
Design and Implementation of an OpenFlow
Hardware Abstraction Layer

Damian Parniewicz† Roberto Doriguzzi Corin] Lukasz Ogrodowczyk† Mehdi Rashidi Fard∗
Jon Matias§ Matteo Gerola] Victor Fuentes§ Umar Toseef‡ Adel Zaalouk‡

Bartosz Belter† Eduardo Jacob§ Kostas Pentikousis‡
†PSNC,]CREATE-NET, ∗University of Bristol, §University of Basque Country, ‡EICT GmbH

ABSTRACT
OpenFlow is a leading standard for Software-Defined Networking
(SDN) and has already played a significant role in reshaping net-
work infrastructures. However, a wide range of existing provider
domains is still not equipped with a framework that supports wider
deployment of an OpenFlow-based control plane beyond Ethernet-
dominated networks. We address this gap by introducing a Hard-
ware Abstraction Layer (HAL) which can transform legacy net-
work elements into OpenFlow capable devices. This paper details
the functional architecture of HAL, discusses the key design as-
pects and explains how HAL can support a number of network de-
vice classes. In addition, this paper presents the implementation
details of HAL for hardware platforms such as DOCSIS (Data over
Cable Service Interface Specification) and DWDM (Dense Wave-
length Division Multiplexing) which have so far received little at-
tention by the OpenFlow research community despite their wide
real-world deployment.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Network Archi-
tecture and Design; C.2.3 [Computer Communication Networks]:
Network Operations; C.2.5 [Computer Communication Networks]:
Local and Wide-Area Networks; C.2.6 [Computer Communica-
tion Networks]: Internetworking—Standards

Keywords
SDN; OpenFlow; Hardware Abstraction; Control Plane; Network
Virtualization; DWDM; DOCSIS

1. INTRODUCTION
Software Defined Networking (SDN) and in particular the Open-

Flow protocol as an SDN enabler [10], is fostering a resurgence in
networking research and a rethinking of network control and opera-
tions [7]. After making headline stories for data center applications,
SDN is now used in infrastructure networks of a global scale [8],
realizing the potential of distributed cloud computing [13]. SDN
can unify the control plane for cloud and network infrastructure

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DCC’14, August 18, 2014, Chicago, Illinois, USA.
Copyright 2014 ACM 978-1-4503-2992-7/14/08 ...$15.00.
http://dx.doi.org/10.1145/2627566.2627577.

in order to deliver optimized performance. For example, John et
al. [9] detail how carrier-grade networks can benefit from dynamic
network service chaining which combines data center virtualization
with in-network function virtualization. Along this line of work, we
discuss in this paper how SDN principles can be employed to define
a unified approach for legacy network management and new cloud
management systems. Accordingly, we can thus automate and or-
chestrate a variety of provisioning processes making the distributed
resources available on-demand through a single control plane.

OpenFlow has undergone many changes since its inception [11].
One could argue that the velocity and scope of changes in the pro-
tocol specification and its extensions have hindered to some extent
wider implementation by vendors and third-party developers. Al-
though the OpenFlow protocol has a single specification for each
version, the diversity of network hardware and software platforms
leads vendors and third-party users to create new OpenFlow li-
braries for each and every platform of OpenFlow implementation.
This makes OpenFlow real-world deployment laborious and time
consuming. Finally, the official OpenFlow specification is drafted
with wired Ethernet platforms as a focal point and has yet to fully
support other platforms such as circuit-switched and wireless plat-
forms, despite recent efforts at ONF.

This paper addresses these problems by presenting the design
and implementation of a Hardware Abstraction Layer (HAL) for
non-OpenFlow enabled network elements. The main objective of
HAL is to realize OpenFlow capabilities on network elements that
do not have native support for OpenFlow and enable their integra-
tion in an OpenFlow deployment. In order to achieve this goal,
the HAL architecture decouples the hardware-specific control and
management logic, which is handled by hardware-specific soft-
ware, from the network node abstraction logic which is imple-
mented by the cross-hardware platform layer. This decoupling fos-
ters reusability for different HAL components making them readily
applicable to a range of hardware platforms as we have documented
earlier [14]. In short, HAL is a viable and experimentally-tested
concept for describing network device capabilities and controlling
the forwarding behavior of all SDN and non-SDN capable hard-
ware throughout a network with a single control plane based on
OpenFlow. In practice, HAL hides the hardware complexity as well
as the technology- and vendor-specific features, thus presenting a
unified abstraction layer to standard, off-the-shelf OpenFlow cont-
roller(s). Our first contribution in this paper is a blueprint of the
HAL architecture, a modular design with reusable components for
faster development and deployment. The second contribution is an
account of the implementation experience with several hardware
platforms and the lessons learned in the process. We expect that
HAL can facilitate wider deployment of OpenFlow and serve as a
foundation block in distributed data center environments.

