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Abstraction refinement techniques in probabilistic model checking are prominent approaches for verification
of very large or infinite-state probabilistic concurrent systems. At the core of the refinement step lies the
implicit or explicit analysis of a counterexample. This article proposes an abstraction refinement approach
for the probabilistic computation tree logic (PCTL), which is based on incrementally computing a sequence
of may- and must-quotient automata. These are induced by depth-bounded bisimulation equivalences of
increasing depth. The approach is both sound and complete, since the equivalences converge to the genuine
PCTL equivalence. Experimental results with a prototype implementation show the effectiveness of the
approach.

Categories and Subject Descriptors: D2.4 [Software Engineering]: Software/Program Verification—Model
Checking

General Terms: Algorithms, Experimentation, Verification

Additional Key Words and Phrases: Bisimulation, CEGAR, probabilistic automata

ACM Reference Format:
Lei Song, Lijun Zhang, Holger Hermanns, and Jens Chr. Godskesen. 2014. Incremental bisimulation
abstraction refinement. ACM Trans. Embedd. Comput. Syst. 13, 4s, Article 142 (July 2014), 23 pages.
DOI: http://dx.doi.org/10.1145/2627352

1. INTRODUCTION

Model checking of large or infinite-state systems has been revolutionized by the inven-
tion of counterexample guided abstraction-refinement (CEGAR) [Clarke et al. 2003].
This approach, originally tailored to software model checking, automatically abstracts
and refines a given system model, until either the property of interest is found to be
satisfied, or a valid counterexample is found, demonstrating that the property is not
satisfied (or the checker runs out of memory, or the user runs out of patience). Dur-
ing this process, which starts off from a very coarse abstract model, it often happens
that the property is evaluated to false on the abstract system, while it is indeed true
on the original system. In this case, the CEGAR machinery will provide an abstract
counterexample, which is not valid in the original model, and therefore is used to re-
fine the abstract model. The CEGAR approach has inspired a large body of work in
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related fields. It has also found its way into the area of model checking of probabilistic
concurrent systems.

Probabilistic automata (PAs) are a very natural model of probabilistic concurrent sys-
tems [Segala and Lynch 1995]. Extending both labeled transition systems and Markov
chains, they are convenient to represent systems with nondeterminism and random-
ization. PAs are akin to Markov decision processes (MDPs) and form the backbone
model of successful model checkers, such as PRISM [Kwiatkowska et al. 2011], en-
abling the analysis of randomized concurrent systems. Despite the remarkable ver-
satility of this approach, its power is limited by the state-space explosion problem,
and several abstraction-refinement approaches have been proposed to alleviate that
problem [D’Argenio et al. 2001, 2002; Hermanns et al. 2008; Chadha and Viswanathan
2010; Kattenbelt et al. 2010; Wachter and Zhang 2010; de Alfaro and Roy 2007; Roy
et al. 2008].

The first abstraction-refinement techniques have been proposed [D’Argenio et al.
2001] for MDPs and implemented in the tool RAPTURE. Based on a chosen partition of
the state space, an abstract MDP is constructed. Heuristics for getting a better refine-
ment have been further studied [D’Argenio et al. 2002]. Probabilistic counterexample-
guided abstraction-refinement [Hermanns et al. 2008] is a natural extension of CEGAR
for the PA setting. It aims at identifying the maximal probability of reaching a set of
goal states in the PA. For this, an abstract quotient PA is constructed based on an
initially coarse partition of the state space. The reachability probability is computed
then on the abstraction. This provides a safe upper bound on the probability in the
original model. If the bound is not good enough, a counterexample can be derived,
usually expressed as a set of paths, which are then used to refine the abstraction.
Extensions of the abstraction yielding two-player games provide both upper and lower
bounds for maximal/minimal probabilities [Wachter and Zhang 2010; Kattenbelt et al.
2010; Chadha and Viswanathan 2010].

The probabilistic CEGAR approach has been successfully applied to several exam-
ples [Hermanns et al. 2008; Wachter and Zhang 2010; Kattenbelt et al. 2010] for
studying reachability properties, and an extension to general PCTL properties has
been developed [Chadha and Viswanathan 2010]. That approach however involves ex-
pensive simulation checking and counterexample generation. The algorithm for com-
puting simulation runs in O(m2n) time [Zhang and Hermanns 2007], where n and m
are the number of states and transitions of the MDP, respectively. Moreover, Chadha
and Viswanathan [2010, Theorem 3.11] show that the problem of finding the smallest
counterexample is NP-hard, and it is also unlikely to be efficiently approximable.

This article proposes a radically different approach to abstraction-refinement of prob-
abilistic concurrent systems. The approach is compatible with and applicable to the full
logic PCTL, and it works without counterexamples. Instead, the refinement is based
on a sequence of incrementally computed bisimulations. We call the technique Proba-
bilistic Incremental Bisimulation Abstraction Refinement (PIBAR).

The approach is rooted in the fact that probabilistic bisimulation equivalence [Segala
1995] is strictly finer than the equivalence induced by PCTL. Our approach turns
this disturbing difference into an algorithmic idea. We harvest a recent characteri-
zation of PCTL equivalence as the limit of a sequence of step-indexed bisimulation
relations [Song et al. 2013a] and combine this theoretical insight with an effective com-
putational procedure. With some inspiration from modal transition systems [Larsen
1990], we use probabilistic may- and must-quotient automata to represent the be-
haviour of an abstract system. Intuitively, we work with a sequence of may- and
must-quotient automata induced by the sequence of step-indexed bisimulation rela-
tions, which guarantees convergence to PCTL equivalence. But since the computation
of the step-indexed relations is in general NP-complete, we define, for each step-indexed
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relation, a sequence of relations, some of which can be computed in polynomial time.
Moreover they converge to the step-indexed relation eventually. Still, the may- and
must-abstractions we use are guaranteed to provide upper and lower bounds for max-
imal and minimal probabilities, respectively. In case that this interval is too large, the
abstraction is refined by recomputing it for a finer bisimulation. In the recomputa-
tion, we reuse intermediate results from the previous iterations. This way, the PIBAR
approach—just like the probabilistic CEGAR approaches—automatically abstracts and
refines a given PA model until either the property of interest is found to be satisfied or
the property is found not to be satisfied (or the checker runs out of memory, or the user
runs out of patience). But it does so without resorting to any kind of counterexample
analysis. The approach is complete in the sense that for finite-state systems, it termi-
nates after a finite number of refinement steps. PIBAR is not restricted to reachability
properties. As we will demonstrate, it instead works for the safety fragment [Baier
et al. 2005; Chadha and Viswanathan 2010] of PCTL (where negation only appears at
atomic propositions and probabilities appear lower-bounded only) and can be twisted
to work with full PCTL by delaying the check until refinement has terminated, that is,
PCTL-equivalence is obtained.

Experimental results carried out with a prototypical implementation of the PIBAR
approach demonstrate its effectiveness. We compare with PRISM [Kwiatkowska et al.
2011] on a selection of case studies and report promising results. For several case
studies, we obtain a sufficiently good bisimulation abstraction efficiently such that we
can perform model checking on the may- and must-quotient automata.

Contributions. Our contributions in this article are as follows.

—We propose a novel framework of probabilistic bisimulation guided abstraction,
avoiding the need to analyze counterexamples.

—Our algorithm works for the entirety of PCTL and is both sound and complete. This
means it will always terminate and return the correct answer in an ideal setting
with unlimited memory and time.

—We refine the abstract system by computing a sequence of step-depth indexed bisim-
ulations.

