tha t I 'm hooked.

Actually, my initial interest in the institute had tess to do with the honorarium than with
the animation projects our group is pursuing. We had been wondering just what we could do
to make our projects gender sensitive given the low numbers of women in the discipline. We
did get some helpfut ideas for our projects, but we got more. For example, it was interesting,
albeit disheartening, to hear firsthand of experiences of some women scientists regarding the gender
discrimination they have faced during their careers as well as some of the blatant sexual harassment
others have endured. In fact, for a number of years as a young assistant professor I was relatively
ignorant of such problems. It never entered my mind that well-educated men would treat women
colleagues with the crassness one came to expect in the Army. But, in retrospect, I have had to
admit a memory of a few older male professors who evinced some disdain for women as peers and
who seemed insensitive to them (witnessed by the occasional crude joke in faculty meetings). And
not so long ago, we had to take disciplinary action against some of our male students who were
using a programming trick to force the display of an explicit picture 4 on the monitor of a female

student working at another station.

1. . . long t ime pass ing. . .
2 . . . large words that t ranslate into "something has caused things to get out of whack, so let 's bea t on the problem

for a while to see if we can pound things back into whack."
a . . . h m m m , I suppose tha t this is a dead giveaway tha t the PIs are MSU women scientists; I ' m not sure any of

us men could have got ten away with a t i t le that involved opening doors for any woman, let alone the highly capable

women of rural M o n t a n a . . .
4Well, I guess all pictures are explicit. Let 's see. . .oh, you know what I mean!

41

http://crossmark.crossref.org/dialog/?doi=10.1145%2F262301.1040344&domain=pdf&date_stamp=1997-09-01

Of course, bringing gender awareness and sensitivity into everyday affairs has also had its
awkward moments. I remember not so long ago the pendulum swinging so far to the side of
political correctness tha t speech became an inherent impediment for nearly everyone. Here's a good
example. On my first search committee assignment at Montana State University, I was involved in
a concerted effort to help establish the Department. I was really hoping tha t we could a t t rac t a
female candidate to one of our open positions and was ecstatic to see one day an application from
a young lady whose name I recognized (and who has since made a name recognizable by nearly
everyone in the computer science theory community). "We just received an application from an
outstanding girl!" I said. A female colleague on the committee with whom I had gotten along very
well since joining the faculty said, "Did you say we got an application from a girl?" Noticing the
emphasis she placed on girl I charged ahead in my enthusiasm: "Yup, a girl from X 5 University."
"Did you say, GIRL?" she asked once more, giving me a piercing stare tha t clearly indicated tha t
she, too, could not believe our evident luck in at tract ing a female candidate from such a prestigious
institution. I was beginning to think, though, tha t I must be slurring my words. Later, an older and
wiser faculty member took me aside to inform me that even though I regularly used the word "guy"
in reference to our male candidates, the appropriate word when referring to a female candida te - -a t
least as far as this committee was concerned--was "woman6. ''

But really, our problem with the number of women in the curriculum has little, if anything,
to do with gender discrimination, sexual harassment, or even speech impediments. The fact is,
the w o m e J aren' t even appearing in the entry-level class to be discriminated against, harassed,
or denigrated with unfortunately chosen words. So, while I appreciated the information learned in
the summer insti tute about how to make a classroom "female friendly," or, as the moderators were
quick to point out, "just plain friendly," my question was more fundamental: What ' s happened to
the pipeline? Somewhere as far back as grade school or junior high, girls are learning tha t science
isn't cool. My own daughters, both quite capable and bright, made a shift sometime during middle
school from thinking tha t a career in science (even computer science!) was attractive, to "ugh."

In fact, I have often pointed my students with pride to the fact that computer science has no
historical bias towards women, as some engineering fields have had. I personally have heard of
no cases where women have consistently received lower starting salaries than men, or where they
were not paid equivalently for equivalent work in mainstream computing companies. I have also
noted, again with satisfaction, that among the prominent names in the computer science theory
community are those of many women. I have certainly been aware of no gender discrimination in
theoretical computer science s. In spite of these successes, however, the pipeline into the university
barely dribbles women into the computer science curriculum at the present.