71

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2627566.2627577&domain=pdf&date_stamp=2014-08-18

The remainder of this paper is organized as follows. Section 2
introduces HAL and Section 3 presents the HAL interfaces. Sec-
tion 4 details HAL implementation on different hardware platforms
and Section 5 relates HAL to previous research work. Finally, our
conclusions and future work are presented in Section 6.

2. HARDWARE ABSTRACTION LAYER
The main purpose of HAL is to transform legacy network ele-

ments into OpenFlow-compatible devices through a set of abstrac-
tions. This approach will allow operators, on the one hand, to ex-
tend their OpenFlow-based control plane to legacy but valuable in-
frastructure and, on the other hand, to network modern OpenFlow
switches with non-OpenFlow capable devices in a seamless man-
ner. Considering the large array of devices that can be supported by
HAL, the architecture must be based on a modular design which is
easily extensible and compatible with heterogeneous network de-
vices. By following a modular design approach, the behavior of
any platform can be modified/extended without compromising the
overall HAL architecture. From an implementation perspective,
this approach also facilitates and accelerates HAL development for
similar network platforms by exploiting module reusability. For in-
stance, in [14] we discuss how HAL is used to produce adaptations
to different programmable network platforms. The decoupling of
the hardware-specific control and management logic from the net-
work node abstraction allows us to hide the device complexity as
well as the technology- and vendor-specific features from the con-
trol plane logic.

Figure 1 is a high-level schematic of the HAL functional archi-
tecture. The aforementioned decoupling is achieved through a split
into two distinct sublayers, namely, the Cross-Hardware Platform
Layer (CHPL) and the Hardware-Specific Layer (HSL). CHPL is
responsible for node abstraction, virtualization and configuration
mechanisms. HSL takes care of discovering the particular hardware
platform and performing all required configuration using hardware-
specific modules. The two sublayers communicate with each other
through one of two interfaces, namely the Abstract Forwarding API
and the Hardware Pipeline API depending on the type of the net-
work device (see Section 3).

Note that the proposed HAL blueprint can also be employed by
OpenFlow-capable devices as well. For example, a carrier can
employ HAL to extend the functionality of OpenFlowd switches
which have already been deployed in the field but support only a
particular OpenFlow version (OF) out-of-the-box. HAL could be
employed, for instance, in combination with an OF v1.0 switch to
allow support for OF v1.2 features as we explain later.

2.1 Cross-Hardware Platform Layer
The Cross-Hardware Platform Layer (CHPL) is the hardware-

agnostic software component which is common across all HAL-
capable platforms. It comprises several independent modules re-
sponsible for device management, monitoring and control.

The CHPL OpenFlow Endpoint encapsulates all necessary con-
trol plane functionalities, maintains connectivity with the Open-
Flow controller, and manages the forwarding state all the way to
the platform drivers. On the management plane, CHPL presents a
unified abstraction of the physical platform (physical ports, virtual
ports, tunnels, and so on) to plugin modules hosted by a plug-in
manager. This enables various plug-in modules to perform a vari-
ety of configuration- and management-related operations. Exam-
ples of plugin modules include a NETCONF/OF-CONFIG agent,
a file-based configuration facility, and a Virtualization Agent (VA).
The VA, as the name implies, adds resource virtualization features
to the platform, such as, for instance, slicing the device to be shared

Hardware Specific Layer

H
a

rd
w

a
re

 A
b

st
ra

ct
io

n
 L

a
ye

r

Translation Orchestration Discovery

Network Control Network Management

Network Device(s)

Cross-Hardware Platform Layer

Virtualization

AFA

Configuration

AFA

Notification

VGW

NETCONF /

OF-CONFIG
OpenFlow

OpenFlow

AFA

Management

NETCONF/OF-CONFIG

HAL – NETCONF Implementation

Figure 1: HAL high-level functional architecture schematic.