—We propose a novel way to conduct property-driven abstraction and refinement.
—We report on a prototypical implementation of PIBAR and demonstrate that the

approach can accelerate probabilistic model checking in many cases.

Organization of the Article. Section 2 recalls some notations, and in Section 3, we
recall the definition of strong i-depth bisimulation. We propose may-quotient and must-
quotient of a probabilistic system with respect to an equivalence relation in Section 4.
We describe in detail how PIBAR works in Section 5. The experimental results are
discussed in Section 6. Related work is discussed in Section 7, while Section 8 concludes.

2. PRELIMINARIES

We first introduce some notations which we will use throughout this article.
For a finite set S, a distribution is a function μ : S → [0, 1] satisfying |μ| :=∑
s∈S μ(s) = 1. We denote by Dist(S) the set of distributions over S. We shall use

s, r, t, . . . and μ, ν . . . to range over S and Dist(S), respectively. The support of μ is de-
fined by supp(μ) := {s ∈ S | μ(s) > 0}. A distribution μ is called Dirac if |supp(μ)| = 1,
and we let Ds denote the Dirac distribution with Ds(s) = 1. For a distribution μ we also
write it as {μ(s) : s | s ∈ supp(μ)}.

Given an equivalence relation R on S, let [s]R denote the equivalence class C ∈ S/R
such that s ∈ C, and [μ]R is the distribution over S/R such that [μ]R(C) = ∑

s∈C μ(s)
for each C ∈ S/R.
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Next we define the downward closure of a subset of states.

Definition 2.1 (Downward Closure). For a relation R over S and C ⊆ S, define

R↓(C) = {s′ | ∃s ∈ C.s′ R s}.
We say C is R downward closed it and only if C = R↓(C).

We shall use R↓(s) as the shorthand of R↓({s}), and let R↓ = {R↓(C) | C ⊆ S} denote
the set of all R downward closed sets.

Given a relation R, let ≡R be the largest equivalence relation contained in R. The
following lemma from Hermanns et al. [2011] shows that each R downward closed set
can be seen as a union of equivalence classes of ≡R.

LEMMA 2.2 (LEMMA 5.1 HERMANNS ET AL. [2011]). Let R ⊆ S × S and let C ⊆ S be a
R downward closed set, then C is a union of equivalence classes of ≡R.

2.1. Probabilistic Automata

We recall the notion of probabilistic automata, as coined by Segala [1995].

Definition 2.3 (Probabilistic Automata). A probabilistic automaton is a tuple P =
(S,→, s0, AP, L), where the following hold.

—S is a finite set of states.
—→ ⊆ S × Dist(S) is a finite set of transition relation.
—s0 ∈ S is the initial state.
—AP is a set of atomic propositions.
—L : S → 2AP is a labeling function.

A transition (s, μ) ∈→ is denoted by s → μ. A path is a finite or infinite sequence
ω = s0s1s2 . . . of states, such that for each i ≥ 0 (except for the last state of a finite path),
there exists a distribution μ with si → μ and μ(si+1) > 0. We introduce some notations
as follows.

—lstate(ω), the last state of ω, provided ω is finite.
—ω[i] = si with i ≥ 0, the (i + 1)-th state on ω.
—ω|i = s0s1 . . . si, the fragment of ω ending at state ω[i].
—ω|i = sisi+1 . . . , the fragment of ω starting from state ω[i].

Let Pathω(P) and Path∗(P) denote the sets containing all infinite and finite paths of P,
respectively. Let Path(P) = Pathω(P) ∪ Path∗(P). In case P is clear from the context,
we simply omit it. We also let Path(s0) be the set containing all paths starting from s0,
similarly for Path∗(s0) and Pathω(s0).

Due to nondeterministic choices in PAs, a probability measure cannot be defined
directly. As usual, we shall introduce the definition of schedulers to resolve the nonde-
terminism. Intuitively, a scheduler will decide which transition to choose at each step,
based on the history execution. Formally, a scheduler is a function σ : Path∗ → Dist(→)
such that σ (ω)(s, μ) > 0 implies s = lstate(ω) and s → μ. A scheduler σ is deterministic
if it returns only Dirac distributions, that is, σ (ω)(s, μ) = 1 for some s and μ.

The cone of a finite path ω, denoted Cω, is the set of infinite paths having ω as their
prefix, that is, Cω = {ω′ ∈ Pathω | ω ≤ ω′}, where ω ≤ ω′ if and only if ω is a prefix of
ω′. Fixing a starting state s and a scheduler σ , the measure Probσ,s of a cone Cω, where
ω = s0s1 . . . sk, is defined inductively as Probσ,s(Cω) = 0 if s = s0, Probσ,s(Cω) = 1 if s = s0
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and k = 0, otherwise,

Probσ,s0 (Cω) = Probσ,s0 (Cω|k−1 ) ·
⎛
⎝ ∑

(sk−1,μ′)∈→
σ (ω|k−1)(sk−1, μ

′) · μ′(sk)

⎞
⎠ .

Let B be the smallest algebra that contains all the cones and is closed under comple-
ment and countable unions. By standard measure theory [Halmos 1974; Rudin 2006],
this algebra is a σ -algebra, and all its elements are measurable sets of paths. Moreover,
Probσ,s0 can be extended to a unique measure on B.

2.2. PCTL

We recall the syntax of PCTL [Hansson and Jonsson 1994] which is a probabilistic
extension of CTL [Clarke et al. 1986]. Over the set AP of atomic propositions, PCTL is
formed according to the following grammar.

� ::= a | �1 ∧ �2 | ¬� | P��q(ϕ)

ϕ ::= X � | �1 U �2 | �1 U≤n �2,

where a ∈ AP, �� ∈ {<,>,≤,≥}, q ∈ [0, 1], and n is a positive integer. We write true as
an abbreviation for a∨¬a for some a ∈ AP. We refer to � and ϕ as PCTL state and path
formulae, respectively.

The satisfaction relation s |= � for state formulae is defined in a standard manner
for boolean formulae. For the probabilistic operator, it is defined by

s |= P�� q(ϕ) iff ∀σ.Probσ,s({ω ∈ Path(s) | ω |= ϕ}) �� q,

namely, s |= P�� q(ϕ) if and only if whichever scheduler we choose, the probability
of paths starting from s and satisfying ϕ always meets the given bound �� q. The
satisfaction relation ω |= ϕ for path formulae is defined in the same manner as in CTL.

ω |= X � iff ω[1] |= �,

ω |= �1 U �2 iff ∃ j ≥ 0. ω[ j] |= �2 ∧ ∀0 ≤ k < j. ω[k] |= �1,

ω |= �1 U≤n �2 iff ∃0 ≤ j ≤ n. ω[ j] |= �2 ∧ ∀0 ≤ k < j. ω[k] |= �1.

In this article, we are especially interested in the safety fragment of PCTL, that is,
safety PCTL [Baier et al. 2005], denoted PCTLsafe, whose syntax is given as follows.

