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ABSTRACT
Massive Online Open Courses have the potential to revolu-
tionize higher education with their wide outreach and acces-
sibility, but they require instructors to come up with scalable
alternates to traditional student evaluation. Peer grading –
having students assess each other – is a promising approach
to tackling the problem of evaluation at scale, since the num-
ber of ”graders”naturally scales with the number of students.
However, students are not trained in grading, which means
that one cannot expect the same level of grading skills as in
traditional settings. Drawing on broad evidence that ordinal
feedback is easier to provide and more reliable than cardinal
feedback [5, 38, 29, 9], it is therefore desirable to allow peer
graders to make ordinal statements (e.g. ”project X is bet-
ter than project Y”) and not require them to make cardinal
statements (e.g. ”project X is a B-”). Thus, in this paper we
study the problem of automatically inferring student grades
from ordinal peer feedback, as opposed to existing methods
that require cardinal peer feedback. We formulate the ordi-
nal peer grading problem as a type of rank aggregation prob-
lem, and explore several probabilistic models under which to
estimate student grades and grader reliability. We study the
applicability of these methods using peer grading data col-
lected from a real class — with instructor and TA grades as a
baseline — and demonstrate the efficacy of ordinal feedback
techniques in comparison to existing cardinal peer grading
methods. Finally, we compare these peer-grading techniques
to traditional evaluation techniques.
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1. INTRODUCTION
The advent of MOOCs (Massive Online Open Courses)

promises unprecedented access to education given their rela-
tively low costs and broad reach, empowering learning across
a diverse range of subjects for anyone with access to the In-
ternet. Classes frequently have upwards of 20000 students,
which is orders of magnitude larger than a conventional uni-
versity class. Thus, instructors are forced to rethink class-
room logistics and practices so as to scale to MOOCs.

One of the key open challenges is student evaluation for
such large classes. Traditional assessment practices, such
as instructors or teaching assistants (TAs) grading individ-
ual student assignments, are simply infeasible at this scale.
Consequently, assignments in most current MOOCs take the
form of simple multiple-choice questions and other schemes
that can be graded automatically. However, relying on such
rigid testing schemes does not necessarily serve as a good in-
dicator of learning and falls short of conventional test-design
standards [16, 17]. Furthermore, such a restrictive test-
ing methodology limits the learning outcomes that can be
tested, or even limits the kinds of courses that can be offered.
For example, liberal-arts courses and research-oriented classes
require more open-ended assignments and responses (e.g.,
essays, project proposals, project reports).

Peer grading has the potential to overcome the limitations
outlined above while scaling to the size of even the largest
MOOCs. In peer grading, students — not instructors or
TAs — provide feedback on the work of other students in
their class [14, 22], meaning that the number of “graders”
naturally grows with the number of students. While the
scaling properties of peer grading are attractive, there are
several challenges in making peer grading work.

One key challenge lies in the fact that students are not
trained graders, which argues for making the feedback pro-
cess as simple as possible. Given broad evidence that for
many tasks ordinal feedback is easier to provide and more
reliable than cardinal feedback [5, 38, 29, 9], it is there-
fore desirable to base peer grading on ordinal feedback (e.g.
”project X is better than project Y”). Unfortunately, all ex-
isting methods for aggregating peer feedback into an overall
assessment require that students provide cardinal feedback
(e.g. ”project X is a B-”). Furthermore, the efficacy of simple
techniques for aggregating cardinal feedback, such as aver-
aging, has been questioned [7, 10, 30]. While probabilistic
machine learning methods have recently been proposed to
address these challenges [32], they still face the problem that
students may be grading on different scales. For example,
students may have a preconception of what constitutes a B+



based on the university they come from. These scales may
also be non-linear as the difference between an A+ and an
A may not be the same as the difference between a C+ and
a C.

To overcome the problems of cardinal feedback, we in-
troduce the task of ordinal peer grading in this paper. By
having students give ordinal statements and not cardinal
statements as feedback, we offload the problem of develop-
ing a scale from the student onto the peer grading algorithm.
The key technical contributions of this paper lie in the de-
velopment of methods for ordinal peer grading, where the
goal is to automatically infer an overall assessment of a set
of assignments from ordinal peer feedback. Furthermore, a
secondary goal of our methods is to infer how accurately
each student provides feedback, so that reliable grading can
be incentivized (e.g., as a component of the overall grade).
To this effect, we propose several machine learning methods
for ordinal peer grading, which differ by how probability dis-
tributions over rankings are modeled. For these models, we
provide efficient algorithms for estimating assignment grades
and grader reliabilities.

To study the applicability of our methods in real-world
settings, we collected peer-assessment data as part of a university-
level course. Using this data, we demonstrate the efficacy
of the proposed ordinal feedback techniques in comparison
to the existing cardinal feedback techniques. Furthermore,
we compare our ordinal peer grading methods with tradi-
tional evaluation techniques that were used in the course in
parallel. Using this classroom data we also investigate other
properties of these techniques, such as their robustness, data
dependence and self-consistency. Finally, we analyze the re-
sponses to a survey completed by students in the classroom
experiment, indicating that most students found the peer
grading experience (receiving and providing feedback) help-
ful and valuable.

2. THE PEER GRADING PROBLEM
We begin by formally defining the peer grading problem,

as it presents itself from a machine learning perspective.
We are given a set of |D| assignments D = {d1, ..., d|D|}
(e.g., essays, reports) which need to be graded. Grading is
done by a set of |G| graders G = {g1, ..., g|G|} (e.g., student
peer grader, reviewers), where each grader receives a subset
Dg ⊂ D to assess. The choice of assignments for each grader
can be uniformly random, or can follow a deterministic or
sequential design. In either case, the number of assignments
that any grader assesses |Dg| is much smaller than the total
number of assignments |D| (e.g., |Dg| ≈ 10).

