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Abstract

We describe a roundness classification procedure,
that is, a procedure to determine if the roundness
of a planar object 1 is within some EO from an
ideal circle. The procedure consists of a probing
strategy and an evaluation algorithm working in a
feedback loop. This approach of combining prob-
ing with evaluation is new in computational metrol-
ogy. For several definitions of roundness, our pro-
cedure uses 0(1 /quaf(l)) probes and runs in time
0(1 /qual(f )2). Here, the quality qual(l) of I mea-
sures how far the roundness off is from the accept-
reject criterion. Hence our algorithms are “quality
sensitive”.

1 Introduction

A basic task of metrology is to decide whether a
given planar object is “round” within some speci-
fied bound. We call this the roundness classifica-
tion problem. The literature on roundness chtssift-
cation is fairly large; recent algorithmic papers in-
clude [10, 7, 3, 13, 11, 2, 6]. The area of compu-
tationalmetrology addresses this and similar prob-
lems [5, 4, 12,9, 14].
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In this paper, we not only raise the issue of how
to define roundness but also give one of the first
“complete” roundness classification procedures. It
consists of a prnbing strategy thatplans and makes
the measurements, and a computation and decision
strategy which uses the measurements to ultimately
classify the object as good or bad. Traditionally,
these two strategies are decoupled. In our case, the
two strategies are coupled in a feedback loop, giv-
ing a holistic approach to the classification problem.
This approach can be applied to other problems in
computational metrology as well.

Let us briefly illustratethe “standard approach’:
suppose the roundness of I is defined to be the min-
imum width w(1) of an annulus that contains the
boundary of 1. Assume thatour classification prob-
lem is to accept 1 iff w(1) s CO. There are 3 steps:

(i) Some probing strategy takes a predetermined
number n of sample points on the boundary
Ofl.

(ii) The set S of sample points is then submitted to
an algorithm to compute the minimum width
w(S) of an annulus thatcontains S.

(iii) Finally, a decision policy decides to accept or
reject 1 based on the computed vahre w(.S).
Typically, we accept iff w(S) s Eo.

It is hardly clear that the policy (iii) gives a cor-
rect decision since we have substituted “w(1)” with
“w(S)”. Computational geometers have tradition-
ally focused on step (ii) only. One of the few pa-
pers that discuss the decision policies in step (iii) is
found in [15]. We say that the algorithm in this pa-
per is “complete” in the sense that we integrate all
three steps, and we prove that our decision policy is
correct with respect to the original object 1, not with
respect to the sampled set S.

Let us fix some notationsfor the paper. An object
f is defined to be any compact simply-connected
subset of the plane, with boundary denoted by bd 1.
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For a point p, we use R(p, 1) and r(p, 1) to denote
the maximal and minimal distance from p to a point
in bd 1 respectively], i.e.,

I/(p, 1) = max(dist(p, q); q c ball]

r(p, f) = min[dist(p, q); q e ball}.

Our distance measure is the Euclidean distance.
when I is understood, we write R(p) instead of
R(p, 1) and r(p) instead of r(p, 1). Let ro > 0
and co > 0 be parameters, which we consider
fixed throughout the paper. An object I is called
(r-o,~o)-rowui or good2 if there is a point p such
that ro(l – co) s r(p) s R(p) s ro(l + CO). An
object is called bad ifit is not good,

In Figure 1, the shaded objects Cl and Cz are
bad while C3 and C4 are good.
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Figure 1: Objects Cl and Cz are “clearly” bad; C3 is
“clearly” good but the classification of C4 as good is
less evident. The four identical annuli indicated by
dashed circles have radii ro( 1 – CO)and ro( 1 + 60).

We use the @rger probing model of [ 1]. It pos-
tulates that the measurement device can identify a
point in the intenor of 1 and can probe along any ray,
i.e., determine the firstpoint on the ray in bd 1. Note
that this is a simple mathematical model for Coor-
dinate Measurement Machines (CMM’S). CMM’S
are considered the state of the art in this area [14].
In this probing model, n probes yield a set S. of at
most n points in bd 1. A necessary condition for the
classification procedure to be correct is that the set

ISince M / is a CIOSMIbounded set theminimummd mm-
imum exist.