� ::= a | ¬a | �1 ∧ �2 | �1 ∨ �2 | P≥q(ϕ) | P>q(ϕ)

ϕ ::= X � | �1 U �2 | �1 U≤n �2

In PCTLsafe, only ≥ (or >) is allowed in the probabilistic operator, and negation only
appears in atomic propositions. In the sequel, let PCTLi denote the subset of PCTL in
which the path formula is restricted to ϕ ::= X � | �1 U≤ j �2, where j ≤ i, similarly
for PCTLi

safe. In other words, PCTLi only specifies (conditional) reachability probabil-
ity up to i steps. Moreover for a given logic L, we write s �L r iff r |= � implies
s |= � for any state formula � of L. Intuitively, all properties in L are considered safe,
which cannot be violated; r represents a specification which defines all possible safe
behaviors that a system is allowed to do. If s represents a concrete system implement-
ing r, then its behaviors should be subsumed by the behaviors of r. Thus in case r
satisfies a safety property �, s must also satisfy �. We write s ≡L r iff s �L r and
r �L s.
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2.3. Bisimulation and Simulation

In this section, we introduce the definitions of bisimulation and simulation for PAs. In
order to do so, we shall introduce the weight functions [Jonsson and Larsen 1991]

Definition 2.4 (Weight Function). Let R be a relation over S. A weight function for
μ and ν with respect to R is a function � : S × S �→ [0, 1] such that the following
hold.

(1) �(s, r) > 0 implies that s R r.
(2) μ(s) = ∑

r∈S �(s, r) for any s ∈ S.
(3) ν(r) = ∑

s∈S �(s, r) for any r ∈ S.

We write μ �R ν if and only if there exists a weight function for μ and ν with respect
to R.

Strong simulation and bisimulation for PAs are defined as follows [Segala 1995].
Since we are only interested in strong relations throughout this article, we take the
liberty to drop the prefix ‘strong’. All relations considered throughout this article are
strong relations.

Definition 2.5 (Strong Simulation and Bisimulation). A relation R ⊆ S × S is a
simulation relation if and only if s R r implies that L(s) = L(r) and for each s → μ,
there exists r → ν such that μ �R ν.

If a simulation relation R is symmetric, then R is a bisimulation relation. We write
s � r (s ∼ r) whenever there is a (bi)simulation relation R such that s R r.

Segala [1995] showed that � and ∼ are sound (but not complete) for PCTL and
PCTLsafe, respectively.

LEMMA 2.6 ([SEGALA 1995]). ∼ � ≡PCTL and � � �PCTLsafe .

According to Lemma 2.6, bisimulation preserves PCTL equivalence, that is, bisimi-
lar states satisfy the same PCTL formulae (soundness), but the other direction (com-
pleteness) does not hold, that is, states satisfying the same PCTL formulae are not
necessarily bisimilar.

2.4. Sound and Complete Bisimulation for PCTL

The inclusion in Lemma 2.6 is strict. In this section, we will recall a variation of
bisimulation which is both sound and complete for PCTL equivalence [Song et al.
2013a]. As in Song et al. [2013a], we are restricted to deterministic schedulers, which
suffices for PCTL formulae [Baier and Katoen 2008, Remark 10.99].

Let Probσ,s(C, C ′, n, ω) denote the probability from s to states in C ′, via states in C
possibly, in at most n steps under deterministic scheduler σ , where ω is used as a
parameter of σ to keep track of the path. Formally,

Probσ,s(C, C ′, n, ω) =

⎧⎪⎪⎨
⎪⎪⎩

1, s ∈ C ′,∑
r∈supp(μ′)

μ′(r) · Probσ,r(C, C ′, n − 1, ωr), n > 0 ∧ (s ∈ C \ C ′),

0, otherwise,

where σ (ω)(s, μ′) = 1 for some μ′, that is, the transition s → μ′ is chosen with probability
1 by the scheduler σ given the history ω. In the case that s ∈ C ′, the target states C ′ are
already reached, so Probσ,s(C, C ′, n, ω) = 1. In the case that neither s ∈ C ′ nor s ∈ C,
Probσ,s(C, C ′, n, ω) = 0. Since it is not possible to reach states in C ′ only via states in
C. Otherwise, we shall move one step further under the guidance of the scheduler σ ,
provided n > 0. Then Probσ,s(C, C ′, n, ω) is equal to the weighted sum of the probability
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of successors of s to reach states in C ′ via only states in C in at most n − 1 steps, that
is, Probσ,r(C, C ′, n − 1, ωr), where r is a successor of s under the given scheduler σ .
Moreover, ω is updated to keep track of the visited path.

We are now ready to introduce an indexed family of i-depth (bi)simulations. We let
s ∼0 r and s �0 r if and only if L(s) = L(r).

Definition 2.7 (i-Depth Simulation and Bisimulation). A relation R ⊆ S × S is an
i-depth simulation with i ≥ 1 if s R r implies s �i−1 r and for any R downward closed
sets C, C ′ and scheduler σ , there exists a scheduler σ ′ such that

Probσ ′,r(C, C ′, i, r) ≤ Probσ,s(C, C ′, i, s). (1)

If a simulation relation R is symmetric, then R is an i-depth bisimulation. We write
s �i r (s ∼i r) whenever there is an i-depth (bi)simulation R such that s R r.

In comparison with Definition 2.5, this definition does not require the matching of
distributions out of s and r. The essential difference to the standard definition is that
we only consider conditional reachability probabilities up to i steps. In the definition
of PCTLsafe, we only have probability formulas in form of P>q(ϕ) or P≥q(ϕ), that is,
PCTLsafe is characterized by the minimal probabilities of satisfying some ϕ. A state
s is considered “safer” than r (whenever r satisfies some safety properties, so is s),
whenever the minimal probability of s satisfying ϕ is greater than r. This justifies the
≤ operator in Eq. (1).

The following lemma establishes some properties of i-depth (bi)simulation.

LEMMA 2.8 ([SONG ET AL. 2013A]).

(1) ∼i is an equivalence relation, and �i is a pre-order for each i ≥ 0.
(2) ∼i ⊆∼ j provided i ≥ j.
(3) ∼i =≡PCTLi and �i =�PCTLi

safe
for each i ≥ 0.

(4) For any finite PA, there exists i ≥ 0 such that ∼i =≡PCTL and �i =�PCTLsafe .

Clause 2 says that we will obtain a finer bisimulation by increasing i. Clause 3 assures
that i-depth bisimulation is both sound and complete for PCTLi equivalence, similarly
for i-depth simulation with respect to PCTLi

safe. More importantly, Clause 4 assures that
the i-depth bisimulations define a sequence of relations which equals PCTL equivalence
eventually.

3. A TWO-DIMENSIONAL BISIMULATION GRID

Lemma 2.8 shows that by increasing i we can obtain a sequence of bisimulation rela-
tions converging to the PCTL-equivalence. In this section, we refine each bisimulation
∼i further to a subsequence of equivalence relations. Our PIBAR framework is based
on the induced two-dimensional grid of relations. We first define the size of a downward
closed set as follows.

Definition 3.1 (Sizes of Downward Closed Sets). Let R ⊆ S × S be a relation, and
C ⊆ S a R downward closed set. The size of C, denoted size(C), is defined as the number
of equivalence classes of ≡R in C, that is, size(C) = |{C ′ ∈ S/ ≡R| C ′ ⊆ C}|.

The concept of size will now be incorporated into a refined bisimulation definition.
Let s �0, j r and s ∼0, j r if and only if L(s) = L(r) for any j ≥ 0. Moreover, we have the
following definition.

Definition 3.2 ((i, j)-Depth Simulation and Bisimulation). A relation R ⊆ S × S is
an (i, j)-depth simulation with i, j ≥ 1 if s R r implies s �i−1, j r and for any scheduler
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Fig. 1. Inclusion among the bisimulations considered.

σ and R downward closed sets C, C ′ with size(C), size(C ′) ≤ j, there exists a scheduler
σ ′ such that

Probσ ′,r(C, C ′, i, r) ≤ Probσ,s(C, C ′, i, s).