Each grader provides feedback for his or her set of assign-
ments Dg. Ordinal and cardinal peer grading differ in the
type of feedback a grader is expected to give:

Cardinal Peer Grading (CPG): In cardinal peer grad-
ing, each grader g provides cardinal-valued feedback for
each item d ∈ Dg. Typically, this is a numeric or cat-

egorical response which we denote as y
(g)
d (e.g., Likert

scale, letter grade).

Ordinal Peer Grading (OPG): In ordinal peer grading,

each grader g returns an ordering σ(g) (possibly with
ties) of his or her assignments Dg, indicating relative but
not absolute quality. More generally, ordinal feedback
could also consist of multiple pairwise preferences, but
we focus on the case of a single ordering in this paper.

Dg(⊂ D) Set of items graded by grader g
sd(∈ <) Predicted grade for item d (larger is better)
ηg(∈ <+) Predicted reliability of grader g

σg Ranking feedback (with possible ties) from g

r
(σ)
d Rank of item d in ranking σ (rank 1 is best)
ρg Set of pairwise preference feedback from g

d2�σ d1 d2 is preferred/ranked higher than d1 (in σ)
π(A) Set of all rankings over A ⊆ D
σ1 ∼ σ2 ∃ way of resolving ties in σ2 to obtain σ1

Table 1: Notation overview and reference.

Independent of the type of feedback that graders provide,
the goal in peer grading is twofold.

We call the first goal grade estimation, which is the task
of estimating the true quality of the assignments in D from
the grader feedback. We distinguish between two types of
grade estimation, which differ by how they express assign-
ment quality. In ordinal grade estimation, the goal is to
infer a ranking σ̂ of all assignments in D that most accu-
rately reflects some true ordering (by quality) σ∗. In cardi-
nal grade estimation, the goal is to infer a cardinal grade ŝd
for each d ∈ D that most accurately reflects each true grade
s∗d. Note that the type of feedback does not necessarily de-
termine whether the output of grade estimation is ordinal or
cardinal. In particular, we will see that some of our methods
can infer cardinal grades even if only given ordinal feedback.

The second goal is grader reliability estimation, which is
the task of estimating how accurate the feedback of a grader
is. Estimating grader reliability is important for at least
two reasons. First, identifying unreliable grades allows us
to downweight their feedback for grade estimation. Second,
and more importantly, it allows us to incentivize good and
thorough grading by making peer grading itself part of the
overall grade. In the following, we will typically represent
the reliability of a grader as a single number ηg ∈ <+.

In the following sections, we derive and evaluate methods
for grade estimation and grader reliability estimation in the
Ordinal Peer Grading setting.

2.1 Related Work in Rank Aggregation
The grade estimation problem in Ordinal Peer Grading

can be viewed as a specific type of rank aggregation problem.
Rank aggregation describes a class of problem related to
combining the information contained in rankings from mul-
tiple sources. Many popular methods used today [15, 25, 11]
build on classical models and techniques such as the semi-
nal work by Thurstone [39], Mallows [28], Bradley & Terry
[8], Luce [27] and Plackett [33]. These techniques have been
used in different domains, each of which have branched off
their own set of methods.

Search Result Aggregation (also known as Rank Fu-
sion or Metasearch) has the goal of merging search result
rankings from different sources to produce a single output
ranking. Such aggregation has been widely used to improve
over the performance of any single ranker in both supervised
and unsupervised settings [3, 34, 40, 31]. Rank aggregation
for search differs from Ordinal Peer Grading in several as-
pects. First, grader reliability estimation is not a goal in
itself. Second, the success of search result aggregation de-
pends mostly on correctly identifying the top items, while
grade estimation aims to accurately estimate the full rank-
ing. Third, ties and data sparsity are not an issue in search
result aggregation, since (at least in principle) input rank-
ings are total orders over all results.



Algorithm 1 Normal Cardinal-Score (NCS) Algorithm
(called PG1 in [32]) is used as a baseline in our experiments

sd ∼ N (µ0,
1
γ0

) . True Scores

ηg ∼ Gamma(α0, β0) . Grader Reliability
bg ∼ N (0, 1

γ1
) . Grader Bias (Only for NCS+G)

y
(g)
d ∼ N (sd + bg,

1
ηg

) . Observed Cardinal Peer Grade

Estimate ŝd, η̂g and b̂g . Using MLE

Social Choice and Voting Systems perform rank ag-
gregation on preferences that a set of individuals stated over
competing items/interests/candidates. The goal is to iden-
tify the most preferred alternatives given conflicting pref-
erences [2]. Commonly used aggregation techniques are the
Borda count and other Condorcet voting schemes [3, 13, 26].
These methods are ill-suited for the OPG problem, as they
do not model voter reliability, typically assume rankings of
all alternatives (or at least leave the choice of alternatives up
to the voter), and usually focus on the top of the rankings.

Crowdsourcing is probably the most closely related ap-
plication domain, where the goal is to merge the feedback
from multiple crowdworkers [19, 6]. Due to the differing
quality of these workers, modeling the worker reliability is
essential [35, 11]. The key difference in our setting is that
the number of items is large and we would like to correctly
order all of them, not just identify the top-few.

Rank-aggregation has also been used for other settings
such as multilabel/multiclass classification (by combining
different classifiers) [23] or for learning player skills in a gam-
ing environment [18]. Is is impossible to survey the vast liter-
ature on this topic and thus we refer the interested reader to
a comprehensive survey on the topic [24]. These techniques
have also been adapted for educational assessment [4], via
a graphical model based approach, for modeling the diffi-
culty of questions and estimating the correct answers in a
crowdsourced setting. However these techniques are neither
applicable for a peer grading setting nor can they handle
open-ended answers (like essays).

