
Achieving Efficient and Fast Update for Multiple Flows in
Software-Defined Networks

Yujie Liu†, Yong Li†, Yue Wang†, Athanasios V. Vasilakos‡, Jian Yuan†
† Tsinghua National Laboratory for Information Science and Technology

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
‡ Department of Computer and Telecom. Engineering, University of Western Macedonia, Greece

liyong07@tsinghua.edu.cn

ABSTRACT
Aiming to adapt traffic dynamics, deal with network errors,
perform planned maintenance, etc., flow update is carried
out frequently in Software-Defined Networks (SDN) to
change the data plane configuration, and how to update
the flows efficiently and successfully is an important and
challenging problem. In this work, we address the multi-flow
update problem and present a polynomial-time heuristic
algorithm, which aims at completing the update in the
shortest time considering link bandwidth and flow table size
constraints. By extensive simulations under real network
settings, we demonstrate the effectiveness and efficiency of
our algorithm, which has near-optimal performance and is
hundreds of times faster than the optimal solution.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network management

Keywords
Software-defined networks; flow update; heuristic algorithm

1. INTRODUCTION
With the increasing demand of simplifying network con-

trol, Software-Defined Networking (SDN) [1] is an emerging
network architecture to provide efficient control and man-
agement of the network. Different from the Internet, SDN
separates the data plane from the control plane, and the
data plane forwards the packets using the forwarding table
configured by the controller in the control plane through
southbound interfaces, such as OpenFlow. However, the
forwarding rules of flows need to change frequently in
many scenarios to adapt to various traffic dynamics, deal
with network errors, perform planned maintenance, etc.
Therefore, the controller needs to reconfigure the forwarding
plane. The flow update should be carried out successfully,
since if the update fails, the network will not be configured

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
DCC’14, August 18, 2014, Chicago, Illinois, USA.
Copyright 2014 ACM 978-1-4503-2992-7/14/08 ...$15.00.
http://dx.doi.org/10.1145/2627566.2627572.

properly to meet the new demand, which may cause network
error and service degradation. Thus, we desire to finish
the update process as fast as possible to adapt to the new
circumstances rapidly.

Formally, flow update in SDN can be described as follows:
multiple active flows are transmitted in the network, and the
controller installs a set of new packet-forwarding rules, says
B, into the switches to replace the initial rules A. Normally
a two-phase method is used to update the flow table [4] [5],
which first stamps every packet with a version number, e.g.,
VLAN tag, then performs the update by the following three
stages: (I) install B in the middle nodes of the network;
(II) install B at the perimeter of the network; (III) when all
packets processed by A have left the network, remove A in
all nodes. Note that in stage (II) the switches contain both
the initial and final forwarding rules, which requires double
flow table space. Since flow table is a limited resource, there
may not be enough space when multiple flows are updated
at the same time. Therefore, it is a viable solution to split
the update process into several steps [2, 3, 4].

In the multi-flow update process, there are many possible
situations in the intermediate steps when a part of the flow
paths have been updated. Even though the network is not
congested under the initial and expected states, it may still
suffer from congestions and packet losses during the update
process. From the perspective of links, bandwidth is a major
constraint factor, since the physical links shared by several
flows may be very busy. To avoid congestions, we need to
make sure the link utilization during update is not beyond
the capacity limits. From the perspective of switches,
flow table space is another important constraint factor.
Note that in SDN flow table size is very limited, because
the commonly used flow table, especially TCAM (Ternary
Content Addressable Memory), is expensive and power
hungry [3]. For example, the analysis in [3] demonstrates
that in order to use 15-shortest path, up to 20K flow entries
are needed, which is beyond the flow table size of even
next-generation SDN switches. Once the flow table is fully
occupied, the switch will refuse to install other flow entries,
which causes network forwarding error. Moreover, flow
table usage is closely correlated with bandwidth utilization,
since forwarding the packets of a flow through the path
requires using bandwidth of the links as well as installing
flow entries into the switches. Thus, we need to jointly
consider the above two key factors instead of dealing with
them independently in the multi-flow update problem.

In this paper, we study the problem of multi-flow update
by taking both link bandwidth and flow table size con-

77

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2627566.2627572&domain=pdf&date_stamp=2014-08-18

straints into account. Our contributions can be summarized
as below.

• We formulate the multi-flow update problem as an
optimization problem that minimizes the number of
steps to find the optimal flow update scheme, under
both link bandwidth and flow table size constraints.

