
118 October 1997/Vol. 40, No. 10 COMMUNICATIONS OF THE ACM

D
o squares form a subclass
of rectangles? Baclawski
and Indurkhya [1]
explain that finding the

answer is not easy. Inheritance is
commonly viewed as a problem
in which semantic relations mix
with design concepts and the
particular mechanisms of pro-
gramming languages. But inheri-
tance is more than a source of
ambiguity and misunderstand-
ing. We see another serious issue:
Correct behavior of a system of
objects is commonly endangered
by the implementation of inheri-
tance. Thus, the system of objects
surrenders to the risk of synchro-
nization faults that may generate
nonsense data and may result in
information losses, deadlocks,
and so forth.

Rumbaugh says the term gen-
eralization refers to the relation-
ship among class and the term
inheritance refers to the mecha-
nism of obtaining attributes and
operations using the generaliza-
tion structure. Generalization
provides the means for refining a
superclass into one or more sub-

classes. He adds that the super-
class contains features common to
all classes; the subclasses contain
features specific to each class.
Inheritance may occur at an arbi-
trary number of levels where each
level represents one aspect of an
object. An object accumulates
features from each level of a gen-
eralization hierarchy [2].

What is the difference
between “contains” and “inher-
its” relationships? The container-
contents relationship links
instances. Thus, the container-
contents relationship requires
communication among instances,
but communication among their
respective classes is not always
necessary. Object instances may
become part of a container any
time, depending on their life-
cycles. They may also leave the
container at any time.

Inheritance links classes. It
also implicitly links all the
respective instances of those
classes. Inheritance requires com-
munication between ancestor and
descendant classes as well as com-
munication between ancestor and

descendant instances. Does this
mean that an instance of the
ancestor exists for every instance
of the descendant? Everybody
knows an ancestor becomes part
of its descendant—so a container-
contents relationship exists
between every descendant’s and
its ancestor’s instance. (Embed-
ding is a form of relationship as
well as indirect association from
descendant instance through
descendant class and through
ancestor class to ancestor
instance.)

Unlike the general container-
contents relationship, every pair
of descendant and ancestor
instances is created at once. The
instances then live together (and
communicate with each other)
for their whole lives. Finally, they
are both destroyed in the same
moment. How is their common
creation accomplished? Their
classes create them. We can intu-
itively assume the descendant
class creates its instance and asks
the ancestor class to create its
instance. In other words, the
classes must communicate.

Why Inheritance Means
Extra Trouble

PA
U

L
W

A
TS

O
N

Ivan Ryant

http://crossmark.crossref.org/dialog/?doi=10.1145%2F262793.262815&domain=pdf&date_stamp=1997-10-01

Object is an entity or a whole.
It is recognized by its behavior.
No object can lose its specific
way of behavior, nor can it lose
its interface between its “inside”
and “outside.” Can an object be
resolved and dispersed in another
object losing its own identity?
Would it be an object any
longer?

What’s the Matter?
Every object instance is created
first. Then it interacts with its
environment—it lives. Finally,
the object is destroyed. That is
the object lifecycle. Object life-
cycle is a process or a system of
several processes. Objects (or
their processes) communicate
with each other. Correct synchro-
nization is necessary for any com-
munication. That’s why
communication obeys rules in the
form of communication proto-
cols.

Descendant class adds new fea-
tures (including new behavior) to
its ancestor. But the new behav-
ior must not violate the inherited
communication protocols. This
task is hard to manage when the
program is created. But why?

Common implementation
mechanisms of inheritance hide
the communication between
descendant and its ancestor. This
way, some responsibility for
interobject communication and
synchronization is left to the soft-
ware engineer. Consider three
critical points:

Using inherited methods. Object
behavior is usually decomposed
into methods. When an object
receives a message, the message is
recognized and interpreted. The
object may invoke an appropriate
method. If the object possesses no
appropriate method, it can
reroute the message to another
object. When the descendant
receives a message and recognizes
its ancestor is responsible for
attending it, it hands the mes-
sage over to the ancestor.

Using inherited attributes. Every
attribute is an object with its
own identity, memory, and
behavior. Use of an attribute
must obey communication proto-
col of both the attribute itself
and the attribute’s owner. The
correct way to access the attribute
goes through the object that pos-
sesses the attribute. Especially if
the descendant instance accesses
an inherited attribute, it should
send a message through the
ancestor instance.

Redefining dynamically bound
methods. Any ancestor class may
state tasks for its descendants.
That means dynamically bound
methods may be declared in the
ancestor class but implemented
in the descendant class. The
ancestor states the task while also
defining the communication pro-
tocol. Every request to the
dynamically bound method
should be routed through the
ancestor instance—even if the
descendant implements it.

Making Inheritance Work
These guidelines can probably
help the programmer establish
and keep rules of communication
between ancestor and descendant
instances. Implementation (espe-
cially in compiled languages)
usually tends to simplify the
interobject communication. In
particular, ancestor and descen-
dant processes are combined and
inherited attributes and methods
are shared. The programmer
should be concerned with han-
dling them as any other shared
resources (mutual exclusion is
required).

Generally, object lifecycles can
be composed and decomposed.
Any system of sequential processes
may be combined, producing sin-
gle sequential process (and keeping
the same behavior).

Composition may be complex
but the price of managing com-
plexity should never be paid with
incorrect behavior.

Ivan Ryant (ryanti@acm.org) is a freelance
software engineer and computer journalist in
Prague, Czechoslovakia.

This article was formed in discussions with Petr Slaba,
Jan Janecek and Karel Richta (CTU, Prague) and with
Vojtech Merunka (UA, Prague).

References

1. Baclawski, K., Indurkhya, B. The Notion of
Inheritance in OO Programming. Commun.
ACM 9, 37 (Sept. 1994), 118–119.

2. Rumbaugh, J. et al. Object-Oriented Modeling
and Design. Prentice-Hall, Englewood Cliffs,
NJ, 1992.

© ACM 0002-0782/97/1000 $3.50

c

COMMUNICATIONS OF THE ACM October 1997/Vol. 40, No. 10 119