If a simulation relation R is symmetric, then R is an (i, j)-depth bisimulation. We write
s �i, j r (s ∼i, j r) whenever there is an (i, j)-depth (bi)simulation R such that s R r.

Intuitively ∼i, j is almost the same as ∼i except that only downward closed sets with
size not greater than j are considered. ∼i, j has the following properties.

LEMMA 3.3.

(1) ∼i, j is an equivalence relation and �i, j is a pre-order for each i, j ≥ 0.
(2) ∼ j,i ⊆∼k,i and � j,i ⊆�k,i for any i, j, k ≥ 0 provided j ≥ k.
(3) ∼i, j ⊆∼i,k and �i, j ⊆�i,k for any i, j, k ≥ 0 provided j ≥ k.
(4) For any finite PA, there exists j ≥ 0 such that ∼i, j =∼i and �i, j =�i .

PROOF.

(1) Clauses 1 and 2 are straightforward by Definition 2.7 and 3.2, respectively.
(2) Let R = {(s, r) | s �i, j r}, we now show that R is an (i, k)-depth simulation provided

that j ≥ k. For any R downward closed set C, if size(C) ≤ k, then we also have
size(C) ≤ j, hence the following proof is straightforward.

(3) We consider PAs with finite state spaces. In the worst case, each state belongs to a
distinct equivalence class. Therefore there always exists j ≥ 0 such that ∼i, j =∼i
and �i, j =�i.

We have defined a sequence of (i, j)-depth bisimulations which will converge to ∼i
after a finite number of iterations. The inclusion hierarchy of all the bisimulations are
summarized in Figure 1 where the lower-right corner indicates that there exists n ≥ 0
such that ∼n =≡PCTL. Obviously, all relations are coarser than it.

4. BISIMULATION QUOTIENT

Quotient constructions shall be the keys in the PIBAR approach. Inspired by modal
transition systems, we define the may- and must-quotient systems as follows.

Definition 4.1 (May- and Must-Quotient). Given a PA P = (S,→, s0, AP, L) and an
equivalence relation R over S such that R ⊆ {(s, r) | L(s) = L(r)}, the may-quotient and
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must-quotient of P with respect to R are defined as

P�
R = (S/R,→�, [s0]R, AP, L),

P�

R = (S/R,→�, [s0]R, AP, L),

respectively, where the following hold.

—L is overloaded for simplicity such that L([s]R) = L(s) for each s.
—[s]R →� [μ]R if and only if there exists r ∈ [s]R such that r → μ.
—[s]R →� [μ]R if and only if for all r ∈ [s]R there exists r → ν such that [μ]R = [ν]R.

The only difference between may- and must-quotients is the definition of transitions
of the quotient systems. In the definition of may-quotient, we let the transitions of [s]R
be the union of transitions for each r ∈ [s]R. On the other hand, in the definition of
must-quotient, we let the transitions of [s]R be the joint transitions for all r ∈ [s]R.

Given two PAs P and P ′ with initial states of s0 and s′
0, respectively, the simulation

relations can be lifted to the automata level: P � P ′ if and only if s0 � s′
0 in the direct

sum obtained from P and P ′. The following theorem shows the relation between the
quotients and their original system.

THEOREM 4.2. Let P = (S,→, s0, AP, L) be a PA and R be an equivalence relation
over S, we have P�

R � P � P�
R.

PROOF. We only prove that P � P�
R, that is, s0 � [s0]R; the other part can be proven

in a similar way. Let R = {(s, [r]R) | s ∈ [r]R}. Since (s0, [s0]R) ∈ R, it suffices to show
that R is a simulation according to Definition 2.5. Suppose that s → μ, we need to
show that there exists [r]R → ν such that μ �R ν.

We know that for each s ∈ [r]R, s → μ implies [r]R → [μ]R according to Definition 4.1.
Let � be a function such that �(s′, [s′]R) = μ(s′) for each s′, we need to show that �
is a valid weight function between μ and [μ]R. Since (s′, [s′]R) ∈ R according to the
definition of R, condition (1) in Definition 2.4 is satisfied. Moreover,

μ(s′) = �(s′, [s′]R) =
∑

[t]R∈S/R
�(s′, [t]R), and

[μ]R([s′]R) =
∑

t∈[s′]R

μ(t) =
∑

t∈[s′]R

�(t, [s′]R) =
∑
t∈S

�(t, [s′]R),

hence conditions (2) and (3) are also satisfied. Consequently, μ �R [μ]R, which com-
pletes the proof.

5. PROBABILISTIC INCREMENTAL BISIMULATION ABSTRACTION REFINEMENT

In this section, we propose an abstraction refinement framework based on our no-
tions of incremental bisimulation relations. Further, we also discuss a property driven
extension of our framework.

5.1. Probabilistic Incremental Bisimulation Abstraction Refinement

Given a PA and an equivalence relation R over its state space, we can first construct the
may- and must-quotients according to Definition 4.1. Then the verification of a PCTLsafe
formula � can be done on the quotient systems. By Lemma 2.6 and Theorem 4.2, if
P�
R |= �, we know that P |= �, since P � P�

R, and the verification can be terminated.
On the other hand, if P�

R |= �, we have P |= � since, P�

R � P. If neither P�
R |= � nor

P�

R |= � holds, this means that the current abstraction is too coarse and needs to be
further refined. Lemmas 2.8 and 3.3 indicate that ∼i, j defines a grid of bisimulations
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ALGORITHM 1: The Algorithm of PIBAR
Input: A PA P and a property � of PCTLsafe
Output: True if P |= �, else False
// Initialize R to be ∼0, i.e., (s, r) ∈ R iff L(s) = L(r)
i ← 0;
R ← {(s, r) | L(s) = L(r)};
while (True) do

// Once ∼i is computed, increase i by 1 and reset j to 0;
i ← i + 1, j ← 0;
// Increase j until it is equal to the number
// of equivalence classes in j, in which case R =∼i;
while ( j ≤ |S/R|) do

// Compute ∼i, j by calling Refine in Algorithm 2;
R = Refine(P,R, i, j);
j ← j + 1;
P�

R = May(P,R);
P�

R = Must(P,R);
if (P�

R |= �) then
return True;

end
if (P�

R |= �) then
return False;

end
end

end

ALGORITHM 2: The Algorithm of Refine
Input: A PA P, a relation R, i, and j;
Output: A refined relation R equal to ∼i, j ;
// Initialize the set of splitter.
splitters ← {all (C1, C2) satisfying Eq. (2)};
while (splitters = ∅) do

// Get a splitter and remove it from the splitter set
(C1, C2) ← splitters.GetAndRemoveFirst();
forall the C ∈ S/R do

Compute Probmin(s, C1, C2, i) for each s ∈ C;
Partition C according to the value of Probmin(s, C1, C2, i) such that only states with the
same value are in the same subset;

end
Add new generated splitters to splitters;

end

which will converge to PCTL-equivalence after a finite number of steps. This gives us
a straightforward way for refinement: The refinement is simply done by increasing j
until ∼i is reached, then i will increased by 1, and j is reset to 0. In other words, we
walk through the grid in Figure 1 in a horizontally-first manner. The thus resulting
algorithm is shown in Algorithm 1, where the refinement process starts with the coars-
est relation R =∼0,0= {(s, r) | L(s) = L(r)}. Algorithm 1 will for sure terminate, because
there exists an integer n such that ∼n = ≡PCTL for any PA.