• We propose a heuristic algorithm to solve the multi-
flow update problem, which fully utilizes the network
resources and finds the solution in polynomial time.

• We demonstrate the effectiveness and robustness of
our algorithm by extensive simulations under realistic
settings. The results demonstrate our algorithm has
near optimal performance and is hundreds of times
faster than the optimal solution.

The rest of the paper is organized as follows. In Section 2,
we describe and formulate the multi-flow update problem.
We depict the optimal solution and our heuristic algorithm
in Section 3. After presenting performance evaluation in
Section 4, we conclude the paper in Section 5.

2. PROBLEM FORMULATION

2.1 Problem Statement
We now explain the details of the multi-flow update

problem by an example shown in Fig. 1. In this scenario,
there are several switches and a SDN controller. The
controller has full knowledge of the network forwarding state
and configures the flow table of all switches via OpenFlow
protocol. There are multiple active flows in the network,
and their forwarding paths are determined by relative flow
entries in the switches. When changes occur in traffic
demand or network topology, the controller detects the event
and carries out flow update to refresh the forwarding rules.

During the update, transient congestion may happen
which leads to packet losses and service degradation. Thus,
it is complicated to carry out multi-flow update, and a
feasible solution is to update the flows step-by-step. As
shown in Fig. 1, two flows, f1 and f2, need to change
their paths to f ′

1 and f ′
2. The link capacity is 10 units,

and the flow table size of a switch is 15 rules. The traffic
size of each flow is 2 units and 4 rules are required in the
switches on its path. To carry out the update, we should
first add the new forwarding rules into relative switches.
Therefore, if we update f1 and f2 in one step, Switch D
will have to hold 16 rules, which is beyond its flow table
size. However, if we separate the update into two steps, it is
completed successfully. Thus we investigate the multi-flow
update problem with the multi-step strategy.

2.2 System Model
We now formally describe the multi-step flow update

problem. The network consists of D switches denoted by set
U which are connected by L directed links denoted by set E.
The traffic of K active flows need to be updated. We use bj
and sj , j ∈ {1, · · · ,K} to represent their traffic load and the
number of flow entries that need to be installed to route flow
j through the switches respectively. The old routing paths
are denoted by {P1, · · · , Pi, · · · , PK}, where Pi is the path
from the source node of flow i to its destination node, and
the new paths are denoted by {P ′

1, · · · , P ′
i , · · · , P ′

K}. A path

1f 2f

1 'f 2 'f

The

Controller

Figure 1: System Overview. For each flow the traffic
size is 2 units and 4 rules are required. The link
capacity is 10 units, and the flow table size of the
switches is 15 rules. We cannot update f1 and f2 in
one step, and a feasible solution is to update them
one by one.

from a source node us to a destination node ud is defined
as the list of nodes {us = u0, u1, u2, · · · , uk = ud}, and the
links connecting them, where ui is the next hop node of
ui−1 and (uj−1, uj) ∈ E. In every path the next hop of a
switch is only one, and the paths are loop-free. We use c(e)
to represent the capacity of link e and q(u) to represent the
flow table size of switch u.

In the multi-step flow update scheduling problem, consid-
ering the network resource constraints, we want to finish the
update as quickly as possible. We use the binary variable
Ik, k ∈ {1, · · · ,K} to indicate whether the update is still in
progress in step k: Ik = 1 if some flow is updated in step k,
and Ik = 0 if the update has been completed before the kth
step. To further describe how the update is carried out in
detail, we use xij to denote the part of flow j that is updated
from Pj to P ′

j in step i. Let fi(e), i ∈ {0, 1, · · · ,K} represent
the traffic load on link e, e ∈ E when the ith update step is
finished. Note that, f0(e) and fK(e) indicate the initial and
final traffic distribution in the network respectively. We use
ni(u), i ∈ {0, 1, · · · ,K} to denote the maximum number of
flow entries on switch u during step i.