So, what can we do? Well, I don' t know. As noted, the problem has not gone unnoticed or
unstudied, although I know of no one who has a clear grasp of it. For my part, I th ink- -as noted
earlier--it has much to do with what is deemed cool at a certain stage of life. In tha t case, we
need to make computer science cool, or at least attractive, to girls at an early age. The NSF
grant alluded to at the beginning is quite cleverly conceived in this regard. For three years, it
will gather university faculty, four year college faculty, tribal college faculty (the program has a
purposeful focus on Native Americans as well), and high school teachers for summer institutes, and
then provide a competition for a number of mini-grants to try some of the ideas generated by the

~We must protect the innocent, you know (and to be honest, I don't remember which university).
6One of the benefits of having a PhD degree and being trained in the ways of logic, I have found, is that it takes

me only two or three days of meditation and reflection to figure out the blatantly obvious.
~See? I've learned!
SBut, sigh, I have been known to be blind at times; let me know if I'm wrong!

42

institutes. This is a good way to try many different ideas for relatively little cost. And the ideas
vary widely, from taking girls on field trips to see women scientists in action to taking the action
to the girls by way of a funky show-and-tell traveling van crammed full of women scientists and
whiz-bang experiments (does anyone remember the traveling Bookmobiles?).

Our idea, conceived by me and my long time research associate, Frances Goosey, is more modest ,
and yet it has the potential to reach nearly every girl in the state (and beyond): A computer science
Web page. The ideas are too involved to present here in detail, but boots t rapping from our work
in animation, we envision a page that allows kids to explore some of the fundamental aspects of
computer science in an intuitive, fun, and informative way. The page would also allow the kids to
interact with scientists through such links as Ask a Scientist (an idea we picked up from someone
else) in which a s tudent could pose a question that was read and responded to by someone at the
university. Special links for girls would give snapshots of women who have made an impact on the
science, such as Ada Lovelace, Grace Hopper, and others. Current women scientists would also
be featured, perhaps with pictures (if they'll let us post them!) that show them both in current
settings and at an age similar to the target age of the girls using the page. The Ask a Scientist
link idea would also be expanded to include links to Ask a Student, Ask a Woman Student, Ask a
Woman Scientist, Ask a Native American Student, and so forth. Parents also play a crucial role in
how girls perceive future careers, so the Web page would also have a link for parents to follow for
information and personal contact.

Of course, the page would have links to other relevant sites, as well. For example, MSU has a
special page for Native American students that would be very beneficial for Native American pr e-
college students accessing our page. On the national level, there is an official ACM effort already
underway to reach out to girls that provides valuable resources. It 's The Ada 9 Project (TAP) and
can be found at

http://www.cs.yale.edu/HTML/YALE/CS/HyPlans/tap/purpose.html

And really, the Web is jus t the beginning. At MSU, and many other institutions, it is now possible
to deliver interactive two-way video presentations or courses, a medium we are sure to exploit in this
regard. In any case it sounds like a fun project. If you are interested in joining in a collaborative
effort, we'd be glad to hear from you.

Before we quit here, though, there is one nagging question that begs to be posed. Is all of this
worth the effort? If women entering the University make fl'ee will decisions about which fields to
study, who are we to t ry to artificially bolster the number of women pursuing careers in science?
Somehow, I guess we have the gut feeling that the reason for the low numbers of female students
entering science curricula is one of image. Projects, such as our Web page klea, that provide a
bet ter image of the discipline in an interactive and fun way, may provide young girls with more
motivation to enter science fields, still of their own free will. I guess we'll see what happens.

T e x t b o o k s

This time there are three textbooks that have been previewed. One is Algorithmic Number Theory
by Er i c B a c h and J e f f r e y Shal l i t . Then there are two compiler books (quite a number of compiler
books have been introduced in the past few years). One is Modern Compiler Implementation in
C by A n d r e w W . A p p e l and the other is Compilers ~ Compiler Generators by P. D. T e r r y .

9Having no reference to the programming language by that name, but to the woman after whom the programming
language was named.

43

These are books that just happened to cross my desk. Remember, if you are an author and would

like to have your new book of interest to the theory community previewed here, please contact me.