2this definition of roundness is hy far not the only conceiv-
able one, It is cat led referenced rounding in [2]. Our results
hold for several other definitions of roundness as we will show
in section 5.

of all objects /’ with Sn ~ bd 1’ is either collec-
~ively good or bad. Without additional assumption
on / this will not be the case for any finite n. In this
paper, we use the following approximate roundness
assumptions,

Minimum QualityAssumption(MQA
and CMQA): 1 is a body and there is
a point p and 8 > 0 such that R(p) s
ro(l + ~) and r(p) z ro(l – c!), where
ti = 1/20 and co s 6/2. If we further
assume that 1 is convex, then we denote
the assumption by CMQA.

The constant 1/20 in MQA is arbitrary and is
easily replaced by larger values. But we feel thatthe
MQA assumption is not critical for practical pur-
poses: modern processes for manufacturing round
bodies can easily satisfy our requirement. But the
convexity assumption in CMQA is limiting. How-
ever, we believe that our techniques can be extended
to replace convexity by a bound on the maximum
possible negative curvature

2 Main Results

We explain the intuitive idea of our main results, us-
ing the objects Cl, . . . . CA in Figure 1. We shall
assume that C~’s are known a-priori to be convex.
We say that Cl is “clearly” bad because its violation
of the outer circle of radius ro( 1 + co) is easily wit-
nessed by the four corners of Cl. (This depends on
the convexity assumption.) So if our probe strategy
yields a set of points that contains some approxi-
mation to each of these four comers, we can confi-
dently reject Cl. Likewise, Cz is bad as witnessed
by the 4 indicated points on its boundary, and C3
is witnessed to be good by the 8 indicated points
on its boundary. Although Cd is good, it cannot
be witnessed by any finite set of points. Informally,
the reason is that the roundness of C4 is arbitrarily
close to the boundary between “good” and “bad”.
We measure this closeness to the boundary by the
“quality measure” (the quality of C4 turns out to be
o).

For a point p, let

qucd(p, 1) = min{(r(p) – (1 – Eo)rO,

(1 + ~o)rO – R(p)]/rO,

and let
qual(l) = mpmquaf(p, 1).

We call a point p with qual(p, 1) = qual(f) a cen-
ter of 1 and use c] to denote a center of 1. Let A be
the anntdus with inner radius (1 – co)ro and outer
radius (1 + co)ro. For a good object, cl defines a
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placement of I such that bd I : A and the distance
between bd I and bd A is maximized. and for a bad
object, c1 defines a placement of I that minimizes
the distance between bd 1 n cpl A and bd A. Here,
cpl A denotes the complement of A. The minimum
quality assumption implies thatqual(l ) > –(~ –(.)
and that (1 –ti)ro s r(cf) s R(cl) s (1 + A)ro.

We now state our main results, Basically, we
show classification procedures whose complexity is
quality sensitive:

Theorem 1 Under assumption CMQA there is a
classijlcation algorithm that classifies any body
I in time 0(11/qua/(1)1 log 11/qual(l)l) with
0(1 l/qual(l)l) probes.

Theorem 1 is based on the following two theorems.
The following theorem has independent interest:

Theorem 2 Under assumption MQA, six probes
and constant running time sufice to determine a
point co with dist(co, CI) 5 26r0.

Let co be as in the theorem above and let n be
any positive integer. For any integer i, O < i < n,
send a ray along the direction 2mi/n, and let Sn be
the set of contact points. The quality of Sn is a good
approximation of the quality of 1.

Theorem 3 Under assumption CMQA, lquaf(Sn ) –
qual(l)l = 0(1/n) and qual(Sn ) can be computed
in fime O(n log n).

The complete classification algorithm is given in
Figure 2. By Theorem 3 there is a constant c such
that lqual(Sn) – qual(l) I s c/n. Therefore, n can-

not exceed c . qual(l) and Theorem 1 follows.
Note thatthis procedure runs forever if the qual-

ity is O(as when 1 = C4 in Figure 1). In practice, we
should stop the algorithm when the quality becomes
sufficiently close to O.