2.3 Formulation of the Flow Update Problem
Since we aim to complete the update using the least

number of steps, the objective of the optimization problem
can be formulated as follows,

min

K∑
k=1

Ik. (1)

From the system model, we have
∑K

i=1 xij = 1, j ∈
{1, · · · ,K} which means the entire traffic of every flow has
been routed to the new path, since every flow should have
finished the update in K steps. The variable Ik is restricted
by the linear combination of xij as Ik ≥ ∑K

j=1
1
K
xkj , k ∈

{1, · · · ,K} and Ik ≥ Ik+1, k ∈ {1, · · · , K − 1}. Since Ik is
a binary variable, we can observe that Ik = 1 if any value
of xkj , k ∈ {1, · · · ,K} is above zero which means that some

78

flow is updated in step k, and Ik = 0 if the values of xkj

are all zeros meaning that the update has been completed
before the kth step. Note that the constraint of Ik ≥ Ik+1

ensures that as long as the update is finished in the kth step,
there will be no more update operations in the subsequent
steps.

Then we formalize the link and switch constraints of the
problem. Concerning the link bandwidth constraint, f0(e)
represents the initial traffic load on each link. It can be
calculated by adding all the traffic load of the flows routed
through link e as f0(e) =

∑K
j=1 In(e ∈ Pj)bj , where In(·) is

a function indicating the value of the input logic expression.
Then we assume in the ith step flow j moves xij part of its
traffic to the new path. If link e belongs to the new path
P ′
j , the value of fi(e) should add xijbj ; if link e belongs to

the old path Pj , the value of fi(e) should subtract xijbj ; if
link e belongs to both of P ′

j and Pj or neither of them, the
value of fi(e) will not change. In this way, we can calculate
fi(e) iteratively for every step,

fi(e) =fi−1(e) +
K∑

j=1

In(e ∈ P ′
j)bjxij

−
K∑

j=1

In(e ∈ Pj)bjxij .

(2)

Based on the iterative formula of fi(e), we have

fi(e) =
K∑

j=1

In(e ∈ Pj)bj +
i∑

a=1

K∑
j=1

In(e ∈ P ′
j)bjxaj

−
i∑

a=1

K∑
j=1

In(e ∈ Pj)bjxaj .

(3)

With regard to the constraint of flow table size, we focus
on the maximum number of flow entries on the switches
in each step. When traffic load is heavy, our solution can
divide the update of a flow into several steps and moves a
part of the flow to the new path in each step. To route a
part of the flow through its new path, no matter how much
traffic is migrated, the new flow entries should be added
to the switches. However, only when the whole flow has
been updated, the old flow entries can be removed. Thus we
introduce two binary variables yoij and ynij to represent
whether the old forwarding rules of flow j can be removed
and whether the new forwarding rules should be added at
stage II of step i, which can be described in detail as follows,

yoij =

⎧⎪⎪⎨
⎪⎪⎩

0, i = 1;

In(

i−1∑
a=1

xaj = 1), 2 ≤ i ≤ K;

ynij = sign(
i∑

a=1

xaj), 1 ≤ i ≤ K.

(4)

Note that, at stage II of the first update step, no old rules
will be deleted. Since n0(u) represents the original number
of flow table entries configured in each switch, it can be
calculated as n0(u) =

∑K
j=1 In(u ∈ Pj)sj .

Based on the above analysis, we can derive the expression
of ni(u) as follows,

ni(u) =n0(u) +
K∑

j=1

In(u ∈ P ′
j)sjynij

−
K∑

j=1

In(u ∈ Pj)sjyoij .

(5)

From the model description, we also have the constraints
of the variable xij as 0 ≤ xij ≤ 1.

As mentioned before, the SDN controller is supposed to
complete the update process using the least number of steps
during which the link and switch constraints are satisfied.
Thus, combining the above objective and the constraints,
we formulate the optimization problem as follows,

min

K∑
k=1

Ik

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fi(e) ≤ θc(e),∀i ∈ {1, · · · ,K}, ∀e ∈ E; (6a)

ni(u) ≤ q(u),∀i ∈ {1, · · · ,K}, ∀u ∈ U ; (6b)

0 ≤ xij ≤ 1, ∀i, j ∈ {1, · · · ,K}; (6c)

K∑
i=1

xij = 1, ∀j ∈ {1, · · · ,K}; (6d)

Ik ≥
K∑

j=1

1

K
xkj ,∀k ∈ {1, · · · ,K}; (6e)

Ik ≥ Ik+1,∀k ∈ {1, · · · ,K − 1}. (6f)

In the above formulation, θ represents the maximum
allowed link utilization which indicates the load of all links
should remain below a certain level to guarantee network
performance during the update. The decision variables are
xij indicating the flow update solution, and the objective
is to find the shortest update process without violation of
resource constraints.