2.2 Related Work in Peer Grading
With the advent of online courses, peer grading has been

increasingly used for large classes with mixed results [7, 10,
30]. While most previous uses of peer grading have re-
lied on simple estimation techniques like averaging cardi-
nal feedback scores, recently a probabilistic learning algo-
rithms has been proposed for peer grade estimation [32].
However, this method requires that students provide car-
dinal scores as grades. A second limitation of the method
in [32] is that they incentivize grader reliability by relating
it to the grader’s own assignment score. However, such a
setup is inappropriate when there are groups (such as our
setting) or where external graders/reviewers are used (e.g.,
conference reviewing). In addition, such an indirect incen-
tive is harder to communicate and justify compared to the
direct grader reliability estimates used in our case. Lastly
their approach requires that each student grades some as-
signments that were previously graded by the instructor in
order to estimate grader reliability. This seems wasteful,
given that students are only able to grade a small number of
assignments in total. We empirically compare their cardinal
peer grading technique (Algorithm 1, using MLE instead of
Gibbs sampling) with the ordinal peer grading techniques
proposed in this paper.

Overall, given the limited amount of attention that the
peer grading problem has received in the machine learning
literature so far, we believe there is ample opportunity to
improve on the state-of-the-art and address shortcomings
that currently exist [36], which is reinforced by concurrent
work on the topic by others [12, 37].

3. ORDINAL PEER GRADING METHODS
In this section, we develop ordinal peer grading methods

for grade estimation and then extend these methods to the
problem of grader reliability estimation. Our methods are
publicly available as software at www.peergrading.org,
where we also provide a web service for peer grade es-
timation. These methods require as data an i.i.d. sample
of orderings

S = (σ(g1), ..., σ(g|G|)), (1)

where each ordering sorts a subset of assignments according
to the judgment of grader gi.

3.1 Grade Estimation
Our grade estimation methods are based on models that

represent probability distributions over rankings. In partic-
ular, we extend Mallow’s Model (Sec 3.1.1), the Bradley-
Terry model (Sec 3.1.3), Thurstone’s model (Sec 3.1.4), and
the Plackett-Luce model (Sec 3.1.5) as appropriate for the
ordinal peer grading problem.

3.1.1 Mallows Model (MAL and MALBC)
Mallow’s model [28] describes a distribution over rankings

σ in terms of the distance δ(σ̄, σ) from a central ranking σ̄,
which in our setting is the true ranking σ∗ of assignments
by quality.

P (σ|σ̄) =
e−δ(σ̄,σ)∑
σ′ e
−δ(σ̄,σ′) (2)

While maximum likelihood estimation of σ∗ given observed
rankings is NP-hard for many distance functions [13, 34],
tractable approximations are known for special cases. In this
work, we use the following tractable Kendall-τ distance
[20], which assumes that both rankings are total orderings
over all assignments.

Definition 1. We define the Kendall-τ Distance δK be-
tween ranking σ1 and ranking σ2 as

δK(σ1, σ2) =
∑

d1�σ1d2

I[[d2 �σ2 d1]] (3)

It measures the number of incorrectly ordered pairs between
the two rankings. In our case, the rankings that students
provide can have ties. We interpret these ties as indifference
(i.e., agnostic to either ranking), which leads to the following
model, where the summation in the numerator is over all
total orderings σ′ consistent with the weak ordering σ.

P (σ|σ̄) =

∑
σ′∼σ e

−δ(σ̄,σ′)∑
σ′ e
−δ(σ̄,σ′) (4)

Note also that the input ranking σ may only sort a subset
of assignments. In such cases, we appropriately restrict the
normalization constant in (4). For Kendall-τ distance, this
normalization constant can be computed efficiently, and it
only depends on the number of elements in the ranking.

ZM (k)=

k∏
i=1

(
1+e−1+· · ·+e−(i−1)

)
=

k∏
i=1

1− e−i

1− e−1



Algorithm 2 Computing MLE ranking for Mallows Model

1: C ← D . C contains unranked items
2: for i = 1 . . . |D| do
3: for d ∈ C do
4: xd ←

∑
g∈G ηg|d

′ ∈ C :d′ �σg d|−|d′ ∈ C : d �σg d′|
5: d∗ ← mind∈C xd . Select highest scoring item

6: r
(σ̂)
d∗ ← i . Rank as next item

7: C ← C/d∗ . Remove d∗ from candidate set
8: return σ̂

The numerator can likewise be computed efficiently. Note
that ties in the grader rankings σ(g) do not affect the normal-
ization constant under the interpretation of indifference.

Under this modified Mallow’s model, the maximum like-
lihood estimator of the central ranking σ̂ is

σ̂ = argmaxσ

{∏
g∈G

∑
σ′∼σ(g)e

−δK(σ,σ′)

ZM (|Dg|)

}
. (5)

Computing the maximum likelihood estimate σ̂ as an esti-
mate of the true ranking by quality σ∗ requires finding the
Kemeny-optimal aggregate, which is known to be NP-hard
[13]. However numerous approximations have been studied
in the rank aggregation literature [13, 21, 1]. In this work
we use a simple greedy algorithm as shown in Algorithm 2.

As an alternative algorithm for computing the estimated
ranking, we utilize a Borda count-like approximation for the
Mallows model (which we denote as MALBC), where Line 2
of Algorithm 2 is replaced with

xd ←
∑
g∈G

r
(σ(g))
d .

3.1.2 Score-Weighted Mallows (MALS)
Mallow’s model presented above has two shortcomings.

First, it does not output a meaningful cardinal grade for the
assignments, which makes it applicable only to ordinal grade
estimation. Second, the distance δK does not distinguish
between misordering assignments that are similar in quality
from those that have a large quality difference.

To address these two shortcomings, we propose an exten-
sion which estimates cardinal grades ŝd for all assignments.
To this effect, we introduce the following score-weighted
ranking distance, which scales the distance induced by each
misranked pairs by its estimated grade difference.