Figure 3.7

Network Device Network Device

Network Management

Virtualization
Gateway

VA VA HAL HAL

OpenFlow
Protocol

JSPON-RPC

Controller 2
(OF 1.2)

Controller 0
(OF 1.0)

Controller 3
(OF 1.3)

OF Endpoint
(OF 1.0)

OF Endpoint
(OF 1.2) OF Endpoint

(OF 1.3)

OF Endpoint
(OF 1.0)

Figure 2: The HAL OpenFlow and virtualization interfaces.

among multiple users. VA interacts with the OpenFlow endpoint to
perform flowspace slicing operations. VA, finally, obtains configu-
ration details from a network management system (NMS) through
the virtualization gateway (VGW).

As illustrated in Figure 2, the OpenFlow endpoint is a key CHPL
component. It establishes the OpenFlow channels to the controller,
exchanges OpenFlow protocol messages, implements OpenFlow
session negotiation and takes care of state maintenance. In order
to make the communication with different controller(s) OpenFlow
protocol version-agnostic, the endpoint abstracts different protocol
versions (e.g., OF v1.0, v1.2, or v1.3.2) to a common data model
with a superset of features from all versions. The OpenFlow end-
point is initially configured with a specific OpenFlow version num-
ber so that it can inform accordingly a given controller about which
version is to be used. The OpenFlow endpoint communicates with
the HAL Hardware Specific Layer (HSL) via the Abstract Forward-
ing API (AFA) as illustrated in Figure 1. The OpenFlow endpoint
common data model is part of AFA and can be easily extended
to handle new header matches, new matching algorithms and new
packet processing actions. See Section 3 for more details about the
Abstract Forwarding API.

The CHPL OpenFlow Pipeline component implements the Open-
Flow table(s) as illustrated in Figure 3. Due to performance consid-
erations, the pipeline processes a packet abstraction of a given real
network packet instead of processing the packet per se. The packet
abstraction object consists of three attributes: i) a hardware plat-

72

Figure 1.3

Packet
Modifications

Cross-Hardware
Platform Layer

OpenFlow
Pipeline OF Table OF Table

Hardware Specific Layer

OpenFlow Protocol

Packet
destination

Packet
reference

Packet-out Packet-in

Packet Packet

OpenFlow Endpoint

OF Table

Packet Abstraction

Packet
Modifications

Packet
Modifications

Packet

A
F A

P
I

H
P

 A
P

I

A
F A

P
I

Figure 3: Workflow for a real packet and its abstraction by the
CHPL OpenFlow pipeline.

form reference to a real network packet which, for instance, could
be a pointer to the memory location where the packet is stored; ii)
the OpenFlow action-set which is passed from one OpenFlow table
to the next one and is modified according to the matched flow in-
structions; and iii) metadata about all successful match entries for
diagnostic purposes.

Figure 3 illustrates how a network packet is processed by the
HAL OpenFlow pipeline through its abstraction. Upon arrival of a
network packet into the HSL, a packet reference is generated and
is handed over to the CHPL OpenFlow endpoint. This triggers the
creation of a packet abstraction object and the subsequent process-
ing by the OpenFlow pipeline. Each OpenFlow table can imme-
diately apply changes, such as header field value modification, tag
additions and removals, to the packet located in HSL through the
associated packet reference, or it can modify the OpenFlow action-
set. Each table can also be used to determine the final destination
of the packet. This includes requesting to send the packet to a spe-
cific network port on the device, dropping it, or forwarding it to the
controller. In the latter case, the pipeline is effectively requesting
a packet-in event generation from the HSL, which must send the
entire or a part of the real packet to the OpenFlow endpoint. The
corresponding packet-out event which contains a packet from the
OpenFlow controller is also processed via the pipeline. However,
the packet bytes must be stored at the HSL before pipeline process-
ing can begin. In addition to supporting multiple OpenFlow tables
and action-set as mentioned above, the OpenFlow pipeline provides
all other OpenFlow features such as priority matching, flow entry
expiration, group table, meter table and counter objects.

The OpenFlow pipeline is currently implemented in software
based on the Revised OpenFlow Library (ROFL; see http://
roflibs.org) as detailed in [16, 20]. It is a high performance
implementation of the OpenFlow pipeline which can be deployed
on a broad spectrum of available CPUs (for software-switch solu-
tions) and on modern NPUs, which can be programmed in ANSI-C
and provide better traffic throughput for a software-based packet
processing implementation.