The algorithm for refining R is shown in Algorithm 2, where splitters are used to
store all the splitters. A splitter is a pair of R downward closed sets (C1, C2). Before
computing ∼i, j , we have computed ∼i, j−1, that is, all the splitters (C1, C2) such that
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size(C1) < j and size(C2) < j have been considered. Therefore, only splitters (C1, C2)
satisfying

(size(C1) = j ∧ size(C2) ≤ j)) ∨ (size(C2) = j ∧ size(C1) ≤ j) (2)

are taken into account. The refinement is done as follows: For each C ∈ S/R, we first
compute the minimal probability of each state s ∈ C reaching states in C2 only via
states in C1 in at most i steps, that is,

Probmin(s, C1, C2, i) = inf
σ

Probσ,s(C1, C2, i, s),

with σ ranging over all schedulers of s. We then partition C into several disjoint
subsets such that s, r ∈ C are in the same subset if and only if Probmin(s, C1, C2, i) =
Probmin(r, C1, C2, i). After refining R, we will incorporate some new blocks into the
current partition. Therefore we need to update the set of splitters by adding pairs
satisfying Eq. (2) and containing new equivalence classes.

The following theorem shows that Algorithm 1 is both sound and complete in the
sense that it will always terminate and give the right answer. In the worst case, it will
terminate when the PCTL-equivalent relation is obtained, that is, R =≡PCTL.

THEOREM 5.1. Algorithm 1 is sound and complete.

PROOF. We first remark that once Algorithm 2 terminates, we are sure thatR = ∼i, j ,
since all possible splitters have been processed. Termination is guaranteed because the
inner loop of Algorithm 1 keeps increasing j until ∼i is obtained. Lemma 3.3 then
implies that the inner loop always terminates. Upon obtaining ∼i, parameter i is
incremented in the outer loop, and the inner loop is starts over. The termination of the
outer loop is implied by Lemma 2.8. Since in the worst case R will equal ≡PCTL, it is
assured that either P�

R |= � or P�

R |= � holds.

The theoretical-time complexity of Algorithm 1 is high because every potential split-
ter might need to be processed in each iteration. In the worst case, the size of R↓ is
2n. Therefore, a pessimistic estimate of the number of splitters is 2n ∗ 2n, thus 22n, and
similarly for the space complexity, since all untouched splitters need to be stored. As
we will see in Section 6, Algorithm 1 in practice stays far below the theoretical bounds.

To illustrate how PIBAR works, we discuss the following example.

Example 5.2. Suppose we face a state t as shown in Figure 2. We assume that s2, s4,
and s5 are absorbing, that is, can only evolve into themselves with probability 1, while
the transitions of s1 and s3 are shown in the right side of Figure 2. Moreover, state s4
is labeled �, differently from all other states. We first observe that s ∼1 r: The only
non-trivial cases to consider concern the minimal probabilities from s and r to state sets
C ⊆ {s1, s2, s3}. Notably, states s1, s2, and s3 are pairwise distinguishable, because each
can reach state s4 with a different probability. For C = {s1, s2}, the minimal one-step
probabilities from s and r to C equal 0.6, obtained taking the transition to distribution
{0.3 : s1, 0.3 : s2, 0.4 : s3}. We can reason similarly for other possible sets C. Therefore,
s ∼1 r, implying that in the quotient induced by ∼1, states s and r will be grouped
together, while all other states will be pairwise distinct, and thus form singleton blocks
in the quotient. So, ∼1= {(s, r), (r, s)} ∪ ID is the equivalence relation R induced by the
current partition, where ID is the identity relation.

We now assume that � = P≥0.6(true U ¬�) is the property we are going to check. The
minimal probability for the paths starting from t satisfying true U ¬� is 0.64, which
is induced by choosing the transition to r and then choosing the dashed transitions in
Figure 2. Therefore, t |= � holds. According to Definition 4.1, block [s]R (or equivalently
[r]R) containing s and r has the same (up to ≡∼1 ) transitions as r in the may-quotient.
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Fig. 2. A counterexample of the completeness of probabilistic bisimulation.

Therefore we can lift the reasoning showing that t |= � to the may-quotient to establish
t�
R |= �. As a consequence, we can see that ∼1 is fine enough to preserve �.

Now let us instead consider � = P≥0.65(true U ¬�). We know from the preceding
discussion that t |= �, since there exists an execution that reaches ¬� from t with
probability 0.64. If we now attempt to derive this fact by reasoning on the quotients
induced by ∼1 as before, we find that t�

R |= �, which implies neither t |= � nor
t |= �. So we now consider the must-quotient, where block [s]R has the same (up
to ≡∼1 ) transitions as s (opposed to r in the may-quotient). This implies that the middle
transition of r (up to ≡∼1 ) existing from block [s]R in the may-quotient is absent in the
must-quotient, as the transition is absent in s. Therefore, the minimal probability for
the paths of t�

R satisfying true U ¬� is the same as s, namely, 0.66, and hence t�

R |= �.
This means that ∼1 is too coarse to preserve �, and we need to refine it further. It turns
out that s ∼2 r. As for instance r |= P≥0.65(true U≤2 ¬�), but s |= P≥0.65(true U≤2 ¬�).
Therefore, in the second refinement step, s and r will be distinguished, yielding an
∼2= R (namely, the identity relation), on which we will be able to conclude t�

R |= �.
Obviously, ∼2 is fine enough to preserve �.

It is worthwhile to highlight that if we instead were using classical bisimulation
[Segala 1995], states s and r would never be grouped together. This is rooted in the fact
that the middle transition of r cannot be simulated by s even considering combined
transitions. As a result, s ∼ r, and the abstract system induced by the classical bisim-
ulation would be too fine for properties such as P≥0.6(true U ¬a). This is mainly caused
by the fact that s and r are PCTL-equivalent [Song et al. 2013a], and ∼ is strictly finer
than ≡PCTL.

We establish the complexities of computing the relevant bisimulations as follows.

LEMMA 5.3.

(1) It is NP-complete to check whether s ∼i r for any i ≥ 1 and s, r.
(2) ∼1,1 can be computed in polynomial time.
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PROOF (SKETCH). It has been shown that the problem of computing the simulation
version of ∼1 is NP-complete [Desharnais et al. 2011]. The proof idea proceeds by re-
ducing the subset sum problem to our problem: Given n decimal numbers d1, d2, . . . , dn,
can we find a set D ⊆ {di | 1 ≤ i ≤ n} such that

∑
d∈D d = 0. In a similar way, one can

show for i ≥ 1 that ∼i is NP-complete, too.
For the second clause, we note that ∼1,1 can be computed using a standard parti-

tion refinement algorithm, which has been applied to compute bisimulations for both
DTMCs [Derisavi et al. 2003; Valmari and Franceschinis 2010] and MDPs [Baier et al.
2000]. This algorithm can be applied in our setting, since in order to compute ∼1,1, we
only need to consider individual equivalence classes.

Likewise, ∼2,1 can also be computed in polynomial time. We first compute ∼1,1 and
then consider all reachability probabilities up to two steps. The number of splitters we
shall consider in Algorithm 2 is at most n2, with n being the number of states. The
other relations can be computed in a similar way, but with increased complexities.