Definition 2. The score-weighted Kendall-τ distance
δSK over rankings σ1, σ2 given cardinal scores sd is

δSK(σ1, σ2|s)=
∑

d1�σ1d2

(sd1 − sd2)I[[d2 �σ2 d1]]. (6)

Treating ties in the grader rankings as described above re-
sults in a score-weighted version of the Mallows model (MALS).
We use the following maximum a posteriori estimator to es-
timate the scores ŝ.

ŝ = argmaxs

Pr(s)
∏
g∈G

∑
σ′∼σ(g) exp (−δSK(σ̂, σ′|s))∑

σ′∈π(Dg)

exp (−δSK(σ̂, σ′|s))

 (7)

Note that σ̂ can be obtained by sorting items as per ŝd.
Pr(̂s) =

∏
d∈D Pr(ŝd) is the prior on the latent item scores.

In our experiments we model Pr(ŝd)∼N (0, 9), and use the

same prior in all of our methods. While the resulting ob-
jective is not necessarily convex, we use Stochastic Gradient
Descent (SGD) for grade estimation and initialize the grades
using a scaled-down Mallows solution.

3.1.3 Bradley-Terry Model (BT)
The above models define distributions over rankings as a

function of a ranking distance, and they require approximate
methods for solving the maximum likelihood problem. As
an alternative, we can utilize rank aggregation models based
on distributions over pairwise preferences, since a ranking of
n items can also be viewed as a set of preferences over the(
n
2

)
item pairs. The Bradley-Terry model [8] is one model

for pairwise preferences, and it derives a distribution based
on the differences of underlying item scores sd through a
logistic link function.

P (di �ρ(g) dj |s) =
1

1 + e
−(sdi

−sdj )
(8)

Since each preference decision is modeled individually, the
feedback from the grader could be a (possibly inconsistent)
set of preferences that does not necessarily have to form a
consistent ordering. The following is the maximum a poste-
riori estimator used in this paper.

ŝ = argmaxs

Pr(s)
∏
g∈G

∏
di�ρ(g)dj

1

1 + e
−(sdi

−sdj )

 (9)

The resulting objective is (jointly) log-convex in all of the es-
timated grades ŝd, with the gradients taking a simple form.
Hence SGD can be used to estimate the global optimal
grades efficiently. We treat ties as the absence of a pref-
erence. One can also extend this model to incorporate ties
more explicitly, but we do not discuss this for brevity.

3.1.4 Thurstone Model (THUR)
An alternate to the logistic link function of the Bradley-

Terry model is to utilize a normal distribution for the pair-
wise preferences. Like the Bradley-Terry model, the re-
sulting Thurstone model [39] model can be understood as
a random utility model using the following process: For
each pair of items di, dj , the grader samples (latent) val-

ues x
(g)
di
∼ N (sdi ,

1
2
) and x

(g)
dj
∼ N (sdj ,

1
2
), and then orders

the pair based on the two values. The mean of the normal
distribution of di is the quality sdi . Maximum a posteri-
ori estimation of the scores s requires maximization of the
following function:

ŝ = argmaxs

Pr(s)
∏
g∈G

∏
di�ρ(g)dj

F(sdi − sdj )

 (10)

F is the CDF of the standard normal distribution. This
objective function is log-convex and we use SGD to optimize
it.

3.1.5 Plackett-Luce Model (PL)
A drawback of the pairwise preference models is that they

can be less expressive than models built on distributions
over rankings. An extension to the Bradley-Terry model
(the Plackett-Luce model [33]) allows us to use distributions
over rankings, while still retaining convexity and simplicity



Algorithm 3 Alternating SGD-based Minimization

Require: N ≥ 0 (Number of iterations), Likelihood L
1: Obj ← − logL
2: ŝ← SGDS(Obj, η=1) . Est. scores w/o reliabilities
3: for i = 1 . . . N do
4: η ← SGDG(Obj, ŝ) . Estimate reliabilities
5: ŝ← SGDS(Obj, η) . Est. scores with reliabilities
6: return ŝ, η

of gradient computation. This model can be best understood
as a multi-stage experiment where at each stage, an item di
is drawn (w/o replacement) with probability ∝ esdi . The

probability of observing ranking σ(g) under this process is:

P (σ(g)|s) =
∏

di∈Dg

esdi /
(
esdi +

∑
di�σ(g)dj

e
sdj

)
The resulting maximum a posteriori estimator is

ŝ = argmaxs

Pr(s)
∏
g∈G

∏
di∈Dg

esdi

esdi +
∑

di�σ(g)dj
e
sdj

 . (11)

3.2 Grader Reliability Estimation
While the methods discussed in Section 3.1 allow us to

estimate assignment grades from ordinal feedback, they still
do not give us means to directly estimate grader reliabilities
η̂g. However, there is a generic way of extending all methods
presented above to incorporate grader reliabilities. Using
Mallow’s model as an example, we can introduce η̂g as a
variability parameter as follows:

Pr(σ|σ̄, ηg) =

∑
σ′∼σ(g)

exp (−ηgδK(σ̄, σ′))

ZM (ηg, |Dg|)
(12)

The resulting estimator of both σ̂ and η̂ is

σ̂, η̂=argmaxσ,η

{∏
g∈G

Pr(ηg)

∑
σ′∼σ(g) exp (−ηgδK(σ,σ′))

ZM (ηg, |Dg|)

}
, (13)

where Pr(η̂g) is the prior on the grader reliability. In this
work we use a Gamma prior η̂g ∼ Gamma(10, 0.1).