The Virtualization Agent (VA) is a CHPL plugin module which
provides a distributed slicing mechanism for HAL devices. Like
other virtualization approaches [17, 3], its main objective is to al-
low the isolated execution of multiple parallel experiments on the
same physical substrate. VA has been designed with the following
goals: a) avoid single points of failures, b) provide an OpenFlow

version-agnostic slicing mechanism, and c) minimize the latency
caused by slicing. VA avoids single point of failures by taking a
different path from earlier approaches which virtualize network re-
sources through an additional layer on the control channel. Un-
fortunately, upon failure, said approaches take down all running
slices. In contrast, the VA architecture has only one centralized el-
ement: the Virtualization Gateway (VGW) as illustrated in Figure
1. If VGW fails, new slices cannot be instantiated, but on the other
hand, slices which are already in operation are not affected by the
failure. Similarly, in order to reduce the latency overhead in slicing
operations, VA is spared from inspecting the OpenFlow protocol
and establishing the associated TLS connections. In doing so, the
VA becomes OpenFlow version-agnostic and can work with any
control plane protocol (even other than OpenFlow).

For each incoming packet, the header fields are matched against
the flowspaces assigned to the configured slices. If the VA finds a
match, the header is sent to the related OpenFlow endpoint which
generates the packet-in message by using the protocol version used
for the communication with the controller. However, if no match is
found, the VA tells the lower layers to drop the packet. On the other
end, VA applies the slicing policies to the OpenFlow messages sent
by the controller to the switch. In order to keep the VA-internal
processes agnostic to the OpenFlow protocol version, the VA inter-
cepts the actions and the related flow match after they are decapsu-
lated from the OpenFlow message and before they are inserted into
the switch flow table. The actions are checked against the control-
ler flowspace to ensure that the controller is not trying to control
traffic outside of its own flowspace, and the match is intersected
with the flowspace. The latter operation ensures that the actions are
only applied to the flows matching the flowspace assigned to the
controller, thus preventing interference between different slices.

2.2 Hardware Specific Layer
The key idea behind the Hardware Specific Layer (HSL) is to

deal with the diversity of network platforms and their communi-
cation protocols and thus overcome the complexity of implement-
ing the OpenFlow protocol on different hardware platforms. In the
real world, every network element or platform comes with its own
protocol or API for communicating, controlling and managing the
underlying system. In HAL, HSL is responsible for hiding the
complexity and heterogeneity of underlying hardware control for
message handling and providing a unified and feature-rich interface
to CHPL via two northbound interfaces. On the southbound side,
HSL is in direct contact with, and dependent upon, the underlying
hardware in terms of communication protocol(s) and programming
language(s). As a result, HSL developers must deal with the imple-
mentation peculiarities for each platform.

The embraced modular design approach makes HAL flexible
enough to support several hardware platforms as different HSL
modules take care of the underlying hardware heterogeneity. HSL
has been designed so that module changes do not affect CHPL,
which is hardware independent and, in most cases, there is no need
to alter the overall software/hardware architecture. Next, we de-
scribe the main HSL modules as illustrated in Figure 1.

Discovery – In order to initialize CHPL, information about the
network device(s) must be provided by HSL. Bootstrapping infor-
mation includes: i) a list of devices working together as a sin-
gle hardware platform instance and controlled by a single Open-
Flow agent instance. For each device, access information is also
required; ii) a list of all network ports and their characteristics
(e.g., transmission technology, transmission speed, operational sta-
tus, etc.) from every device; iii) the internal hardware platform
topology, that is, how all devices within a hardware platform in-

73

stance are interconnected. Discovery can be manual (e.g., the plat-
form administrator creates static configuration files containing the
required information which are loaded during the HSL initializa-
tion phase) or, perhaps preferably, automatic: HSL queries each
device for all necessary information and reacts to new notifications
coming from the device. Combinations of both approaches are also
possible. Depending on the implementation and the platform, the
discovery process could be active solely during HSL initialization
or executed on a continuous basis.

Orchestration – In some cases, the hardware platform com-
prises multiple components acting independently, but controlled
centrally. This is the case of Data Over Cable Service Interface
Specification (DOCSIS) and Gigabit Ethernet Passive Optical Net-
work (GEPON) deployments, for example. The orchestration pro-
cedure is intended to send configuration and control commands to
all hardware components that must be engaged in the request han-
dling in a synchronized, ordered and atomic fashion. Orchestration
should be able to report failures, recover from configuration errors
on a single hardware component, and restore the initial state of all
hardware components.