The structure of the paper is as follows. In sec-
tion 3 we prove Theorem 2 and in section 4 we prove
Theorem 3. In section 5 we extend our results to a
larger class of quality measures and in section 6 we

list open problems.

3 Initial Placement

We provide a simple strategy for finding a point co
close to the center c1 of f. This result has indepen-
dent and practical interest. For instance, there are
highly specialized roundness-measuring machines.
Traditionally,the placement of an object in such ma-
chines are carried out manually. Our result means
thatone can easily automate this process withjust 6
initial probes.

The strategy is based on two simple subroutines:
For any point p, the pair of horizontal probes di-
rected towards p, one from the left and one from
the right, is called the horizontal pair for p. If pt
and p, are the two contact points returned by the
horizontal pair for p, define H(p) = H] (p) to be

(P? + P,)/2. Note that Y(P) = y(H(P)). .41s0,
pt = cm iff p, = m; in this case, H(p) is de-
fined to be m. Similarly, the two vertical probes
directed towards p, one from above and one from
below, is called the vertical pair for p. If the cor-
responding two contact points are pa and pb, we
define V(p) = Vi (p) to be (pa + pb)/2. For com-
pleteness, define H(m) = V(m) = cm.

Theorem 4 Let CI be a center of 1 and let p =
R(c1 )/r(cl ) – 1. Let p. be any point in the inte-
rior of/ and let co = H(V(H(po))). If p ~ 0.1
then dist(co, c]) s p . r(c{ ).

Proofi In the following analysis, assume without
loss of generality that the center cl is at the origin,
and r(cl ) is normalized to 1. Let

PI := H(PO), P2 := V(PI), p3 := H(p2).

So co = pJ. Without loss of generality, assume
x(pl) > 0 and y(p2) ~ O. First we show an up-
per bound onx(pl) = Ix(pl) – X(co)l:

4X(pl) ~ 2p+p2. (1)

There are two cases to consider.

J

case 1

. . . ..-

Y

Figure 3: –1 ~ y(pI) S 1

-y= J(po)

Case 1: –1 s y(pI) s 1. Refer to Figure 3.

Let u], uz be the points where the honzon-
taf line y = y(po) intersects the unit circle
centered at co. Let xi = x(ui) (i = 1,2)
and X] < x2. Since the unit circle is con-
tained in 1, the left probe contacts 1 at the
x-coordinate xt where Xt s XI. Let X3 be
the positive x-coordinate where this line in-
tersects the circle of radius 1 + p centered at
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Compute a point co as in Theorem 2.
tl= 2;
Repeat

n=2 *n;
Determine S. and compute qual(S,, ) and an interval [f, u] containing qual(l).

unti10 g [/, u]
If (/ > O) declare 1 good;
If (u < O) declare f bad;

Figure 2: The complete classification algorithm.

co. Since I is contained in the circle of ra-
dius 1 + p, the right probe contacts I at the
x-coordinate xr where x, s x3. So x (P1) =
(xt +x,)/2 s (x] +xJ)/2. Furthermore, since
xl = —X2,x(pl) s (.T3—x2)/2. The quan-
tity X3 – X2 is largest when y(po) = 1 or –1;
in this case, the Pythagorean theorem shows

X3—X2= /(1 +PP- 12 = J-.
Thusx(pl) s Jm/2.

Case2: y(pI) .: –1 ory(pl) >1.

We may define x3, xl and XT as in case 1.
Clearly both xt and x, are no greater than
x3. I%us, X( PI) = (xt + xr)/2 5 x3. The

coordinate x3 is largest when y equals 1 or

– 1, in which case x3 = ~~. Thus

X(pl) s J2P + P2.