Similarly, the other objectives can also be extended in
this manner as seen in Table 2. While many of the ex-
tended objectives, such as the one above in Eq. (13), are
convex in the grader reliabilities η̂g (for given σ̂), they un-
fortunately are not jointly convex in the reliabilities and
the estimated grades. We thus use an iterative alternating-
minimization technique, which alternates between minimiz-
ing the log-objective to estimate the assignment grades and
minimizing the log-objective to estimate the grader relia-
bilities. This iterative alternating approach using stochas-
tic gradient descent is used for all joint estimation tasks in
this paper. Note that methods which estimate the reliabil-
ities using Algorithm 3 are denoted by a +G suffix to the
method, while those that simply estimate the assignment
grades are represented by the method name alone.

4. EXPERIMENTS
In the following we present experiments that compare or-

dinal and cardinal peer grading methods. We evaluate their
ability to predict instructor grades, their variability, their

Method Score Cnvx Estimator
MAL+G No No Pr(η)

∏
g∈G

∑
σ′∼σ(g)

exp(−η̂gδK (̂σ,σ′))/ZM (̂ηg,|Dg|)

MALS+G Yes No Pr(̂s,η)
∏
g∈G

∑
σ′∼σ(g)

exp(−η̂gδSK(σ(g), σ̂, F ))/Z(·)

BT+G Yes Yes Pr(̂s,η)
∏
g∈G

∏
di�ρ(g)

dj
1/(1+e

−η̂g(sdi−sdj ))

THUR+G Yes Yes Pr(̂s,η)
∏
g∈G

∏
di�ρ(g)

dj
F(

√
η̂g(sdi−sdj ))

PL+G Yes Yes Pr(̂s,η)
∏
g∈G

∏
di∈Dg

1/(1+
∑

di�ρ(g)
dj

e
−η̂g(sdi−sdj ))

Table 2: Summary of the ordinal methods studied
which model the grader’s reliabilities, including the
ability to output cardinal scores and if the resulting
objective is convex in these scores.

robustness to bad peer grading, and their ability to identify
bad graders. We also present the results from a qualitative
student survey to evaluate how students perceived the peer
grading process.

4.1 Data Collection in Classroom Experiment
We use a real dataset consisting of peer feedback, TA

grades, and instructor grades for evaluating the peer grading
methods proposed in this paper. This data was collected as
part of a senior-undergraduate and masters-level class with
an enrollment of about 170 students. The class was staffed
with 9 Teaching Assistants (TAs) that participated in grad-
ing, and a single Instructor. This size of class is attractive,
since it is large enough for collecting a substantial number
of peer grades, while at the same time allowing traditional
instructor and TA grading to serve as a baseline. The avail-
ability of instructor grades makes our data different from
other peer-grading evaluations used in the past (e.g., [32]).
We are happy to provide the data to other researchers sub-
ject to IRB approval.

The dataset consists of two parts that were graded in-
dependently, namely the poster presentation and the final
report of an 8-week long course project. Students worked
in groups of 3-4 students for the duration of the project,
and there were a total of 44 project groups. While student
worked in groups, peer grading was performed individually
via the Microsoft Conference Management Toolkit (CMT)
system. The peer grading process was performed single-
blind for the posters and double-blind for the reports, and
the reviewer assignments were made uniformly at random.
Students were given clear directives and asked to focus on
aspects such as novelty and clarity (among others) while de-
termining their grade. They were also asked to justify their
grade by providing feedback comments. Students were told
that a part of their grade depends on the quality of their
peer feedback.

All grading was done on a 10-point (cardinal) Likert scale,
where 10 was labeled “perfect”, 8 “good”, 5 “borderline”, 3
“deficient” and 1 “unsatisfactory”. This will allow us to com-
pare cardinal and ordinal peer grading methods, where or-
dinal methods merely use the ordering (possibly with ties)
implied by the cardinal scores. Note that in a true applica-
tion of ordinal peer grading accuracy could improve, since it
would allow simplifying the grading instructions and reduce
cognitive overhead if students did not have to worry about
the precise meaning of specific cardinal grades.

The following describes the grading processes used at each
stage, and Table 3 summarizes some of the key statistics.



Data Statistic PO FR
Number of Assignments 42 44

Number of Peer Reviewers 148 153
Total Peer Reviews 996 586
Total TA Reviews 78 88
Participating TAs 7 9

Per-Item Peer Grade Devn. 1.16 1.03

Set Who? Mean Devn.

PO
Peers 8.16 1.31
TAs 7.46 1.41
Meta 7.55 1.53

FR
Peers 8.20 1.35
TAs 7.59 1.30

Instructor 7.43 1.16

Table 3: Statistics for the two datasets (PO=Poster,
FR=Report) from the classroom experiment along
with the staff (TAs/Meta/Instructor) and student
grade distributions.

4.1.1 Grading Process for Poster Presentations
The poster presentations took place in a two-hour poster

session. Two groups did not present their poster. Students
were encouraged to rotate presenting their poster. This
likely increased variability of grades, since different review-
ers often saw different presenters. Students and TAs took
notes and entered their reviews via CMT afterwards.

The TA Grades were independent, meaning that the TAs
did not see the peer reviews before entering their review.
There were on average 1.85 TA reviews for each poster.

The Peer Grades totaled on average 23.71 reviews for each
poster, with each peer reviewer reviewing 6.73 posters on
average.

The final Meta Grade for each poster was determined as
follows. One of the TAs that already provided an indepen-
dent review was selected as a meta-reviewer. This TA was
asked to aggregate all the arguments brought forward in the
reviews and make a final grade on the same 10-point scale.
The instructor oversaw this process, but intervened only on
very few grades.

4.1.2 Grading Process for Final Projects
At the end of the project, groups submitted a report of

about 10 pages in length. The reviewing process was similar
to that of the poster presentations, but with one important
difference — namely that all project reports were graded by
the TAs and the instructor without any knowledge of the
peer reviews, as detailed below.