3. PROBLEM ANALYSIS AND SOLUTION

3.1 Heuristic Algorithm Design
We propose a heuristic solution for its simplicity and

efficiency to solve the multi-step flow update problem.
Recalling the constraints shown in (6a) and (6b), we find
that flow table constraint is more difficult to meet than
the link capacity constraint, since the max overhead of the
update process comes from the stage II of each step when the
new flow entries have been added to the switches. Thus, flow
table space for both the new and the old forwarding rules
are required at the same time, which may not be available
for the switches with few resources left, such as some key
switch belonging to multiple routing paths. This kind of
switch is the bottleneck of the update scheduling problem,
and a feasible solution is to migrate the old flows passing
through the key switch first to make room for the new flows.

Based on the above analysis, we propose a heuristic
algorithm named SortedSeq which gives flow table usage a
priority consideration. For each flow j, we calculate the
maximum percentage of sj in the free flow table space of
each switch on its new path, and denote the value as vj .
On one hand, the greater value of vj means the update of

79

Algorithm 1 Heuristic algorithm for the multi-flow update
problem.

1: Initialize: set Up(j) = 0
2: if the flows can be updated in one step then
3: Up(j) = 1,∀j ∈ [1, K]
4: return x as the solution, step = 1
5: else
6: Find u which has the max value of nK(u), and

update flow j, ũ ∈ Pj if possible
7: Go over the other flows, and update them if possible
8: end if
9: while minUp(j) = 0 do
10: Sort the flows in the descending order of vj =

max su
q(u)−nt(u)

11: Update the ones for which there is enough resource,
refresh Up(j)

12: end while
13: return the solution

flow j is more restricted and should be accomplished earlier.
On the other hand, since the initial and final network state
is congestion-free, to minimize the amount of update steps,
the remaining resources must be fully utilized to update as
many flows as possible at each step.

According to the two basic principles, our proposed
heuristic algorithm is shown in Algorithm 1. To explain
it, let us review the sample scenario in Fig. 1. In step 2-4,
SortedSeq first checks whether f1 and f2 can be updated
together. The one-step attempt fails, then the algorithm
picks out Switch D which has the most flow entries in the
final state, and update f1 to f ′

1 in step 5-8. Next in step
9-13, SortedSeq updates f2 to f ′

2 and outputs the solution
f1 → f2. Note that, our algorithm cannot always get the
optimal solution, but it has near-optimal performance and
achieves a much faster running time as we will show in the
next section.

4. PERFORMANCE EVALUATION
We evaluate the performance of our algorithm using ex-

tensive simulations over real network settings, and compare
it with three algorithms. The first one is the Optimal
algorithm, which seeks the optimal solution of the flow
update problem formulated in (6a) to (6f) using YALMIP
toolbox [8]. The other two are RandSeq and BiDi, each
of which changes one important feature of our algorithm
respectively. RandSeq also iterates over the set of all the
remaining flows at every step, but different from SortedSeq,
it sorts the flows in a random way instead of taking into
account the flow table utilization of each flow. In contrast,
BiDi rearranges the flows by the descending order of vj
before each step, but it searches the flows in a bidirectional
way. In each step, BiDi runs two searches over the remaining
sorted flows: one forward from the flow with the highest
value of vj , and one backward from the flow with the lowest
value of vj . The update is completed when the two searches
meet in the middle. It is easy to prove that RandSeq and
BiDi are polynomial-time algorithms.

4.1 Experimental Settings
We evaluate our algorithm by Google’s inter-datacenter

WAN B4 [9], which has 12 nodes and 38 directional links.

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

Update step

M
ax

 li
nk

 u
til

iz
at

io
n

Optimal
SortedSeq

(a) Max link utilization

0 2 4 6
0

0.2

0.4

0.6

0.8

1

Update step

M
ax

 fl
ow

 ta
bl

e
ut

ili
za

tio
n

Optimal
SortedSeq

(b) Max flow table utilization

Figure 2: Performance in each step during the
update process: (a) max link utilization, and
(b) max flow table utilization.

Since the flow update algorithms are all independent to the
routing selection methods, we consider the scenario where
the SDN controller uses the shortest path in OSPF to
choose the forwarding paths for the flows, and select the
source and the destination nodes of each flow in a random
way. Based on the weights assigned to each link, the initial
routing policy can be easily calculated. Then the weights
are rearranged to simulate events causing flow update, such
as broken links or dynamic traffic demands. Thus, the final
routing policy can be obtained by performing the shortest
path routing method again.

