
An Adaptive Framework for

Developing
Multimedia Software

Components

Recent improvements in microprocessor performance have made possible the

migration of continuous media processing from specialized hardware, such as decom-

pression and digital signal processing boards, to software. The extensibility and con-

figurability of software libraries allow multimedia applications to access a wider range

of multimedia objects, stored in a variety of compressed formats, and to employ an

extensible set of tools for processing these objects. Furthermore, configurable software

libraries enable applications to take advantage of new audio and video compression

standards as they emerge, rather than becoming obsolete. Despite these advantages,

there are two fundamental problems limit-

ing the success of software libraries for pro-

cessing digital audio and video:

A framework simplifies development by
promoting the reuse of code, design patterns,

and domain expertise.

• Difficulty of developing software components. The task
of developing software components (such as media
players, Netscape plug-ins, ActiveX controls) that
decode and process digital audio and video
remains time-consuming and costly, due to the
inability to reuse code, design patterns, or domain
expertise. Media processing component imple-
mentations achieve high performance by tightly

coupling the media processing code with the
environment-specific code. However, this lack of
modularity makes it difficult to factor out
reusable code and often results in a “cut and
paste’’ form of code reuse. Insufficient modularity
and information hiding requires each new compo-

Edward J. Posnak,
R. Greg Lavender, and

Harrick M. Vin

COMMUNICATIONS OF THE ACM October 1997/Vol. 40, No. 10 43

http://crossmark.crossref.org/dialog/?doi=10.1145%2F262793.262802&domain=pdf&date_stamp=1997-10-01

nent to be designed from scratch, and forces the
component developer to understand, in detail, the
implementation of the reusable code as well as
the underlying digital representation of the audio
and video objects.

• Variation of resources during presentation. Whereas
hardware decompression boards provide a fixed
and dedicated set of processing resources, a soft-
ware decoder runs on a variety of different proces-
sors, with speeds differing by orders of
magnitude. Moreover, since processing resources
are normally shared by a number of applications,
the availability of these resources to the software
decoder will vary as the system load changes.
Such variations in the available processing
resources can result in undesirable skips and/or
distortion of the output signal, significantly
degrading the quality of the presentation.

To address these problems, we have developed the
Presentation Processing Engine (PPE) framework
that (1) simplifies the development of multimedia
software components by promoting the reuse of
code, design patterns, and domain expertise, and (2)
enables the components to dynamically adapt the
quality of the presentation to the available resources
in heterogeneous environments.

Framework Design

Presentation processing involves applying a
sequence of transformations to a data stream
between its input source (microphone, cam-

era, or file) and output sink (speaker, display device,
storage server). The design of the PPE framework is
inspired by the observation that many presentation
processing components employ the same primitive
compression and signal processing transformations
(like Huffman coding, dithering, and so forth) oper-
ate on a common set of data types (frames and
blocks), and share a reusable design architecture. To
facilitate the development of such components, the
PPE framework provides a library of reusable mod-
ules that implement the primitive transformations,
as well as the mechanisms allowing these modules to
be composed into processing pipelines [4].

The PPE module library uses fine-grained modu-
lar decomposition to effectively decouple the envi-
ronment-specific elements of the code from the
reusable transformation implementations. This
allows for significant code reuse when developing
new components, and also makes it possible to incor-
porate reusable signal-processing modules at inter-
mediate stages of compression, where a factor of ten
speedup can be achieved [5]. Such efficiencies are

normally obtained by tight coupling of signal pro-
cessing and compression operations, however, in the
PPE framework these transformations are imple-
mented as separate modules, and hence, can be
reused to compose other software components.

The PPE framework facilitates the reuse of
domain expertise by encapsulating primitive trans-
formation implementations inside composable mod-
ules. The component developer need not be
concerned with the details of transformation algo-
rithms or the underlying digital representation of
continuous media objects, but only needs to specify
which transformations are to be applied, and their
relative order. The framework will perform the task
of constructing an efficient processing pipeline that
performs these operations.

The PPE framework addresses the problem of
resource variation during presentation by providing
mechanisms that allow a component to dynamically
reconfigure its implementation pipeline with differ-
ent modules. Throughout playback, a component
can switch between module implementations that
are functionally equivalent but have different pro-
cessing costs and quality characteristics. For exam-
ple, different dithering algorithms, ranging from
low to high complexity, can be dynamically config-
ured to realize different cost vs. quality tradeoff
points. This allows the component to dynamically
adapt its implementation to different end-station
capabilities and changing resource loads, and can
provide the user with flexible control over how the
quality degrades when insufficient processing
resources are available.