On average each report received 13.32 Peer Grades as the
overall score on each of the peer reviews (students were also
asked for component scores like “clarity”, etc.).

Each report also received two TA Grades, which the TAs
submitted without knowledge of the peer reviews.

Finally, each report received an Instructor Grade, follow-
ing the traditional process of project grading in this class.
The instructor and head TA each graded half the projects
and determined the grade based on their own reading of
the paper, taking the TA reviews as input. These grades
were provided without viewing the peer reviews. We can
therefore view the instructor grades as an assessment that is
entirely independent of the peer grades (in contrast to the
Meta Grades for the posters, which have some dependency).

4.2 Evaluation Metrics
A commonly used measure for reporting student perfor-

mance (among many standardized tests) is the percentile
rank relative to all students in the class. Following this
practice, we use percentile rank as the grade itself (a letter
grade can easily be derived via curving), and report ranking
metrics as our main indicators of performance. In particu-
lar, we use the following variant of Kendall-τ that accounts
for ties.
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Figure 1: Comparing peer grading methods (w/o
grader reliability estimation) against Meta and In-
structor Grades in terms of EK (lower is better).

τKT (σ1, σ2)=
∑

d1�σ1d2

I[[d2 �σ2 d1]] +
1

2
I[[d1 ≈σ2 d2]] (14)

Note that this measure is not symmetric, assuming that the
first argument is a target ranking and the second argument
is a predicted ranking. It treats ties in the target ranking
as indifference. Ties in the predicted ranking are treating
as a lack of information, incurring a 1

2
error (i.e., equivalent

to breaking ties randomly). Such a correction is necessary
for evaluation purposes, since otherwise predicted rankings
with all ties (which convey no information) would incur no
error. Normalizing τKT (σ1, σ2) and accounting for the fact
that we may have more than one target ranking leads to the
following error measure.

Definition 3. Given a set of target rankings Sg, we de-
fine the Kendall-τ error EK of predicted ranking σI as:

EK(σI) =
100

|Sg|
∑
σt∈Sg

τKT (σt, σI)

maxσ∈π(D) τKT (σt, σ)
(15)

This error macro-averages the (normalized) τKT errors for
each target ranking. Due to the normalization, they lie be-
tween 0 (indicating perfect agreement) and 100% (indicating
reversal with target rankings). A random ranking has ex-
pected EK error of 50%.

4.3 How well does Ordinal vs. Cardinal Peer
Grading Predict Final Grade?

The first question we address is in how far peer grading
resembles the grades given by an instructor. Specifically, we
investigate whether ordinal peer grading methods achieve
similar performance as cardinal peer grading methods, even
though ordinal methods receive strictly less information.

For all methods considered in this paper, Figure 1 shows
the Kendall-τ error EK compared to the Meta Grades for
the Posters, and compared to the Instructor Grades for the
Reports. The errorbars show estimated standard deviation
using bootstrap-type resampling.

On the posters, none of the methods show significantly
worse performance than another method. In particular,
there is no evidence that the cardinal methods are perform-
ing better than the ordinal methods. A similar conclusion
also holds for the reports. However, here the ordinal meth-
ods based on Mallow’s model perform better than the car-
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Figure 2: Comparing peer grading methods (w/o
grader reliability estimation) against TA Grades in
terms of EK , using TA grades as the target ranking.

dinal NCS1 method [32] (see Algorithm 1), as well as some
of the other ordinal methods. Simply averaging the cardinal
scores of the peer graders, which we call Score Averaging
(SCAVG), performs surprisingly well.

In summary, most methods achieve an EK between 20%
and 30% on both problems, but all have large standard de-
viations. The EK appears lower for the posters than for the
projects, which can be explained by the fact that the Meta
Grade was influenced by the peer grades. But how good is
an EK between 20% and 30%?

4.4 How does Peer Grading Compare to TA
Grading?

We now consider how Peer Grading compares to having
each assignment graded by a TA. For medium sized classes,
TA grading may still be feasible. It is therefore interesting
to know if TA grading is clearly preferable to Peer Grading
when it is feasible. But more importantly, the inter-judge
agreement between multiple TAs can give us reference points
for the accuracy of Peer Grading.

As a first reference point, we estimate how well the TA
Grades reflect the Meta Grades for the posters and the In-
structor Grades for the reports. In particular, we consider a
grading process where each assignment is graded by a single
TA that assigns a cardinal grade. Each TA grades a fraction
of the assignments, and a final ranking of the assignments is
then computed by sorting all cardinal grades. We call this
grading process TA Grading.

We can estimate the EK of TA grading with the Meta
Grades and the Instructor Grades, since we have multiple
TA grades for most assignments. We randomly resample
a TA grade from the available grades for each assignment,
compute the ranking, and then estimate mean and standard
deviation of the EK over 5000 samples. This leads to a mean
EK of 22.0 ± 16.0 for the posters and 22.2 ± 6.8 for the
reports. Comparing these to the EK of the peer grading
methods in Figure 1, we see that they are comparable to the
performance of many peer grading methods — even though
the EK of TA grading is favorably biased. Note that Meta
Grades and the Instructor Grades were assigned based on the
same TA grades we are evaluating against.

1We tuned the hyperparameters of the NCS model to max-
imize performance. We also used a fixed grader reliability
parameter in the NCS model, since it provided better per-
formance than with reliability estimation (NCS+G).
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Figure 3: Self-consistency of peer-grading methods
(w/o grader reliability estimation) in terms of EK .