The network parameters are configured as follows. The
link bandwidth is 1Gbps, and the flow table size of all
switches are set to be 750 rules, which is the same as
what the testbed switches support in the experiment of [3].
The traffic rate of each flow follows uniform distribution of
[b − δb, b + δb], where b is the average flow rate and δb is
the maximum deviation between the link rate of every flow
and the average value. We set b to be 30Mbps and δb to
be 10Mbps by default. The flow considered in the update
scenario actually refers to the aggregation of several real
flows. For example, in backbone networks since there are
multiple different paths between two switches, in order to

80

0.025 0.03 0.035 0.04
1.5

2

2.5

3

3.5

4

4.5

Average rule table usage per flow

T
he

 n
um

be
r

of
 u

pd
at

e
st

ep
s

SortedSeq
RandSeq
BiDi

(a) The number of steps

0.025 0.03 0.035 0.04
0.5

0.6

0.7

0.8

0.9

1

1.1

Average rule table usage per flow

U
pd

at
e

su
cc

es
s

ra
te

SortedSeq
RandSeq
BiDi

(b) Update success rate

Figure 3: Performance during the update process
as function of the flow table size: (a) the number of
steps and (b) update success rate.

fully utilize the link bandwidth, several flow entries need to
be installed on them. Due to different control granularity of
flows, the number of flow entries required by different flows
is varied. There is no pubic statistical data regarding this
problem to the best of our knowledge, so we assume the
number of flow entries required by the flows follows uniform
distribution of [s− δs, s+ δs], where s is the average number
of flow entries needed by the flows, and δs is the maximum
deviation. We set s to be 30 and δs to be 10 by default. We
carefully arrange the network configuration, to make sure
the network is not congested in the initial and final state,
which means that in both cases the traffic carried by every
link is less than its capacity and every switch has enough
flow entry space to route the flows passing it.

We first validate the effectiveness of the algorithms by
comparing the performance of the optimal solution and our
heuristic algorithm. Then we show how network parameters
of flow table size and the number of flows influence the
system performance.

4.2 Comparing Our Algorithm with the Opti-
mal Solution

We first observe the performance of SortedSeq and Op-
timal, under the scenario where flow table space is heavily
utilized. There are 45 flows in the B4 network, and link
utilization is not high(< 50%). We examine the system
performance metrics in each step, in terms of max link
utilization and max flow table utilization, and compare the
total number of steps. The results are shown in Fig. 2.

From the results, we can observe that for Optimal the
update is finished in 2 steps. While SortedSeq uses 3 steps,
and gets similar value of max link utilization compared with
Optimal. Regarding the max flow table utilization as shown
in Fig. 2 (b), we observe that for both algorithms the
max usage of flow table becomes close to 100% in the first
step, since the switches have to carry two sets of forwarding
rules at the beginning. Furthermore, the max flow table
utilization of SortedSeq is almost the same with Optimal,
which is consistent with the observations in Fig. 2 (a).
The running time of Optimal is about 10 seconds, while
running time of our algorithm is only less than 0.02 seconds,
which is about 500 times faster than the optimal solution. In
general, we can see the two algorithms succeed in finishing
the update without violation of resource limits, and our
solution has near performance to the optimal one. To verify
the robustness of the algorithms, the impact of network
parameters on algorithm performance is analyzed in the
following sub-sections.

4.3 Impact of Flow Table Size
Since flow table is an important resource constraint in

SDN, we carry out simulations to evaluate how flow table
size can impact the update process. There are 40 flows to
update, and we set average link utilization per flow to 2%.
Since the link load is relatively low, it is not the bottleneck
factor restricting update process. Then we change the
average flow table utilization per flow from 2.67% to 4%,
and run the simulation 50 times. The network performances
are evaluated, and we present the results in Fig. 3.

We observe that the number of update steps rises when
flow table size decreases as shown in Fig. 3 (a). BiDi needs
the most number of steps, since the bidirectional searching
method cannot update as many flows as possible in a step.
SortedSeq and RandSeq complete the update with almost
the same number of steps, but considering update success
rate shown in Fig. 3 (b), SortedSeq is better. The results
demonstrate that when flow table size is very limited, our
algorithm is effective and efficient. Furthermore, if we desire
an even more faster solution, the simplified version of our
algorithm, RandSeq, is a good choice, but at the expense of
lower success ratio.