In either case, we obtain the desired bound(1). No-
tice that pl need not lie inside 1. Hence it is im-
portant to argue that pz = V (pl ) is finite. But this
follows from the fact thatI is a connected set. But in
fact, it is easy to show something stronger, namely

Pi (for any i ? ~) actually lies inside 1. To see this
for p2, observe that

X(p]) <0.5, (2)

which in turn follows from (1) and p s 1/ 10.
Next we show ly(p2) – y(co)l < 5p/8, which,

under our assumptions, amounts to:

Y(P2) s 5P/8. (3)

Refening to Figure 4(i), let the line x = x (p I) inter-
sect the unit circle centered at co at the points VI, VZ.
Let yi := y(ui ) (i = 1, 2) and yl c yz. The line also
intersects the circle of radius 1 + p at the positive
y-coordinate yq. As in the proof of ( 1), Case 1, we
have Y(P2) s (Y3 – yz)/2. Now the maximum value
ys – YZobtains when x(pI ) is maximized. By (1),
x(p[ ) s ~~. Let g := ~~ and e rep-
resent y3 – YZ when x(pl) = g. So Y(P2) s e/2

and its suffices to show e s 5p/4. Define h

Figure 4(ii). A simple calculation shows that
as in

e+h=l, h=@g2

and hence

e=l–
r 1 –gz.

Using the Taylor expansion

( X2 X3
(1 –X)ll* = 1– ;+ T+ R+...

)

(

X2 X3
> 1– ;+F+

)
16(1 –x) ‘

and on substituting x = g2 in the expression fore,

g2 .g4 d
‘<~+ ~+16(1–g2)”

Using g2 <0.25,

( ) 9g2
e<g2 ;+++* <~.

From g2 = 2p + p2 <2. lp, we conclude that e <
5p/4, which proves (3).

We next show lx(p3) – ,r(cl)l s 13p/25. As-
suming without loss of generality that x(P3) 2 0,
this amounts to

x(p3) s 13p/25. (4)

With reference to Figure 5(i), let the line y = y(pz)
intersect the circles centered at co with radii 1 and
1 + p atthe positive x-coordinates x; and x4, re-
spectively. The above analysis shows x(P3) s
(x5 – x~)/2. Assuming without loss of generality
that y(p3) 2 0, the value of x$ – X; is increas-
ing with y(pz). Let e’ be the value of X4 – X4

when y(p2) = 5p/8, as in Figure 5(ii). Since
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Figure 4: Second set of probes: bounding y(pz).

(i)
(ii)

Figure 5: Third set of probes: bounding x (p3).

Y(P2) 5 5P/8, this means x(p3) s e’/2. Itremains
to bound e’. Putting 6 = 5p/8,

“ = m--

using an abbreviated version of the previous Taylor
expansion. Since 62 = 25p2/64 < p/25, we get
e’ c 26p/25, verifying (4).

From (3) and (4) we conclude that that IIp3 –

CIIIs p (5/8)2 + (13/25)2 < p, and the theorem
is proved. m

Theorem 2 is an easy consequence of The-
orem 4 and MQA. MQA implies implies p =

R(cf)/r(c/)– I s (1 +d)/(1 –6)– 1 sO.1 and
hence dist(co, cl) < p - r(c[ ) = R(c[ ) – r(c] ) S
26r0.

4 Uniform and Near-Uniform Probing

In this section we prove Theorem 3. Recall that we
determine a set S. = {uo, . . . . U.–I ) of n points in
bd I arranged in clockwise order by uniform prob-
ing about co, i.e., by probing along the directions
2mi/n for all i, O s i < n. Let cs be the center of
S. and define the core C of 1 by

C = {p ~ 1; r(p, 1) 2 (1 –40ro}.

We show that c1, co, and C.Slie in the core and that
if p and q are points in the core and u and w are
points in bd 1 then Zupw < 6L uqw. This implies
that lvic~ui+l is at most 12ri/n for all i, O s
i K n, i.e., the uniform probing about co amounts to
near-uniform probing about C.Swith about the same
sampling density. Finally, we show that the near-
uniform probing about cs implies that Iqual(I) –
qual($l = 0(1/n).
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4.1 Uniform probing about co amounts to near-
uniform probing about C.S.

Lemma 5 The points c1, co, and cs lie in C,
R(p, 1) s (1 + 6il)ro for any point p E C, and
dist(p, q) ~ 106r0 for any two points p and q from
the core.

Proof The minimum quality assumption yields
r(c~, 1) z (1 –J)ro and hence c] c C and Theorem
2 states that dist(c[, co) s 2&0. Thus r(co, 1) ?
(1 – 3c5)r-oand hence co c I. For cs we show
dist(c~, c1) s Mro. Assume w.1.o.g. that c1 is at
the origin. We show x (es) s 2i5r0, from which the
claimed bound on dist(cl, c~) follows by symmetry
and elementary calculation.