Whereas dynamic reconfigurability enables adap-
tation, it also carries an associated efficiency cost due
to the procedure call overhead of dynamically dis-
patched method invocations. The more frequently a
module interface is called, the more costly the per-
formance penalty. Compile time (static) binding of
modules can significantly reduce the overhead of
module boundary crossing by allowing efficient
choices to be made during code generation. The sta-
tically bound modules are implemented using para-
meterized types and inline methods to minimize the
boundary crossing overhead, effectively collapsing a
sequence of modules into highly efficient code. The
drawback of static composition is that, once modules
are bound in this fashion, they cannot be dynami-
cally reconfigured. Hence, the development of mod-
ular, configurable, and efficient presentation
processing components requires a carefully engi-
neered balance between the use of static and
dynamic composition of modules. To facilitate reuse
of this design pattern each time a new component is

44 October 1997/Vol. 40, No. 10 COMMUNICATIONS OF THE ACM

COMMUNICATIONS OF THE ACM October 1997/Vol. 40, No. 10 45

developed, the PPE framework provides mechanisms
that allow modules to be composed both statically
and dynamically [3].

PPE Composition Examples

The PPE framework has been used to develop
a variety of decompression engines (such as
JPEG and MPEG) and media player compo-

nents (for example, Tcl/Tk, Netscape Navigator
Plug-in).

JPEG Decoder. JPEG is a widely used standard
for image compression and video
conferencing [6]. A JPEG encoder
performs a series of transformations
on raw image data to produce a
highly compressed output stream,
which can then be transmitted to a
JPEG decoder that applies the
inverse of these transformations to
decompress the images. Figure 1
shows the series of transformations
for JPEG encoding and decoding.

To develop a JPEG decoder, a set
of reusable PPE library modules
that perform these transformations
are composed as illustrated in Fig-
ure 2a. In this decoder, input from
the media object is parsed by the
syntax decoder and separated into
control data and coded image data (JPEGSyn-
taxDec). Whereas control data is used to set decoder
state variables and to determine module configura-
tions, the coded image data is passed down the
pipeline of modules that reconstruct the image for
display. The block decoders (BlockDecs) read com-
pressed data from the input bitstream and perform
the Huffman and run-length decoding operations
necessary to reconstruct small blocks of the image in
the frequency domain. These blocks are then inverse
quantized, transformed back to the spatial domain

(IDCTDec), and then used to reconstruct luminance
and chrominance frames (FrameDec).1 Finally the
frames are transformed back into a displayable color
space and dithered, if necessary, to remove the band-
ing effects of color quantization on color-mapped
displays (ColorConversion and Dither).

The modules in this pipeline are shown having
different shapes that fit together to illustrate the fact
that module interfaces are strongly typed to ensure
that only feasible configurations are permitted.
Modules shown with solid borders have dynamic

linkage, and may be reconfigured throughout play-
back. Modules shown with a dashed border are stat-
ically bound, using type parameterization, for the
sake of efficient implementation.

The block decoder, shown in Figure 2b, exempli-

JPEG Encoder

JPEG Decoder

Image
Data

Frame
Segmentation DCT Quantization

Run Length/
Entropy
Encoding

Color
Conversion

Syntax
Decode

Inverse
Quantization

Inverse
DCT

Frame
Reassembly

Color
Conversion

Compressed Bitstream

Figure 1. Sequence of operations in a JPEG encoder and decoder

Media Objects

JPEGSyntaxDec

DCHuffmanDec ACHuffmanDec

DifferenceDec RunLengthDec

ZigZagDec

IQDEC

IDCGDec

FrameDec

Color
Conversion Dither

InputBitstream
JPEGFilter

BlockDec BlockDec

(a) JPEGDec (b) BlockDec

Figure 2. Module decomposition for (a) a JPEG decoder;
(b) a block decoder module. Different shapes are used to

indicate different module types. Dynamically bound modules
are shown with a bold outline; statically bound objects

are indicated with dashed lines.

fies how static module parameterization is used to
achieve high performance while maintaining modu-
larity. BlockDec is a module that must employ func-
tionally different Huffman decoders, depending on
the control data associated with a block. While it is
possible to dynamically reconfigure a block decoder’s
internal modules to handle these cases, this approach
is inefficient because the overhead of an abstraction
boundary crossing, for instance a dynamically dis-
patched method call, will be incurred thousands of
times per image. To avoid sacrificing modularity,
inlined interface methods and module parameteriza-
tion are employed to compose these components into
a high performance, statically bound implementa-
tion. A number of block decoder types are created by
parameterizing the block decoder with a pair of
Huffman decoders that provide inline methods for
their decoding functions. When combined with the
selective inlining of performance critical functions,
this parameterized approach maintains a highly
modular architecture in which abstraction bound-
aries are enforced at compile time, but are compiled
away to produce efficient run-time code.

Tcl/Tk Media Player. Traditionally, domain
expertise in both compression and window system
programming has been required to develop just a
single-format media player, targeted at a specific
window system environment. However, by leverag-
ing the power of the PPE and Tcl/Tk2 toolkits [2], an
adaptive, multiformat media player can be rapidly
developed without domain expertise. Developing
such a media player involves making selected PPE

objects controllable by Tcl com-
mands, then writing a Tcl script
that implements the media
player.