Translation – The Translator module in HSL is responsible for
the translation of data and action models used in CHPL (mostly
OpenFlow-based) to the specific device protocol syntax and se-
mantics, and vice versa. The Translator acts as middleware be-
tween the OpenFlow switch model and the underlying physical de-
vice. Due to the heterogeneity of the network devices, translation
specification and implementation is different for each network de-
vice. Generally, the module is responsible for translating all port
numbering, flow entries and packet-related actions from the Open-
Flow switch model into platform-specific interface commands and
processor instructions. For the majority of the hardware platforms
considered, the translation functionality is foreseen to be stateful,
which requires storing information about every handled OpenFlow
entry and its translation to specific device commands. This allows
one to modify or delete the device applied reconfiguration which
refers to a given flow entry.

3. HAL INTERFACES
As per Figure 3, two common interfaces are exposed by HSL

towards the Cross-Hardware Platform Layer. Both interfaces have
been designed to minimize the effort required to implement a new
hardware driver for obtaining OpenFlow control over the targeted
hardware platform. In addition, the HAL northbound interfaces al-
low a particular component of a network device to communicate
with higher-level components. HAL provides three northbound in-
terfaces for OpenFlow-based control, network virtualization sup-
port, and configuration management. The former enables the com-
munication between OpenFlow controller(s) and the devices while
the virtualization management interface is used to configure the
Virtualization Agent via a Network Management System (NMS).

3.1 Abstract Forwarding API
The Abstract Forwarding API (AFA) can be used for any hard-

ware platform including closed-box platforms. It provides inter-
faces for management, configuration and receiving HSL event no-
tifications. The management and configuration parts of AFA must
be implemented by HSL and called by CHPL. Respectively, no-
tifications are provided to CHPL and are invoked by HSL. The
AFA management part is in charge of hardware driver initialization,
network interface discovery, logical switch creation and destruc-
tion, network interface attachment and detachment to/from logi-
cal switches, and administratively enabling and disabling network
interfaces. The AFA notification part generates events related to

adding and removing network interfaces within the hardware plat-
form, switch port attribute or state modifications, flow entry ex-
piration and incoming packet arrival for the controller. By using
AFA a hardware platform can be logically partitioned into several
OpenFlow-controlled data path elements.

3.2 Hardware Pipeline API
The main goal of the Hardware Pipeline API (HPA) is to mini-

mize the development effort required to implement the HAL hard-
ware driver on programmable network platforms. This allows us to
deploy and run generic C/C++ code on different hardware, for in-
stance, on Cavium Octeon, Broadcom Triumph2, Intel DPDK, and
EZchip NPS processors. HPA is a low-level interface which pro-
vides access to network packet operations, memory management,
mutex and counter operations, which are typically realized differ-
ently on each programmable platform. The key benefit from using
HPA is that the hardware driver does not have to implement the
OpenFlow pipeline itself and can thus reuse the CHPL pipeline im-
plementation presented earlier in this paper. Due to space consider-
ations, we refrain from going through the low-level implementation
details, which are documented in [14, 16, 20].

3.3 Northbound Interfaces
As illustrated in Figure 2, the northbound OpenFlow interface

connects each HAL-running device (and OpenFlow switches, of
course) to a controller. Through this interface, the controller con-
trols the device, receives events from the device, and sends packets
out of the device as expected [11]. The OpenFlow channel is en-
crypted using TLS, but could also be operated directly over TCP. It
should be noted that the HAL OpenFlow interface is provided by
OpenFlow endpoints instances (see Figure 2). Multiple instances
are required when different versions of the protocol are used on the
same device. On the other hand, multiple controllers using the same
version of the protocol are handled by a single OpenFlow endpoint.

The JSON-RPC Interface is used by the CHPL Virtualization
Agent (VA) to slice the overall flowspace across many OpenFlow
controllers based on the configuration received from the NMS, which
communicates with the VA through the Virtualization Gateway (VG).
The management interface between VA and VG is implemented
using JSON RPC 2.0 where each request exchanged between VG
and VA will be implemented following a wire protocol. Finally,
the CHPL OF-CONFIG/NETCONF plugin illustrated in Figure 1
equips network administrators with a management interface to con-
figure the underlying HAL devices with several parameters, such as
the OpenFlow controller IP address and switch datapath IDs.