Valmari and Franceschinis [2010] present an efficient algorithm running in time
O(n log m) to compute bisimulation for DTMCs. Although the essence of ∼1,1 is close
to strong bisimulation on DTMCs, the approach cannot be extended to our setting
directly, because the O(n log m) complexity crucially relies on the fact that in DTMCs
Probmin(s, C, C1, 1) = Probmin(r, C, C1, 1) and Probmin(s, C, C2, 1) = Probmin(r, C, C2, 1)
together imply Probmin(s, C, C3, 1) = Probmin(r, C, C3, 1), for any C, C1, C2, and C3 such
that C2 ⊂ C1 and C3 = C1 \ C2. This is in general not true in MDPs due to the existence
of nondeterministic transitions.

5.2. Property-Driven Abstraction and Refinement

In general, ∼i, j is expensive to compute, since we have to consider exponentially many
downward closed sets. In this section, we propose a method to avoid full exploration of
all the downward closed sets.

Algorithm 1 works independently of any property. Once it terminates, we obtain
an equivalence relation preserving all PCTL formulas. However, in case that we are
only interested in whether a system satisfies a specific property, this relation may
be too fine. This is because it suffices to preserve that very property, instead of all
PCTL properties. In other words, we may utilize a technique called property-driven
abstraction and refinement and perform the abstraction and refinement based on the
given property. This technique has been applied for Markov chains [Katoen et al. 2007].

In our setting, this allows for drastic improvements: If we are facing the property
� = P≥0.5(�1 U �2), it is enough to only consider a single splitter in Algorithm 2, namely,
(C, C ′), where C = {s ∈ S | s |= �1} and C ′ = {s ∈ S | s |= �2}. The refinement can then
proceed by simply increasing the depth, that is, the parameter i in Algorithm 1, as we
will explain next.

Without loss of generality, we can assume a preprocessing step so that �1 and �2 are
turned into atomic propositions, and all states satisfying neither �1 nor �2 are omitted.
At the beginning, we let R = {(s, r) | s, r |= �1 ∧ ¬�2} ∪ {(s, r) | s, r |= �2}. By fixing the
splitter to be (C, C ′), we first compute the one-step conditional reachability probability
Probmin(s, C, C ′, 1) for each state s, and then partition states such that s and r are in the
same block if and only if Probmin(s, C, C ′, 1) = Probmin(r, C, C ′, 1). In the case that the
obtained abstract system is too coarse, we need to refine it. As before, the refinement
proceeds by computing Probmin(s, C, C ′, i) with a greater i for each state. This process
will continue until a fine enough abstraction is obtained, but throughout the entire
process, only the splitter (C, C ′) is considered, which boils down to skipping the outer
iteration of Algorithm 2, making it terminate in polynomial time. It also implies that

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 142, Publication date: July 2014.



142:14 L. Song et al.

Fig. 3. An example of property-driven verification.

each inner loop of Algorithm 1 terminates with j = 1. As we will see in Section 6, this
strategy often induces a smaller final quotient system.

THEOREM 5.4. For a given property, the property driven refinement runs in O((m+
n) · n) time and in O(n) space, where n and m are the number of states and transitions,
respectively.

PROOF. It takes O(m) time to compute the minimal (maximal) i-bounded reachability
probability for each state, provided that all the minimal (maximal) i − 1 bounded
reachability probabilities have been computed upfront, since we then have to consider
each transition once. Using hashing, the partitioning process can be done inO(n) time in
order to group states with the same minimal bounded reachability probability together.
Therefore, one iteration of the refinement takes O(m+ n) time. Moreover, it takes at
most n refinements, since each state ends up in a distinct equivalence class in the worst
case. Therefore, the property-driven abstraction and refinement will terminate in time
O((m+ n) · n). The space complexity is easy to see: we only need to store the minimal
(maximal) reachability probability for each state.

The following example illustrates how the property driven abstraction and refine-
ment works.

Example 5.5. Consider the PA in Figure 3, where state labels are indicated by
their shapes and colors. For simplicity, we assume that states s3, s5, s6, s7, and s8 are
absorbing. Since states s1 and s2 can reach -states with different probabilities, they
are neither bisimilar nor i-depth bisimilar for any i.

Let � = P≥0.5 ( ∪ ) be the property under consideration. We want to decide
whether s0 |= � holds or not. It is routine to verify that no pair of states in Figure 3
is 1-depth bisimilar. Thus without adopting the property-driven technique, we cannot
do any abstraction, since already ∼1 is the identity relation, and thus verification of �
needs to be conducted on the original system.

However, we notice that in order to compute the conditional probability of reaching
-states via -states, some transitions are irrelevant, for instance those from to -

states . By adopting the property driven technique, we shall fix the splitter to be (C, C ′)
such that C and C ′ contain only -states and -states, respectively. We observe that
s1 and s2 can reach the -states s5, respectively, s6 in one step, each with probability
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0.5. They will thus be grouped together after the first round of refinement. It is not
hard to see that by grouping states s1 and s2 into the same block, the resulting may-
quotient system still satisfies �, which indicates that s0 |= �. This shows that by
adopting property-driven abstraction and refinement, we may terminate with a coarser
abstraction system than Algorithm 1.

5.3. Extensions

Until now we have only presented our framework to deal with PCTLsafe properties.
However, Algorithm 1 can be used to deal with full PCTL with a slight change: We keep
refining the systems by increasing the index i and j until PCTL equivalence is reached.
By Theorem 2.8, this process will terminate. Then we are able to check arbitrary PCTL
formulas on the result.

Further, we remark that the approach described in this article can be easily extended
to work with PCTL* properties: As shown in Song et al. [2013a], there is a sequence of
bisimulation relations converging to PCTL* equivalence. This sequence can be exploited
to construct quotients to check PCTL* formulas. Detailed discussions are omitted as
they are similar to the PCTL setting.

6. EXPERIMENTAL RESULTS

We have implemented PIBAR with and without property-driven abstraction and refine-
ment in a prototype tool using JAVA. All results were obtained on a laptop with an Intel
i7-3520 2.9GHz CPU and 4GB RAM running Ubuntu 12.04. The tool and its source code
can be downloaded at http://depend.cs.uni-sb.de/∼song/pibar.html. The bench-
marks are taken from the PRISM webpage http://www.prismmodelchecker.org, in-
cluding

—the asynchronous leader election protocol [Itai and Rodeh 1990],
—randomized consensus shared coin protocol [Aspnes and Herlihy 1990],
—IEEE 802.3 CSMA/CD protocol,
—randomized self-stabilizing algorithms [Beauquier et al. 1999; Israeli and Jalfon

1990].

In Table I, we compare the sizes of the original models and the abstract models, where
the abstract models are as small as possible but large enough to preserve the properties
we want to check. Columns n and m denote the number of states and transitions,
respectively, in the original system, while n′ and m′ denote the number of states and
transitions respectively in the abstract system. The last column “Abs.(s)” denotes the
time in seconds used to construct the quotients. For all the examples, Algorithm 1
terminated within about one minute except for “ij18”, which was more than ten minutes.
As we can see, the abstract systems are much smaller than the original ones. For
example, for “csma4 2”, we reduce the number of states by a factor of 45 and the
number of transitions by a factor of 74.

6.1. Reachability Probabilities

During the experiment, we consider the derivation of probabilistic reachability proba-
bilities. Moreover, until further notice, we always compute precise values for all (max-
imal or minimal) reachability probabilities. This means that we do not exploit the fact
that we can terminate refinement earlier if given a probability bound (as illustrated in
Example 5.2.)