To avoid this bias and provide a fairer comparison with TA
grading, we also investigated how consistent peer grades are
with the TA grades, and how consistent TA grades are be-
tween different TAs. Figure 2 shows the EK of the peer grad-
ing methods when using TA Grades as the target ranking for
both the Posters and the Reports. Variances were again esti-
mated via bootstrap resampling. Note that TA Grades were
submitted without knowledge of the Peer Grades. Overall,
the peer grades have an EK with the TA Grades that is sim-
ilar to the EK with the respective Final grades considered
in the previous subsection. Again, there is no evidence that
the ordinal peer grading methods are less predictive of the
TA Grades than the cardinal peer grading methods.

To estimate EK between different TAs, we use the fol-
lowing resampling procedure. In a leave-one-out fashion,
we treat the grades of a randomly selected TA as the tar-
get ranking and compute the predicted ranking by sampling
from the other TAs grades as described above. Averaging
over 5000 repetitions reveals that the EK between the TAs
is 47.5± 21.0 for the posters and 34.0± 13.8 for the reports.

These numbers can be compared to the EK of peer grad-
ing methods in Figure 2. For the Reports, peer grades are
roughly as consistent with the TA grades as other TA grades
are. For the posters the peer grading methods are substan-
tially more predictive of TA grades than other TA grades.
The reason for this is at least twofold. First, the peer grad-
ing methods have access to much more data, which reduces
variability (especially since presentations were not always
given by the same student). Second, the peer grading meth-
ods have enough data to correct for different grading scales,
while offsets in grading scales can have disastrous conse-
quences in TA grading.

Finally, we also consider the self-consistency of the peer
grading methods. Analogous to the self-consistency of TA
grading, we ask how similar are the grades we get if we
repeat the grading procedure with a different sample of as-
sessments. We randomly partition peer reviewers into two
equally sized datasets. For each peer grading method, we
perform grade estimation on both datasets, which generates
two rankings of the assignments. Ties in these rankings are
broken randomly to get total orderings. Figure 3 shows the
EK between the two rankings (over 20 sampled partitions).
For the posters, peer grading is substantially more self con-
sistent than TA grading, and for the reports all peer grading
methods have lower EK estimates than TA grading as well.



15

20

25

30

35

40

25% 50% 75% 100%

SCAVG

NCS

MAL

MALBC

MALS

BT

THUR

PL15

20

25

30

35

40

25% 50% 75% 100%

15

20

25

30

35

40

2 3 4

15

20

25

30

35

40

2 3 4 5 6 7

Figure 4: Change in EK performance of peer grading methods (using Meta and Instructor Grades as target
ranking) when varying the number of assignments assigned to each reviewer for Posters (first from left) &
Reports (second), and when varying the number of peer reviewers for Posters (third) Reports (last).

Overall, we conclude that there is no evidence that TA
grading would have led to more accurate grading outcomes
than peer grading.

4.5 How does Grading Accuracy Scale with
the Number of Peer Reviews?

How many reviewers are necessary for accurate peer grad-
ing, and how many reviews does each peer grader need to do?
To gauge how performance changes with the number of peer
reviews, we performed two sets of experiments. First, we
created 20 smaller datasets by downsampling the number of
peer reviewers. The results are shown in the two rightmost
graphs of Figure 4. Overall, the methods degrade gracefully
when the number of reviewers is reduced. Overall, we find
that most ordinal methods scale as well as cardinal methods
for both datasets.

A second way of increasing or reducing the amount of
available data lies in the number of assignments that each
student grades. Thus we repeated the experiment, but in-
stead downsampled the number of assignments per reviewer
(corresponding to a lower workload for each grader). The
leftmost two plots of Figure 4 show the results. Again, we
find that performance degrades gracefully.

4.6 Can the Peer Grading Methods Identify
Unreliable Graders?

Peer grading can only work in practice, if graders are suf-
ficiently incentivised to report an accurate assessment. This
can be achieved by giving a grade also for the quality of the
grading. In the following, we investigate whether the grader
reliability estimators proposed in Section 3.2 can identify
graders that are not diligent.

For both the posters and the projects, we add 10 “lazy”
peer graders that report random grades drawn from a nor-
mal distribution whose mean and variance matches that of
the rest of the graders2. For the ordinal methods, this results
in a random ordering. We then apply the peer grading meth-
ods, estimating the respective reliability parameters ηg for
each grader using 10 iterations of the alternating optimiza-
tion algorithm. We then rank graders by their estimated
ηg.

Figure 5 (top) shows the percentage of lazy graders that
rank among the 20 graders with the lowest ηg. The error
bars show standard error over 50 repeated runs with different
lazy graders sampled. Most ordinal methods significantly

2Otherwise it would be easy to identify these graders.
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Figure 5: Percentage of times a grader who ran-
domly scores and orders assignments is among the
20 least reliable graders (i.e., bottom 12.5%).

outperform the cardinal NCS method for both the posters
and the reports. The variants of Mallow’s model perform
very well, identifying around 70-80% of the lazy graders for
the reports and all 10 lazy graders for the posters. The
better performance for the posters than for the reports was
to be expected, since students provide 7 instead of 4 grades.

Figure 5 (bottom) shows the results of a heuristic base-
line. Here, grade estimation without reliability estimation
is performed, and then graders are ranked by their EK with
the estimated ranking σ̂. For almost all methods, this per-
forms worse, clearly indicating that reliability estimation is
superior in identifying lazy graders. We find similar results
even when there are 100+ lazy graders, and we investigate
robustness in the following section.
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Method Posters Reports
Runtime Runtime (+G) Runtime Runtime (+G)

NCS 0.32 ±0.03 7.0 ±0.55 0.20 ±0.03 4.6 ±0.25
MAL 0.01 ±0.00 6.1 ±0.11 0.01 ±0.00 2.5 ±0.03

MALBC 0.01 ±0.00 5.1 ±0.08 0.01 ±0.00 2.5 ±0.03
MALS 151.4 ±12.39 418.7 ±9.10 2.0 ±0.13 4.2 ±0.16

BT 0.46 ±0.06 5.6 ±0.38 0.21 ±0.02 2.2 ±0.10
THUR 57.9 ±0.76 490.1 ±7.45 12.2 ±0.86 120.8 ±1.03

PL 0.36 ±0.03 4.2 ±0.08 0.18 ±0.01 2.0 ±0.10

Table 4: Average runtime (with and without grader
reliability estimation) and their standard deviation
of different methods in CPU seconds.