4. IMPLEMENTATION
HAL has been implemented and is in active use over a vari-

ety of programmable as well as closed-box hardware as illustrated
in Figure 4. The Figure clearly indicates the demarcation points
for AFA and HPA as introduced in the previous section. The re-
mainder of this section summarizes the implementation particulars
for three types of hardware platforms, namely programmable plat-
forms, DOCSIS, and DWDM.

The term programmable platforms refers to network devices
which allow their data plane to be programmed to perform pac-
ket processing. HAL has been implemented using xDPd (available
from http://xdpd.org/) on several types of programmable
platforms, including programmable silicon gateways (e.g. NetF-
PGA), traditional NPU (e.g. EZchip NP-3), multicore CPUs with
hardware network enhancements (such as the Cavium Octeon Plus
CN5650) and standard CPUs with software network enhancements
(such as Intel Atom, Core, Xeon with DPDK); see also [14, 20]. In

74

Figure 3.8

OpenFlow Endpoint

…

Net
FPGA

Dell Split
Data
Plane
switch

ADVA
DWDM

ATCA with
Octeon

DOCSIS GEPON EZappliance
NP-3

HAL based on ROFL/xDPd

Abstract Forwarding API

OpenFlow Protocol

Hardware Pipeline API

OpenFlow Pipeline

Closed-box Platforms

Cross-Hardware
Platform Layer

Hardware
Driver

Hardware
Driver

Hardware
Driver

Hardware
Driver

Hardware
Driver

Hardware
Driver

Hardware
Driver

Programmable Platforms

Figure 4: HAL implementation over different hardware.

all cases, the CHPL OpenFlow pipeline was reused in coordination
with the Hardware Pipeline API. However, in order to fully uti-
lize the hardware performance of NetFPGA and NP-3 processors,
the OpenFlow pipeline was also implemented directly in hardware
and controlled via AFA. In such platforms, the CHPL OpenFlow
pipeline acts as the slow-path packet processing containing Open-
Flow flow entries which are not supported by the hardware fast-path
pipeline implementation.

Since DOCSIS is a closed-box platform, the residential gate-
way (RG) and aggregation switch are used as helper boxes to im-
plement all functionality not supported by DOCSIS. In the end,
the whole setup operates as a single OpenFlow device. A HAL-
based proxy sits between the OpenFlow controller and the DOC-
SIS platform. The most relevant part from the HAL-based proxy
is the HSL implementation for DOCSIS. Since the topology model
used for DOCSIS is known (i.e. DOCSIS resources surrounded by
helper boxes), the discovery functionality has been reduced to the
dynamic detection of the customer devices (CPE) in the system,
that is, adding and removing cable-modems (CMs). When a new
CPE is detected, it is automatically exposed by the proxy as a new
virtual interface to the controller.

The most relevant HSL component for DOCSIS is the orchestra-
tion module, which exposes the whole set of resources as a unique
DataPath Identifier (DPID) with unique virtual port identifiers. By
using this virtual model, the messages coming from/to the cont-
roller are processed to hide the network internals. For instance,
the orchestrator is responsible for splitting the incoming OpenFlow
messages into several messages for each particular device, i.e. the
residential gateway, DOCSIS and aggregation switch, to perform
the requested action (e.g. stats report, configuration setting etc.).
Finally, the translation module is responsible for mapping the vir-
tual identifiers (i.e. DPID and ports) to the physical ones, and vice
versa. This functionality is closely related to orchestration due their
inter-dependence.

The HAL implementation for DWDM ROADM (Reconfigurable
Optical Add/Drop Multiplexer) is different from that found on pac-
ket switching network devices. In the optical domain, the control
and data planes are separated as lightpaths in the optical data path
need to be provisioned before transmission can commence. Prior to
that, all device configuration and path setup signaling is completed.
This is due to the fact that we are lacking the notion of packets in
the optical domain. Further, circuit switches have no visibility of
the payload, thus no packets can be forwarded to the OpenFlow net-
work controller to make a decision. Due to this nature of the opti-

cal domain, the OpenFlow protocol had to be extended and aligned
with OpenFlow addendum v0.3 for packet switches to support this
differentiation in operation.

We have further extended Stanford’s addendum to the protocol
to add switching constrains and power equalization messages spe-
cific to the device. A software entity (e.g. a virtual machine) acts as
an agent for the optical device and creates the OpenFlow abstrac-
tion for the controller on top. HAL is implemented inside the agent
and a proprietary SNMP library is used as the management inter-
face of the optical switch. A resource model has been developed at
HSL that glues the SNMP and OpenFlow abstraction layers. The
translation module takes care of the translation between OpenFlow
messages and SNMP hardware-specific messages. The OpenFlow
cross-connect table (equivalent to Hardware OpenFlow pipeline) is
constructed on top of the device driver giving an abstracted view of
the circuit switch using an extended version of OpenFlow.