Let P, P�
R, and P�

R be as in Definition 4.1. Let Pmax(true U stable)(P) and
Pmin(true U stable)(P) denote the maximal and minimal probabilities of reaching “sta-
ble” states in P. We explain by means of example how precise values of extreme
reachability probabilities can be obtained. Since P�

R |= P≥q(true U stable) implies
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Table I. Experiment Results (Abstract)

Protocol n m n′ m′ Abs.(s)

leader3 364 654 47 81 0.038

leader5 27,299 74,365 1,527 4,386 2.506

leader6 237,656 760,878 9,012 30,103 42.658

coin2 1,296 2,412 720 1,197 0.011

coin4 104,576 351,712 8,827 21,141 10.198

csma2 6 66,718 93,072 7,504 14,706 3.075

csma4 2 761,962 1,327,608 9,901 17,526 61.203

ij16 65,535 1,048,576 2,249 28,736 20.498

ij18 262,143 4,128,768 7,684 114,814 688.095

beauquier5 1,024 3,840 512 1,920 0.093

beauquier7 16,384 86,016 523 2,817 0.862

beauquier9 262,144 1,769,472 7,031 47,869 61.68

P |= P≥q(true U stable) for any q ≥ 0 by Theorem 4.2, it holds Pmin(true U stable)(P�
R) ≤

Pmin(true U stable)(P) for any R. Similarly, we can show that Pmin(true U stable)(P) ≤
Pmin(true U stable)(P�

R ). Therefore the precise value of each minimal reachability prob-
ability can be obtained by keeping refining a system until the values obtained from the
may- and must-quotient systems coincide. However, the maximal reachability probabil-
ity cannot be obtained in a similar way, because Theorem 4.2 is restricted to properties
in PCTLsafe. In order to obtain precise values of maximal reachability properties, we
keep refining a system until the may- and must-quotients coincide, in which case the
PCTL equivalence relation is reached.

For all properties considered in this section, we consider both unbounded and
bounded versions. We choose 5,000 as the step bound of all bounded reachability prop-
erties. This is a somewhat arbitrary choice. It is “half-way” to the default maximum
iteration number of the value iteration engine of PRISM, which is 10,000.

In Table II, we compare the time to check properties on the original systems and
the abstract systems, where the last three columns denote the time spent to check the
properties on the abstract systems, the time spent to checkthe properties on the original
systems, and the acceleration ratio of PIBAR with respect to PRISM for checking all
properties, respectively. For checking on the abstract systems, the time consists of three
parts: (i) time for abstracting the system, (ii) time for generating the quotient system,
and (iii) time for checking properties on the quotient system. For most of the examples,
Algorithm 1 runs faster than PRISM if we consider the total time for checking all
the properties except for “ij18”. For instance in “csma4 2”, PRISM takes more than
one hour to check all the properties, while the time for using PIBAR to check these
properties is less than two minutes (i.e., the abstract time in Table I plus the checking
time in Table II), and we obtain an acceleration up to 64 times.

Generally, Algorithm 1 cannot deal with non-safety properties unless the PCTL-
equivalence is eventually reached. However, we notice that in our experiments the
abstract system returned by Algorithm 1 also preserves properties like Pmax(ϕ), that
is, non-safety property P≤p(ϕ), which indicates that Algorithm 1 often terminates with
the R being very close (if not identical) to ≡PCTL.

6.2. Property-Driven PIBAR

We now turn to the property-driven PIBAR approach, applying it to all cases con-
sidered in Table II. Experimental results are displayed in Table III, where column
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Table II. Experiment Results (Properties)

Protocol Properties [Time](s) Time(s) Acc.

leader3

Pmin(true U≤5000 elected) 0.015 0.062

1.758Pmax(true U≤5000 elected) 0.007 0.041
Pmin(true U elected) 0.001 0.002
Pmax(true U elected) 0.001 0.004

leader5

Pmin(true U≤5000 elected) 0.491 6.554

4.041Pmax(true U≤5000 elected) 0.596 7.487
Pmin(true U elected) 0.03 0.333
Pmax(true U elected) 0.053 0.479

leader6

Pmin(true U≤5000 elected) 6.607 240.906

7.916Pmax(true U≤5000 elected) 6.699 235.695
Pmin(true U elected) 1.75 3.952
Pmax(true U elected) 3.743 5.932

coin2

Pmin(true U≤5000 finished) 0.096 0.126

1.000Pmax(true U≤5000 finished) 0.087 0.117
Pmin(true U finished) 0.032 0.008
Pmax(true U finished) 0.035 0.01

coin4

Pmin(true U≤5000 finished) 6.948 31.712

2.718Pmax(true U≤5000 finished) 5.735 31.038
Pmin(true U finished) 2.984 12.337
Pmax(true U finished) 6.234 12.173

csma2 6

Pmin(¬collision max backoff U≤5000 all delivered) 3.055 10.204

1.260Pmax(¬collision max backoff U≤5000 all delivered) 3.043 9.471
Pmin(¬collision max backoff U all delivered) 1.8 2.883
Pmax(¬collision max backoff U all delivered) 12.786 7.367

csma4 2

Pmin(¬collision max backoff U≤5000 all delivered) 3.879 1385.742

64.535Pmax(¬collision max backoff U≤5000 all delivered) 3.602 1385.743
Pmin(¬collision max backoff U all delivered) 3.406 1170.56
Pmax(¬collision max backoff U all delivered) 8.688 1270.965

ij16

Pmin(true U≤5000 stable) 2.813 40.54

3.078Pmax(true U≤5000 stable) 2.322 40.822
Pmin(true U stable) 0.757 0.78
Pmax(true U stable) 0.547 0.758

ij18

Pmin(true U≤5000 stable) 17.419 219.509

0.620Pmax(true U≤5000 stable) 13.388 220.905
Pmin(true U stable) 4.318 4.996
Pmax(true U stable) 1.912 3.909

beauquier5

Pmin(true U≤5000 stable) 0.109 0.274

2.158Pmax(true U≤5000 stable) 0.091 0.241
Pmin(true U stable) 0.005 0.068
Pmax(true U stable) 0.005 0.071

beauquier7

Pmin(true U≤5000 stable) 0.202 4.312

6.795Pmax(true U≤5000 stable) 0.163 4.014
Pmin(true U stable) 0.007 0.069
Pmax(true U stable) 0.006 0.031

beauquier9

Pmin(true U≤5000 stable) 8.589 95.185

2.353Pmax(true U≤5000 stable) 6.394 92.363
Pmin(true U stable) 2.722 0.97
Pmax(true U stable) 0.822 0.22
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Table III. Experiment Results (Property Driven)

Protocol Abs.(s) Iterations Acc.

leader3 0.066 24 1.225

leader5 2.025 51 4.843

leader6 18.702 65 13.406

coin2 0.037 54 0.723

coin4 19.18 125 2.256

csma2 6 7.451 194 0.628

csma4 2 95.662 187 45.527

ij16 5.011 19 7.307

ij18 107.319 22 3.112

beauquier5 0.011 11 3.085

beauquier7 0.403 14 10.915

beauquier9 10.104 14 6.587

“Iterations” denotes the number of refinements before termination, that is, the value
of i after termination. From Table III, we can see the time taken to abstract “ij18” is
only about 107 seconds by applying property-driven abstraction and refinement, while
without applying property-driven technique it takes more than 688 seconds. However,
the property-driven PIBAR does not always exceed PIBAR. For instance, for “coin4”
and “csma4 2”, property-driven PIBAR is slower than PIBAR. This difference is rooted
in the structures of the models: Our experiments indicate that property-driven PIBAR
is more efficient if the target states are in close reach from the initial states, otherwise
PIBAR is more preferable. For instance in “coin4”, the minimal expected number of
steps needed from the initial states to states labeled with finished is more than 4,781,
while for “ij18”, the maximal expected number of steps before reaching target states
labeled with stable is less than 153.