Logout

From Bozeman, where the heavy snows from a long winter still leave their traces amongst a

silent cacophony of riotously colored and fragrantly scented wild alpine flowers, the offspring of the

Rockies and a long, wet spr ing. . .

Rocky Ross

Computer Science Depar tment

Montana State University

Bozeman, MT 59717

E-maih

URL:

Phone:

ross@cs.montana.edu

h t tp : / /www.cs .montana .edu /~ross

(406) 994-4804

Algorithmic Number Theory
Volume 1--Efficient Algorithms

Eric Bach and Jeffrey Shallit

The MIT Press, 1996
ISBN: 0-262-02405-5

P r e f a c e (A b r i d g e d)

This is the first volume of a projected two-volume set on algorithmic number theory, the design and analysis of
algorithms for problems from the theory of numbers. This volume focuses primarily on those problems from
number theory that admit relatively efficient solutions. The second volume will largely focus on problems
for which efficient algorithm s are not known, and applications thereof.

Prerequisites

We hope that the material in this book will be useful for readers at many levels, from the beginning
graduate student to experts in the area. The early chapters assume that the reader is familiar with the
topics in an undergraduate algebra course: groups, rings, and fields. Later chapters assume some familiarity
with Galois theory. A good text is Herstein.

We assume the reader is familiar with the analysis of algorithms, as treated, for example, in Aho,
t-Iopcroft, and Ullman, or Cormen, Leiserson and Rivest and with the language of complexity theory, as
treated, for example, in Garey and Johnson. However, we have tried to make our discussion of complexity
theory relatively self-contained.

Finally, we assume the reader has had the equivalent of an undergraduate course in probability theory.
A good text in this area is Feller. For some sections a knowledge of more advanced mathematics will be
useful.

Goals of This Book

As stated above, this book discusses the current state of the art in algorithmic number theory. This book
is not an elementary number theory textbook, and so we frequently do not give detailed proofs of results
whose central focus is not computational. Choosing otherwise would have made this book twice as long.

44

However, we firmly believe that a mere list of proved theorems is not particularly enlightening or useful.
Therefore, we endeavor to prove as much as is feasible. Some proofs are left to the reader as exercises, with
outlines suggested in Appendix A. And every theorem which is not proved in the text or left as an exercise
has a reference in the "Notes" section that appears at the end of each chapter.

This book is also not intended solely as a practical guide for those who wish to implement number-
theoretic algorithms. The variety of architectures of modern machines, and the profusion of languages
and operating systems, frequently make specific remarks on running times useless. On the other hand,
computational theory without the influence of practice seems artificial. Thus the "Notes" section of each
chapter contains remarks on practical implementations of the algorithms discussed.

We might mention several other books that cover approximately the same material. The first was Knuth
[1969]; a second edition appeared as Knuth [1981]. More recently, there have appeared texts such as Riesel
[1985]; Kranakis [1986]; Koblitz [1987]; Bressoud [1989]; H. Cohen [1993]; and Zippel [1993]. We hope that
our book will be useful in addition to these, because of its somewhat different emphasis.

We restrict our attention in this book to those concepts and algorithms that relate to what we see as
algorithmic number theory. Thus, we do not discuss some very interesting topics that seem more algebraic
than number-theoretic; algorithms on finite groups, GrSbner bases, etc. We also restrict our attention to
problems from elementary number theory: e.g., primality testing, factorization, discrete logarithm, etc.
Thus there is virtually no overlap between the present work and the books of Zimmer [1972] and Pohst and
Zassenhaous [1089].

In writing this book, we have found many opportunities to extend or refine known results. This is
particularly true with regard to algorithms, many of whose running times were not completely worked out
in the literature. As an alternative to listing all such improvements (which is clearly impractical), we give
references to earlier results, such as are known to us, in the appropriate places.