First note that qual(l) s qualS = qual(cs, S)
implies Jl(cs, S) s (1 + ~)ro. Next note that n is
always a multiple of 4 and hence one of the probes
is made along the negative x-axis. It hits 1 in a point
whose x-coordinate is at most —(1 — i3)r0. Thus
R(cs, S) ? (1 – ~)ro + X(CS) and the bound on
X(CS) follows.

I is contained in a disk D of radius ( 1+ ~)ro and
hence no point in the core of 1 can have distance
huger than 56r0 from the center of D. This implies
I?(P, 1) s (1 + 60ro for any point p ● C, and
dist(p, q) s 10?wofor any two points p and q from
the core. n.

Lemma 6 Let p and q be points in the core of I and
let v and w be points in bd I such that 2LY= [vqw.
Then 2/3 = [vpw ~ 12ci.

Pro& If a z m/12 there is nothing to show. As-
sume, otherwise. Then arcsin 2 tanCY< 3cr. For a
point x we use r. to denote dist(p, x). We proceed
in two steps.

First assume r = ru = rw. We show P 5 3CY.
Let L = 2flr/(2z) be the length of the circular arc
from v to w. We bound L from above. We may
assume w.1.o.g. that p is at the origin and thatq lies
on the positive x-axis, cf. Figure 6.

We claim that L is maximal if the axis of the
wedge W = f vq w aligns with the negative x-axis.
Indeed consider any other orientation of W‘s axis
and consider turning W‘s axis towards the negative
x-axis. Then L will grow as long as the “forward
leg” of W is longer than the “rear leg” of W. The
worst case situation is therefore if W’s axis aligns
with the negative x-axis, cf. Figure 7. We have r z

(1 – 46)ro, z S 10&o, tana = y/(x+ z), sine =
y/r, and x 5 r. Thus,

(x+ Z). tanu ~ztana
sin/1 = y/r =

r

Figure 6: Situation in the proof of lemma 6

Now we come to the general case. Assume
w.1.o.g, ru S rW. Consider the circle with radius
r = ru about v and let z be the intersection of this
circle with the line 1 through q and w; z is unique
since rW ~ r > rq. Then

2P = [Vpw = [Vpz + [Zpw.

The angle 1 vpz is bounded by @ by the argument
above. If z lies in the wedge ,!vp w we also need to
bound Lzpw. Let a be the point on 1 closest to p,
let y = lapz and q = /zpw, cf. Figure 8. Then
cosy = ra/rU and COS(V+ y) = rO/rU.

m

1’

P

●
c

Figure 8: Bounding q

Since cos(y + q) = cos y cos q – sin y sin q this
implies

sin q = (COSy cos q – cos(y + V))/ sin v
< (COSy – cos(y + q))/ sin y—
= ((rW – rU)rd)/(rV . rW) . (1/sin y).
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v “h
r

P=<

w

Figure 7: Worst Case

Wehavecosy = ra/ru s 68/(1 –4A) s l/10 and

hence sin y = ~- ? J~W z 9/10. 1(
remains to bound (ru – rv )/rW. An obvious bound
is 108/(1 – 46), which is, however, much too weak
for our purposes.

b

L?’’”._u

r

2P

P
w

Figure 9: Bounding rw minus ru

Consider the line L.through u and w and let b be
the point closest to p on L; b may or may not lie
between u and w. If b lies between u and w then

(rw – ru)/rw S (rw – rb)lrw
s 1 –cos2p
< 2sin/32
; 2p.