From Tables I, II, and III, we can see that PIBAR and property-driven PIBAR perform
quite differently in practice. The reason being that they try to refine the system in
different dimensions. With reference to Figure 1, plain PIBAR computes the relation
in the first row, then the relations in the second row, and so forth, that is, ≡PCTL is
approximated in a horizontally-first manner. Instead, property-driven PIBAR considers
only a single splitter to refine, which means that the parameter j governing the inner
loop of Algorithm 1 is 1 and that the outer loop in Algorithm 2 is basically omitted.
Pictorially speaking, Figure 1 collapses into a single column, and the refinement simply
proceeds by increasing the depth, that is, the parameter i in Algorithm 1. Thus we
effectively converge to ≡PCTL from the top to bottom in a vertically-first manner.

6.3. Properties with Probabilistic Bounds

In the previous sections, we always computed precise values of reachability probabili-
ties. In this section, we give an example showing that for PCTL properties with explicit
probabilistic bounds, PIBAR may terminate after fewer iterations of refinement than
computing precise values.

In Figure 4, we visualize the convergence for “csma4 2” with respect to the prop-
erty Pmax(¬collision max backoff U all delivered). By increasing the number of iter-
ations, we obtain a finer quotient system, and the abstract result is closer to
the real probability in the original model. However, in many cases it is not nec-
essary to do so. For instance if we were to check whether “csma4 2” satisfies
P≥0.8(¬collision max backoff U all delivered), there is no need to know the precise
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Fig. 4. csma4 2: The result gets more accurate as we increase the number of iterations.

probability of satisfying ¬collision max backoff U all delivered. In fact, we can stop
refinement after 180 iterations, because at this point, we already know for sure the
minimal probability of satisfying ¬collision max backoff U all delivered is less than
0.8, and thus we can conclude that the property is not satisfied by “csma4 2”. If the
bound were 0.96, we could stop after 150 iterations. Notably, this is not an a posteriori
analysis: The algorithm terminates after reaching the needed probability bound.

6.4. Comparison with Probabilistic CEGAR

We also compared our PIBAR implementation with PASS [Hahn et al. 2010] on finite
probabilistic models. PASS implements probabilistic CEGAR [Hermanns et al. 2008]
and game-based abstraction-refinement [Kattenbelt et al. 2010], where refinement
steps are guided by counterexamples expressed by a set of paths violating the property.
Our experimental evaluation shows that PIBAR usually performs better than PASS.
This seems to be rooted in the fact that PASS relies on predicate abstraction and re-
finement, which may take many rounds of refinement before termination. For instance,
for the “Bounded Retransmission Protocol” model with parameters 32 and 5 and prop-
erty 1 considered in Hermanns et al. [2008], PASS took more than two minutes, while
PIBAR took less than ten seconds. However, this purely runtime-oriented analysis has
to be taken with a grain of salt, because there are two significant differences between
PIBAR and PASS: PIBAR (i) works with explicit-state representations of models, while
PASS works directly on the higher language level (such as the PRISM language). PASS
in turn (ii) is able to deal with infinite-state models, which are entirely out of reach for
the PIBAR approach. Therefore a direct comparison between PIBAR and PASS does
not seem to be making much sense.

7. RELATED WORK

Probabilistic abstraction-refinement techniques have first been studied in D’Argenio
et al. [2001, 2002]. While their approach focuses on the reachability probabilities, our
approach deals in principle with all PCTL properties. Moreover, the major difference
between PIBAR and D’Argenio et al. [2001, 2002], is that different refinement strategies
are adopted. Specifically, in D’Argenio et al. [2001], whenever it is necessary to refine
an abstract system, first those blocks are identified in which the concrete states have
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different futures, that is, they can evolve into different distributions (up to the current
equivalence relation). This refinement strategy is based on the bisimulation criteria
and has been used in other models [Bouajjani et al.1992, Alur et al. 1992, Spelberg
et al. 1998]. In D’Argenio et al. [2002] this refinement method is further improved.
In the present article, we instead adopt a novel refinement strategy which is directly
based on the sequence of bisimulations proposed in Song et al. [2013a]. The advantage
of this refinement strategy is that it needs very few refinements before termination.
For many practical examples, it even terminates after the first refinement.

In probabilistic CEGAR [Wachter and Zhang 2010], refinement steps are guided
by counterexamples expressed by a set of paths violating the property. As already
mentioned, further extensions include stochastic games [Wachter and Zhang 2010;
Kattenbelt et al. 2010] for obtaining both upper and lower bounds, and also extensions
carrying over to probabilistic software verification [Kattenbelt et al. 2009; Esparza and
Gaiser 2011] exists.

In Roy et al. [2008] and de Alfaro and Roy [2007] an abstraction technique for
MDPs called magnifying lens abstraction was introduced, which does not depend on
counterexamples generation and analysis. It first partitions the states into regions (or
blocks) and then computes upper and lower bounds on these regions. In order to do so,
it considers only one region at a time and computes the bounds of the concretestates in
it. The refinement of a region depends on the computed bounds of its concrete states.
The magnifying lens abstraction technique is designed for reachability and safety
properties, and moreover it is a property-driven abstraction, that is, it deals with one
property each time.

Compared to previous approaches, PIBAR constructs abstractions based on the se-
quence of bisimulation relations converging to the PCTL equivalence. Thus it facilitates
the verification of arbitrary PCTL properties. Notice, as said previously, that the ap-
proach in Chadha and Viswanathan [2010] has been introduced to handle arbitrary
PCTL properties as well, but that approach involves repeated computations of simula-
tion relations which is slow in practice [Zhang and Hermanns 2007]. To the best of our
knowledge, the CEGAR approach of Chadha and Viswanathan [2010] has not yet been
implemented.

The PIBAR approach has a flavor similar to the bisimulation-based minimization
approach for Markov chains [Katoen et al. 2007]. In particular, ∼1,1 can be computed in
the same way as the bisimulation for Markov chains with minor changes, therefore it
can be considered as an extension of this approach to the model of PAs. Our work is also
related to Dehnert [2011] and Wimmer et al. [2006], in which the classical bisimulation
[Segala 1995] has been computed symbolically: The polynomial algorithm turns out
to be rather expensive in practice. The theoretical complexity of checking the PCTL
equivalence relation is even worse: It is NP-complete. In Dehnert [2011], it has been
shown that state space minimization based on the classical bisimulation usually does
not speed up the verification, since the bisimulation is expensive to compute. In this
article, we observe that for many cases, the classical bisimulation is too fine, and usually
a quite coarser bisimulation for generating the quotient system is enough. Interestingly,
even though with high theoretical complexity (NP-complete), our approach is efficient
in almost all of the selected case studies.

8. CONCLUSION AND FUTURE WORK

In this article, we proposed the PIBAR framework, an abstraction-refinement frame-
work based on a sequence of bisimulation equivalence relations. Our prototypical ex-
periments show that PIBAR works well in practice, and very often it terminates after
very few refinement steps.
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As future work, we will extend PIBAR symbolically to be able to deal with larger
systems. Inspired by Dehnert et al. [2013], an implementation of PIBAR based on SMT
would also be interesting. Many relations in Figure 1 could be computed efficiently in
polynomial time, thus another interesting direction would be to identify such relations
and compute them first. Since continuous-time Markov decision process (CTMDP) is
a continuous extension of PA, we plan to extend this framework further to deal with
CTMDPs.
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