T a b l e o f C o n t e n t s

1 I n t r o d u c t i o n 1

1.:1 Number Theory and Complexity 1 / 1.2 Number Theory and Computation: A Brief History
4 / 1.3 Condensed History of the Theory of Computation 11 / 1.4 Notes on Chapter I 13

2 F u n d a m e n t a l s of N u m b e r T h e o r y 19

2.1 Notation, Definitions and Some Computational Problems 19 / 2.2 More Definitions 22 /
2.3 Multiplicative hmct ions and MSbius Inversion 23 / 2.4 Notation: Big-O, Little-o, Big-
Omega, Big-Theta 25 / 2.5 Abel's Identity and Euler's Summation Formula 25 / 2.6 Asymptotic
Integration 27 / 2.7 Estimating Sums over Primes 28 / 2.8 Basic Concepts of Abstract Algebra
29 / 2.9 Exercises 34 / 2.10 Notes on Chapter 2 37

3 A S u r v e y of C o m p l e x i t y T h e o r y 41

3.1 Notation 41 / 3.2 The Notion of "Step" 41 / 3.3 The Language Classes 44 / 3.4 Reductions
and AlP-Completeness 477 / 3.5 Randomized Complexity Classes 50 / 3.6 A Formal Computa-
tional Model 52 / 3.7 Other Resources 55 / 3.8 Parallel Complexity Classes 577 / 3.9 Exercises
59 / 3.10 Notes on Chapter 3 63

4 T h e G r e a t e s t C o m m o n Div i so r 67

4.1 The Euclidean Algorithm 67 / 4.2 The Euclidean Algorithm: Worst-Case Analysis 68 / 4.3
The Extended Euclidean Algorithm 70 / 4.4 The Euclidean Algorithm and Continuants 73 / 4.5
Continued Fractions 75 / 4.6 The Least-Remainder Euclidean Algorithm 79 / 4.7 The Binary
gcd Algorithm 82 / 4.8 Constructing a gcd-Free Basis 84 / 4.9 Exercises 96 / 4.10 Notes on
Chapter 4

45

5 Compu t ing in Z / (n) 101

5.1 Basics i01 / 5.2 Addition, Subtraction, Multiplication 101 / 5.3 Multiplicative Inverse
102 / 5.4 The Power Algorithm 102 / 5.5 The Chinese Remainder Theorem 104 / 5.6 The
Multiplicative Structure of (Z/(n))* 1{)8 / 5.7 Quadratic Residues 109 / 5.8 The Legendre
Symbol 110 / 5.9 The Jacobi Symbol 111 / 5.10 Exercises 114 / 5.11 Notes on Chapter 5 120

6 F i n i t e F i e l d s 125

6.1 Basics 125 / 6.2 The Euclidean Algorithm 127 / 6.3 Continued Fractions 130 / 6.4 Computing
in k[X]/(f) 132 / 6.5 Galois Theory 133 / 6.6 The Structure of k[X]/(f) 136 / 6.7 Characters
141 / 6.8 Exercises 143 / 6.9 Notes on Chapter 6 148

? Solving Equat ions over Fini te F i e l d s 155

7.1 Square Roots: Group-Theoretic Methods 155 / 7.2 Square Roots: Field-Theoretic Methods
157 / 7.3 Computing d-th Roots 160 / 7.4 Polynomial Factoring Algorithms 163 / 7.5 Other
Results on Polynomial Factoring 168 / 7.6 Synthesis of Finite Fields 171 / 7.7 Hensel's Lamina
173 / 7.8 complexity-Theoretic Results 177 / 7.9 Exercises 188 / 7.10 Notes on Chapter 7 194

8 P r ime Number s : Facts and Heur is t ics 203

8.1 Some History 204 / 8.2 The Density of Primes 206 / 8.3 Sharp Estimates and the Riemann
Hypothesis 211 / 8.4 Primes in Arithmetic Progressions and the ERH 215 / 8.5 Applications of
the ERH 217 / 8.6 Other Conjectures about Primes 224 / 8.7 Extensions to Algebraic Numbers
227 / 8.8 Some Useful Explicit Estimates 233 / 8.9 Exercises 236 / 8.10 Notes on Chapter 8 245

9 P r i m e Numbers : Basic Algor i thms 265

9.1 Primality Proofs and Fermat's Theorem 266 / 9.2 Primality Tests for Numbers of Special
Forms 272 / 9.3 Pseudoprimes and Carmichael Numbers 275 / 9.4 Probabilistic Primality Tests
278 / 9.5 ERH-Based Methods 283 / 9.6 Primality Testing Using Algebraic Number Theory
285 / 9.7 Generation of "Random" Primes 293 / 9.8 Prime Number Sieves 295 / 9.9 Computing
7r(x) and p~ 299 / 9.10 Exercises 303 / 9.11 Notes on Chapter 9 308