Further implementation details as well as pointers to open source
code are available in [14, 20].

5. RELATED WORK
The work presented in this paper is the culmination of the ef-

forts in the FP7 ALIEN project which aims to realize OpenFlow
capabilities on network elements that do not have native support
for OpenFlow and therefore enable their integration in an Open-
Flow deployment, such as an SDN experimental facility. In doing
so, the work on HAL can be used as a basis for further development
in carrier-grade networks to bring legacy infrastructure in line with
expectations for network function chaining and distributed cloud
computing. For example, a cable operator could employ HAL to
control the already-deployed DOCSIS infrastructure using Open-
Flow as discussed in Section 4, and combine it with distributed
mapping and routing algorithms [13], content-aware traffic engi-
neering [15], and dynamic service definitions as discussed in [9].

In the area of SDN experimental facilities, previous work has
been undertaken during the FP7 OFELIA project [19] to provide
one of the first OpenFlow-enabled experimental facilities for third-
party use which includes an optical OpenFlow testbed [1]. The suc-
cessful implementation of an OpenFlow lightpath testbed in OFE-
LIA was an enabler for other projects such as Fed4Fire and FIBRE
[2]. Although these projects do implement an OpenFlow lightpath
data plane, they do not follow a standard-compatible approach to-
wards enabling OpenFlow protocol support for lightpath devices.
The ALIEN HAL in this regard is the first step towards establishing
a standard framework approach for lightpath OpenFlow implemen-
tation.

Pyretic [12], Fresco [18], and Frenetic [5] are, among others,
tools to develop sophisticated policy-based controller applications
using a high-level language. Our work on HAL extends the reach of
such tools to new domains. Virtualization has also been researched
and discussed for enabling an SDN node to execute multiple appli-
cations simultaneously. FlowVisor [17], XNetMon [4], and Vertigo
[3] are examples of virtualization mechanisms which feature vary-
ing levels of isolation. Having an adequate view of the network is
also of utmost importance to SDN applications. This is achieved
either by representing the global topology as an annotated graph
that can be configured and queried [6], or through a mapping be-
tween a representation of the physical topology and a simplified
representation of the network [3].

Overall, and to the best of our knowledge, few initiatives have
been undertaken to empower legacy network elements with even
basic OpenFlow features. Notably, the ONF Forwarding Abstrac-
tions working group has initiated work in this direction, but this is
still at an early stage. In contrast, our work on the ALIEN HAL

75

provides a fully-fledged design specification and implementation
which addresses in a thorough and detailed manner the problem.

6. CONCLUSION
OpenFlow paves the way for advanced functionalities in new

programmable network deployments. Currently, however, Open-
Flow support is lacking in production environments where most
of the forwarding devices are based on either closed platforms or
legacy hardware which is incompatible with the protocol. This
work addresses this gap through the introduction of the ALIEN
Hardware Abstraction Layer (HAL), which provides a platform
for development and deployment of OpenFlow on network ele-
ments that do not support the protocol out-of-the-box. In short, the
ALIEN HAL is a software architecture and implementation which
aims to complement conventional hardware platforms and provide
a framework for network infrastructures that are not natively de-
signed to support an OpenFlow-based control plane.

The HAL architecture emphasizes the decoupling of hardware-
specific control and management logic from the OpenFlow node
abstraction logic. HAL comprises two sub-layers, namely, the Cross
Hardware Platform Layer (CHPL) and the Hardware Specific Layer
(HSL). By doing so, we can add new features, such as on-demand
programmability, or introduce an OpenFlow control plane to new
hardware platforms without redesigning the HAL architecture. We
also described how the HAL design incorporates a distributed vir-
tualization mechanism that enables multi-version OpenFlow switch
network deployments and allows the HAL-enabled devices to be
shared among multiple experimenters.

As part of our ongoing work, we are introducing HAL devices to
the OFELIA pan-European SDN experimental facility [19], signif-
icantly extending the options that researchers have at their disposal
when it comes to experimenting with OpenFlow-capable network
equipment.