4.7 How Robust are the Peer Grading Meth-
ods to Lazy Graders?

While Section 4.6 showed that reliability estimation in or-
dinal peer grading is well-suited for identifying lazy graders,
we would also like to know what effect these lazy graders
have on grade estimation performance. We study the ro-
bustness of the peer grading methods by adding an increas-
ing number of lazy graders. Figure 6 shows the change in
EK (w.r.t. Instructor/Meta grades) after adding 10/50/100
lazy graders (compared to the EK with no lazy graders).
We find that in most cases performance does not change
much relative to the variability of the methods. Interest-
ingly, in some cases performance also improves on adding
this noise. A deeper inspection reveals that noise is most
beneficial for methods whose original EK performance was
weaker than that of the other methods. For example, the
Thurstone model showed the weakest performance on the
Reports and improves the most.

4.8 How Computationally Efficient are the Peer
Grading Methods?

While prediction accuracy is the prime concern of grade
inference, computational efficiency needs to be sufficient as
well. Table 4 show the average runtimes and their standard
deviations for the posters and the reports. All methods
are tractable and most finish within seconds. The Score-
Weighted Mallows model is less efficient for problems where
a each grader assesses many assignments, since the gradi-
ent computations involves computing the normalization con-
stant (which involves summing over all rankings). However,
training scales linearly with the number of graders. Another
method that requires more time is the Thurstone model.

Question A) Was getting peer
feedback helpful?

Question B) Was providing
peer feedback valuable?

A1 Yes, it was helpful. B1 Yes it was a valuable experience
A2 Helpful, but not as much as

instructor feedback.
B2 Yes, it was valuable, but with

caveats (e.g. took lot of time).
A3 Somewhat helpful (e.g. only

few comments were helpful).
B3 Only little value (e.g. was too dif-

ficult / lacked the grading skills)
A4 No / Not really / Did not

help much.
B4 Not valuable / Not really valu-

able.
A5 Other / Missing B5 Other / Missing

Table 5: Response categories for survey questions.

The main bottleneck here is the computation of the gradi-
ent as it involves a lookup of a CDF value from the normal
distribution table.

4.9 Do Students Value Peer Grading?
A final point that we would like to explore is that peer

grading is not only about grade estimation, but also about
generating useful feedback. In particular, the cardinal or
ordinal assessments were only a small part of the peer feed-
back. Peer graders had to write a justification for their as-
sessment and comment on the work more generally.

To assess this aspect of peer grading, a survey was con-
ducted at the end of class as part of the course feedback pro-
cess. This survey included two questions about the student’s
peer grading experience in the class; more specifically, about
how helpful the feedback they received was, and how valu-
able the experience of providing feedback was to them. Both
questions were to be answered in free-form text. Of the 161
students that participated in the project, 120 students re-
sponded to at least one of the questions, with 119 answering
the question about receiving feedback (mean response length
in characters: 62.93; stdev: 77.22) and 118 the question
about providing feedback (mean: 100.36; stdev: 105.74).
Following standard practice from survey analysis, we cre-
ated five categories for coding these open-ended responses
as show in Table 5. While the first four categories (roughly)
follow a decreasing scale of approval, the last serves as a
catch-all (including missing responses).

All free-text responses were manually assigned to these
categories by four external annotators (who were not in-
volved with the class and had not seen the comments before).
For all the 237 student comments (i.e., responses), the an-
notators were asked to choose the category that was most
appropriate/best describes the comment. To check inter-
annotator agreement we used the Fleiss Kappa measure. κ
values of 0.8389 and 0.6493 for the two questions indicate
high annotator agreement. The final assignment of response
to category was done by majority vote among the four an-
notators (score of 0.5 each if tied between categories).

Table 6 summarizes the results of the survey after cod-
ing. Overall, around 68% found it at least somewhat helpful
to receive peer feedback, and around 74% found substan-
tial value in providing the peer feedback. Interestingly, of
the 26% of the students who expressed that receiving peer
feedback was not (really) helpful to them, 17% still found
it valuable to provide peer feedback. Overall, we conclude
that the vast majority of students found some value in the
peer grading process.

5. CONCLUSIONS
In this work we study the problem of student evaluation at

scale via peer grading using ordinal feedback. We cast this as
a rank aggregation problem and study different probabilistic



% A1 A2 A3 A4 A5 Total

B1 34.58 2.08 5.83 10.00 1.67 54.17
B2 5.42 0.00 5.83 7.08 1.67 20.00
B3 0.42 2.92 2.08 2.50 0.42 8.33
B4 2.92 0.83 5.00 5.42 0.00 14.17
B5 0.00 0.00 0.42 1.67 1.25 3.33

Total 43.33 5.83 19.17 26.67 5.00

Table 6: Results of the student survey, coded ac-
cording to the categories in Table 5.

models for obtaining student grades, as well as estimating
the reliability of the peer graders. Using data collected from
a real course, we find that the performance of ordinal peer
grading methods is at least competitive with cardinal meth-
ods for grade estimation, even though they require strictly
less information from the graders. For grader reliability es-
timation, Mallow’s model outperforms all other methods,
and it shows consistently good and robust performance for
grade estimation as well. In general, we find that ordinal
peer grading is robust and scalable, offering a grading accu-
racy that is comparable to TA grading in our course.

This research was funded in part by NSF Awards IIS-
1217686 and IIS-1247696, and the JTCII Cornell-Technion
Research Fund.
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