Modern Compiler Implementation in C Andrew W. Appel
Princeton University

Cambridge University Press, 1997
ISBN: 0-521-58653-4

P r e f a c e (A b r i d g e d)

Over the past decade, there have been several shifts in the way compilers are built. New kinds of programming
languages are being used: object-oriented languages with dynamic methods, functional languages with nested
scope and first-class function closures; and many of these languages require garbage collection, New machines

46

have large register sets and a high penalty for memory access, and can often run nmch taster with compiler
assistance in scheduling instructions and managing instructions and data for cache locality.

This book is intended as a textbook for a one-semester or two-quarter course in compilers. Students will
see the theory behind different components of a compiler, the programming techniques used to put the theory
into practice, and the interfaces used to modularize the compiler. To make the interface and programming
examples clear and concrete, I have written them in the C programming language. Other editions of this
book are available that use the Java and ML languages.

The "student project compiler" that I have outlined is reasonably simple, but is organized to demonstrate
some important techniques that are now in common use: Abstract syntax trees to avoid tangling syntax and
semantics, separation of instruction selection from register allocation, sophisticated copy propagation to allow
greater flexibility to earlier phases of the compiler, and careful containment of target-machine dependencies
to one module.

This book, Modern Compiler Implementation in C: Basic Techniques, is tile preliminary edition of a more
complete book to be published in 1998, entitled Modern Compiler Implementation ira C. Tha t book will have
a more comprehensive set of exercises in each chapter, a "further reading" discussion at the end of every
chapter, and another dozen chapters on advanced material not in this edition, such as parser error recovery,
code-generator generators, byte-code interpreters, static single-assignment form, instruction scheduling and
software pipelining, parallelization techniques, and cache-locality optimizations such as prefetching, blocking,
instruction-cache layout, and branch prediction.

E x e r c i s e s . Each of the chapters in Part I has a programming exercise corresponding to one module of a
compiler. Unlike many "student project compilers" found in textbooks, this one has a simple but sophisti-
cated back end, allowing good register allocation to be done after instruction selection. Software useful for
the programming exercises can be found at

http://www.cs.princeton.edu/~appel/modern/

There are also pencil and paper exercises in each chapter; those marked with a star * are a bit more
challenging, two-star problems are difficult but solvable, and the occasional three-star exercises are not
known to have a solution.

T a b l e o f C o n t e n t s

P r e f a c e

P a r t I
1. I n t r o d u c t i o n 3
2. Lex ica l A n a l y s i s 16
3. P a r s i n g 39
4. A b s t r a c t S y n t a x 80
5. S e m a n t i c A n a l y s i s 94
6. A c t i v a t i o n R e c o r d s 116
T. T r a n s l a t i o n to I n t e r m e d i a t e C o d e
8. Bas i c B locks a n d T r e e s 166
9. I n s t r u c t i o n S e l e c t i o n 180
10. L i v e n e s s A n a l y s i s 206
11. R e g i s t e r A l l o c a t i o n 222
12. P u t t i n g I t All T o g e t h e r 248

P a r t I I A d v a n c e d T o p i c s
13. G a r b a g e C o l l e c t i o n 257
14. O b j e c t - o r i e n t e d L a n g u a g e s 283
15. F u n c t i o n a l P r o g r a m m i n g L a n g u a g e s

ix
F u n d a m e n t a l s o f C o m p i l a t i o n

140

299

47

16. Dataflow Analysis 333
17. Loop Optimizations 359
Appendix: Tiger Language Reference Manual 381

C o m p i l e r s gz C o m p i l e r G e n e r a t o r s
An Introduction With C-t-+

P. D. Terry
Rhodes University

Thomson Computer Press, 1997
ISBN: 1-85032-298-8

P r e f a c e (A b r i d g e d)
This book has been written to support a practically oriented course in programming language translation

for senior undergraduates in Computer Science. More specifically, it is aimed at students who are probably
quite competent in the art of imperative programming (for example in C + + , Pascal, or Modula-2), but
whose mathemat ics may be a little weak; students who require only a solid introduction to the subject, so
as to provide them with insight into areas of language design and implementation, rather than a deluge
of theory which they will probably never use again; students who will enjoy fairly extensive case studies
of translators for the sorts of languages with which they are most familiar; students who need to be made
aware of compiler writing tools, and to come to appreciate and know how to use them. It will hopefully also
appeal to a certain class of hobbyist who wishes to know more about how translators work.