7. ACKNOWLEDGMENT
This work was conducted within the framework of the FP7 ALIEN

project, which is partially funded by the Commission of the Euro-
pean Union under grant agreement no. 317880. We are grateful to
Andreas Köpsel, Hagen Woesner, Marc Suñé Clos, Tobias Jungel,
and all those who have been actively contributing to the develop-
ment of ROFL and xDPd over the years.

8. REFERENCES
[1] S. Azodolmolky, R. Nejabati, E. Escalona, R. Jayakumar,

N. Efstathiou, and D. Simeonidou. Integrated
OpenFlow–GMPLS control plane: an overlay model for
software defined packet over optical networks. Opt. Express,
19(26):B421–B428, Dec 2011.

[2] M. Channegowda, R. Nejabati, and D. Simeonidou.
Software-Defined Optical Networks Technology and
Infrastructure: Enabling Software-Defined Optical Network
Operations. J. Opt. Commun. Netw., 5(10):A274–A282, Oct
2013.

[3] R. Doriguzzi Corin, M. Gerola, R. Riggio, F. De Pellegrini,
and E. Salvadori. VeRTIGO: network virtualization and
beyond. In EWSDN, pages 24–29. IEEE, 2012.

[4] N. C. Fernandes and O. C. M. B. Duarte. XNetMon: A
network monitor for securing virtual networks. In ICC, pages
1–5. IEEE, 2011.

[5] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: A network

programming language. In ACM SIGPLAN Notices,
volume 46, pages 279–291. ACM, 2011.

[6] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. Nox: towards an operating
system for networks. ACM SIGCOMM Computer
Communication Review, 38(3):105–110, 2008.

[7] E. Haleplidis, S. Denazis, K. Pentikousis, J. H. Salim,
D. Meyer, and O. Koufopavlou. SDN Layers and
Architecture Terminology. Internet Draft,
draft-haleplidis-sdnrg-layer-terminology (work in progress),
2014.

[8] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al.
B4: Experience with a globally-deployed software defined
WAN. In SIGCOMM, pages 3–14. ACM, 2013.

[9] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind,
A. Manzalini, F. Risso, D. Staessens, R. Steinert, and
C. Meirosu. Research directions in network service chaining.
In SDN4FNS, pages 1–7. IEEE, 2013.

[10] N. McKeown. Software-defined networking. INFOCOM
keynote talk, 2009.

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, 2008.

[12] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker,
et al. Composing software defined networks. In NSDI, pages
1–13, 2013.

[13] S. Narayana, W. Jiang, J. Rexford, and M. Chiang. Joint
server selection and routing for geo-replicated services. In
DCC, pages 423–428. IEEE, 2013.

[14] L. Ogrodowczyk, B. Belter, A. Binczewski, K. Dombek,
A. Juszczyk, I. Olszewski, D. Parniewicz,
R. Doriguzzi Corin, M. Gerola, E. Salvadori, K. Pentikousis,
U. Toseef, H. Woesner, M. Rashidi Fard, M. Huarte,
E. Jacob, J. Matias, V. Fuentes, M. Michalski, and
R. Rajewski. Hardware Abstraction Layer for non-OpenFlow
capable devices. In TERENA Networking Conference, May
2014.

[15] I. Poese, B. Frank, G. Smaragdakis, S. Uhlig, A. Feldmann,
and B. Maggs. Enabling content-aware traffic engineering.
ACM SIGCOMM Computer Communication Review,
42(5):21–28, 2012.

[16] M. Rashidi (Ed.) et al. Specification of Hardware Abstraction
Layer. FP7 ALIEN Deliverable D2.2, available at
http://www.fp7-alien.eu, 2014.

[17] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. M. Parulkar. Can the
production network be the testbed? In OSDI, pages 1–6.
USENIX, 2010.

[18] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu,
and M. Tyson. Fresco: Modular composable security
services for software-defined networks. In NDSS, 2013.

[19] M. Suñé, L. Bergesio, H. Woesner, T. Rothe, A. Köpsel,
D. Colle, B. Puype, D. Simeonidou, R. Nejabati,
M. Channegowda, et al. Design and implementation of the
OFELIA FP7 facility: the European OpenFlow testbed.
Computer Networks, 61:132–150, 2014.

[20] U. Toseef (Ed.) et al. Report on implementation of the
Common Part of an OpenFlow Datapath Element and the
Extended FlowVisor. FP7 ALIEN Deliverable D2.3,
available at http://www.fp7-alien.eu, 2014.

76