4.4 Impact of Flow Number
We now study how the number of flows impacts on

network performance. The simulation scenario is similar
to that in the previous sub-section. The link capacity and
flow table size are fixed. We increase the number of flows
in the network from 24 to 39, while keeping the average
link utilization per flow to be 4% and average flow entries
required per flow to be 2.67% of the flow table size. The
results are shown in Fig. 4.

Concerning the number of steps, as shown in Fig. 4 (a),
when the number of flows increases, the algorithms take

81

24 27 30 33 36 39
1

2

3

4

5

6

Total flow number

T
he

 n
um

be
r

of
 u

pd
at

e
st

ep
s

SortedSeq
RandSeq
BiDi

(a) The number of steps

24 27 30 33 36 39

0.7

0.8

0.9

1

Total flow number

U
pd

at
e

su
cc

es
s

ra
te

SortedSeq
RandSeq
BiDi

(b) Update success rate

Figure 4: Performance during the update process
as function of the flow number: (a) the number of
steps and (b) update success rate.

more steps to finish the update. BiDi uses the largest
number of steps when the flow density is large, while
SortedSeq is much faster. RandSeq also performs good in
terms of update steps, but with regard to success rate as
depicted by Fig. 4 (b), its success ratio is lower than our
algorithm when the flow number increases. BiDi has the
lowest update success rate, because its mechanism does not
pay special attention to the busiest switches of the network.
When the total number of flows is relatively large (greater
than 33), none of the algorithms works well, because the flow
table is in heavy use and there is little space left to install
new rules. In this case, our algorithm is more robust, which
finishes about 15% more update. In conclusion, simulation
results indicate that our proposed algorithm is robust and
efficient when the total number of flow increases.

5. CONCLUSION
In this paper, we propose a general framework to formu-

late the multi-flow update problem and present a polynomial-
time heuristic algorithm, which aims at completing the
update in the shortest time under both link bandwidth and
flow table size constraints. Extensive simulations based on
real topologies show that the proposed algorithm is efficient
and has pretty good performance compared with the optimal
solution.

6. ACKNOWLEDGEMENTS
The authors wish to thank the anoymous reviewers for

their valuable feedback on improving this paper. This work
is supported by the National Basic Research Program of
China (973 Program) under grants 2013CB329105, and the
National Nature Science Foundation of China (Grant No.
61273214).

7. REFERENCES
[1] N. McKeown, T. Anderson, H. Balakrishnan,

G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner, “OpenFlow: Enabling Innovation in
Campus Networks,” in SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, Apr. 2008.

[2] S. Ghorbani and M. Caesar, “Walk the line: consistent
network updates with bandwidth guarantees,” in Proc.
ACM HotSDN 2012 (Helsinki, Finland), August 13,
2012, pp. 67–72.

[3] C. Y. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer, “Achieving
high utilization with software-driven WAN,” in Proc.
ACM SIGCOMM 2013 (Hong Kong, China), August
12-16, 2013, pp. 15–26.

[4] N. P. Katta, J. Rexford, and D. Walker, “Incremental
consistent updates,” in Proc. ACM HotSDN 2013,
August 16, 2013, pp. 49–54.

[5] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,
and D. Walker, “Abstractions for network update,” in
Proc. ACM SIGCOMM 2012 (Helsinki, Finland),
August 13-17, 2012, pp. 323–334.

[6] M. Reitblatt, N. Foster, et al., “Consistent updates for
software-defined networks: Change you can believe
in!,” in Proc. HotNets 2011 (Cambridge, MA),
November 14-15, 2011, pp. 7:1–7:6.

[7] S. Vissicchio, L. Vanbever, L. Cittadini, G. Xie, and
O. Bonaventure, “Safe Updates of Hybrid SDN
Networks,” UCL, 2013, pp. 1–12.

[8] J. Löfberg, “YALMIP: A toolbox for modeling and
optimization in MATLAB Computer Aided Control
Systems Design,” in Proc. IEEE CACSD 2004
(Taiwan, China), September 2-4, 2004, pp. 284–289.

[9] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
and others, “B4: Experience with a globally-deployed
software defined WAN,” in Proc. ACM SIGCOMM
2013, (Hong Kong, China), August 12-16, 2013,
pp. 3–14.

82