The reader is expected to have a good knowledge of programming in an imperative language and,
preferably, a knowledge of data structures. The book is practically oriented, and the reader who cannot read
and write code will have diffculty following quite a lot of the discussion. However, it is difficult to imagine
that students taking courses in compiler construction will not have that sort of background!

There are several excellent books already extant in this field. What is intended to distinguish this one
from the others is that it a t tempts to mix theory and practice in a disciplined way, introducing the use of
at t r ibute grammars and compiler writing tools, at the same t ime giving a highly practical and pragmatic
development of translators of only moderate size, yet large enough to provide considerable challenge in the
many exercises that are suggested.

Support Software

Appendix A gives instructions for unpacking the software provided on the diskette and installing it on a
reader 's computer. In the same appendix will be found the addresses of various sites on the Internet where
this software (and other freely available compiler construction software) can be found in various formats.
The software provided on the diskette includes:

• Emulators for the two virtual machines described in Chapter 4 (one of these is a simple accumulator-
based machine, the other is a simple stack-based machine).

• The one- and two-pass assemblers for the accumulator-based machine, discussed in Chapter 6.

• A macro assembler for the accumulator-based machine, discussed :in Chapter 7.

• Three executable versions of the Coco/R compiler generator 1° used in the text and described in detail
in Chapter 12, along with the frame files that it needs. (The three versions produce Turbo Pascal,
Modula-2, or C / C + + compilers.)

l°A compiler generator based on L-attributed grammars.

48

• Complete source code for hand-crafted of each of the versions of the Clang compiler that is developed
in a layered way in Chapters 14 through 18. This highly modularized code comes with an 'on the
fly' code generator, and also with an alternative code generator that builds and then walks a tree
representation of the intermediate code.

• Coeol grammars and support modules for the numerous case studies throughout the book that use
Coco/R. These include grammars for each of the versions of the Clang compiler,

o A program for investigating the construction of minimal perfect hash functions (as discussed in Chapter
14).

® A simple demonstration of an LR parser (as discussed in Chapter 10).

T a b l e o f C o n t e n t s

1. I n t r o d u c t i o n 1
2. T r a n s l a t o r c lass i f ica t ion and s t r u c t u r e 9
3. C o m p i l e r c o n s t r u c t i o n and b o o t s t r a p p i n g 27
4. M a c h i n e e m u l a t i o n 35
5. L a n g u a g e spec i f i ca t ion '71
6. S imple a s semble r s 101
7. A d v a n c e d a s s e m b l e r f ea tu res 125
8. G r a m m a r s a n d the i r c lass i f ica t ion 147
9. D e t e r m i n i s t i c t o p - d o w n pa r s ing 169
10. P a r s e r a n d s c a n n e r c o n s t r u c t i o n 187
11. S y n t a x - d i r e c t e d t r a n s l a t i o n 215
12. Us ing C o c o / R - - o v e r v i e w 233
13. Us ing C o c o / R - - case s tud ies 25'7
14. A s imple c o m p i l e r - - t he f ront end 285
15. A s imple c o m p i l e r - - t he back end 319
16. S imple b lock s t r u c t u r e 355
1~7. P a r a m e t e r s and func t ions 381
18. C o n c u r r e n t P r o g r a m m i n g 413
A p p e n d i x A: Sof tware r e sources for th is b o o k 439
A p p e n d i x B: Sou rce code for the C lang c o m p i l e r / i n t e r p r e t e r
A p p e n d i x C: Coco l g r a m m a r for the C lang c o m p i l e r / i n t e r p r e t e r
A p p e n d i x D: Sou rce code for a m a c r o a s semble r 525
B i b l i o g r a p h y 567
I n d e x 5'73

445
499

49