Three objects will be needed
to implement the media player:
(1) A source, which gets the com-
pressed data and passes it to the
PPE, (2) a PPE, which is com-
posed of modules performing
the necessary transformations to
decode a particular stream, and
(3) a sink, which presents the
uncompressed stream on some
output device, such as a display

window. To make each of these objects controllable
by Tcl commands, we define an interface class, called
TclObject, that has one method: DoTclCommand.
For each of the three objects, we create a class that
inherits the TclObject interface, and contains an
instance of the corresponding PPE object. Each of
these classes will implement DoTclCommand by
calling the appropriate method(s) of its internal PPE
object. Figure 3 shows these class relationships.

Creating a Tcl media player can now be done with
just a few lines of code that create source, PPE, and
sink instances, initialize the source with the media
object to be played, and configure the PPE. More Tcl
code can be written to implement policies for adapt-
ing to the runtime environment by reconfiguring
the PPE. Since implementing these features requires
only knowledge of the possible module configura-
tions, not their implementations, a powerful adap-
tive media player can be developed by a programmer
with very little domain expertise.3

Conclusion

We have described the high-level design of
a framework for developing software
components that decode and process dig-

ital audio and video data—a more detailed descrip-
tion of the design and implementation of this
framework may be found at www.cs.utexas.
edu/users/ejp/CACM.ps. This framework provides
mechanisms that enable components to be developed
using a modular compositional approach that has
advantages in both software development and run-
time performance. The framework supports the

46 October 1997/Vol. 40, No. 10 COMMUNICATIONS OF THE ACM

TclObject

DoTclCommand()

TclSource

DoTclCommand()

TclPPE

DoTclCommand()

TclSink

DoTclCommand()

Source

Start(), Stop(), ...

PPE

Input(), Configure(), ...

Sink

Input(), ...

Figure 3. Class diagram for PPE objects
that are controllable by Tcl commands

1Many lossy compression algorithms convert images into a luminance/chrominance
color space (Y,Cb,Cr) to achieve higher compression gain with less perceptible loss in
the image.

2Tcl is an interpreted scripting language that can be used to control and configure soft-
ware components. When a Tcl interpreter is embedded inside a component, users and
applications can then configure and control the component dynamically using the Tcl
scripting language. Tk is an extension to Tcl that allows user interface objects (win-
dows) to be quickly and easily developed.
3This was, in fact, the case when novice multimedia programmers used our Tcl/Tk
wrappers to create a Netscape Navigator plug-in with less than 50 lines of original code.

development of new media processing components
by facilitating the reuse of code, design patterns, and
domain expertise. The fine-grained modular decom-
position and mechanisms for dynamic configurabil-
ity enable components to adapt their
implementations to heterogeneous environments,
fluctuations in resource availability, and changing
client preferences.

Our implementation has shown how the well-
engineered balance between static and dynamic com-
position can be used to maintain a highly modular,
but efficient object-oriented implementation. More-
over, performance gains are achieved by enabling sig-
nal processing modules to be inserted at intermediate
stages of compression. Given that compression tech-
nology is still evolving and presentation processing is
a common bottleneck in communications perfor-
mance, improvements in this area will have a positive
impact on the performance and structure of future
distributed multimedia applications.

References

1. Cherukupally, B.S. and Upuluri, P. Netscape plug-in. Multimedia Sys-
tems class project, Dec. 1996.

2. Ousterhout, J.K. Tcl and the Tk Toolkit. Professional Computing Series,
Addison-Wesley, Reading, Mass., 1994.

3. Posnak, E.J., Lavender, R.G., and Vin, H.M. Adaptive pipeline: An object
structural pattern for adaptive applications. In Proceedings of the Third Pat-
tern Languages of Programming Conference. (Monticello, Ill., Sept. 1996).

4. Posnak, E.J., Vin, H.M., and Lavender, R.G. Presentation processing
mechanisms for adaptive applications. In Proceedings of Multimedia Com-
puting and Networking. (San Jose, Calif., Feb. 1996).

5. Smith, B. Fast software processing of motion JPEG video. In Proceedings
of the ACM Multimedia ‘94 Conference (Oct. 1994), pp. 77–88.

6. Wallace, G.K. The JPEG still picture compression standard. Commun.
ACM 34, 4 (Apr. 1991), 31–44.

Edward J. Posnak (ejp@cs.utexas.edu) is a Ph.D. candidate in the
Department of Computer Science at the University of Texas at Austin.
R. Greg Lavender (lavender@cs.utexas.edu) is an adjunct
assistant professor of computer science at the University of Texas
at Austin and Chief Scientist at Isode, Inc.
Harrick M. Vin (vin@cs.utexas.edu) is an assistant professor
and Faculty Fellow of Computer Sciences at the University of
Texas at Austin.

This research was supported in part by IBM, Intel IAL, the Intel Graduate Fellowship, the
National Science Foundation (Research Initiation Award CCR-9409666), the National
Science Foundation (Career Award CCR-9624757), NASA, Mitsubishi Electric Research
Laboratories (MERL), Sun Microsystems Inc., and the University of Texas at Austin.

Permission to make digital/hard copy of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior spe-
cific permission and/or a fee.

© ACM 0002-0782/97/1000 $3.50

c

COMMUNICATIONS OF THE ACM October 1997/Vol. 40, No. 10 47