If b does not lie between v and w we have rh ?
(1 – 46)ro since otherwise a neighborhood of b is
contained in 1 and hence v # bd 1 by the convexity
of 1. Let r = [bpu. We have cos r = rh/rV and
cos(2#? + T) = rbl ru,, cf. Figure 9, and hence

(rW – rU)/rW = 1 – cos(2#? + r)/cos r
– 1 – cos2~ + (sin r/ cos r) sin 2A4—

< 2sin2/? + (1/cosr)sin2~
< 2/?(1+ l/cos r).—

Since COST = r~/ru ~ (1 – 46)/(1 + 66) z 1/2
we conclude (rW —rU)/ r~ s 6P and hence sin v 5
6/1/9. Substituting into 2P –6CY s q yields sin(2/1 –
b) ~ 2#3/3. This implies 2j3 s 12U. Note thatthe
equation sin(2~ –&) = 2f3/3 has a single solution

with 2~ s Tr/4 and that the iteration 2A = 6cr,
2@i+[ = 6ct+arcsin 2~1/3 converges monotonically
towardsthis solution. A simple induction shows that
all iterates stay bounded by 12U. Indeed, 2f30 s
12a md if 2~i ~ 12CXand hence arcsin 2~i /3 s
arcsin & s 6cI then 2~i+1 s 12u. m

4.2 qual(Sn) approximates quaf(l)

We now conclude our proof of Theorem 3. Let
O = JT/n and let S = {uI ...}.} G bdl be the
points determined by probing along directions 2t?i,
O < i < n, from co. Then luicoui+] = 28 and
luic~ui+l s 120, where c~ is the center of S by
Lemma 6. Let rs = r(cs, $ and RS = R(cs, S).

Lemma 7

rs(l – 18n/n2) s rscos66 s r(cs, 1) s rs. (5)

Proofi The upper bound on r(cs, 1) is immediate.
For the lower bound, choose q ● bd 1 at distance
r(cs, 1) from cs. The point q lies angularly be-
tween some two samples ui and vi~l around cs.
Let 20 = luics~i+l s 120. Since 1 is convex,
the line segment [V;, ui+l ] must be contained in 1.
Convexity furthermore implies thatthe point q does
not lie on the same side of this segment as cs does.
Thus, the distance r(cs, 1) from cs to q is at least
the distance D from cs to the segment. This dis-
tance D is minimized when the distances from cs
to ui and from cs to vi+1 are both rs; in this case
D = r-scos o ? cos 60, as desired. See Figure
10. The lower bound in terms of n follows from
0 = x/n and COSO~ 1 –02/2. B

Lemma8 Let z = R(cs, 1)/r(cs, 1). Then

Rs
Rs < R(cs, 1) <

COSO– sintl~
~ Rs(l + 187r/n).
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Figure 10: A lower bound on r(c~, 1)

Proofi The lower bound on R(CS, 1) is immediate.
For (he upper bound, choose q ● bd 1 at distance
R(CS, 1) from c~, lying angularly between two sam-
ples vi and ui+I when seen from cs. Let 20 =
LlJiCsU;+I <120. The maximum value of R(cs, 1)
is obtained when vi and vi+1 are both at distance
Rs from cs, q is on the bisector of Lvic~~i+1, and
the lines q ui and q vl+l are both tangent to the circle
of radius r(cs, 1) centered at cs. This situation is
illustrated in Figure 11.

Figure 11: An upper bound on R(cs, 1)

Let 1# be the angle about c~ formed by vi+1 and
the point where q ui+ 1 is tangent to the circle of ra-
dius r(cs, f). Then

)-(CS, 1) )-(CS, 1)
cos+=—

Rs ‘
cos(l/1 + a) =

R(cs, 1)

Rearranging the latterequation,

R(cs, 1) =
r(c,s, 1)

cos(~ + u)

r(c~, /)
=

cos ~ coso – sin + sin o

Rs
=

cosu – ~(RS/r(cS, /))2 – 1 sino “

For the upper bound in terms of n, observe that
sinm s a and z =< (1 +d)/(1 —A) implies

cosc7-sinc7 Z2– 1

= 1 –sin2a–sin O/z2– 1

~ I–CT(1+W”2)

and hence

R(cs, ~) ~ Rs(l + 30) ~ Rs(] + 18T/n).

Lemma 9 qual(.Sn) – 207r/rr s qual(l) s quczl(.S)
and qual(Sn ) can be computed in time O (n log n).

Proof qual((l) s qual(Sn) follows directly from
S G bd 1. For the lower bound, let rs = r(cs, S)
and Rs = R(CS, S) and observe

~ qual(cs, I)

= min(r(cs, 1) – (1 – co)ro,

(1 + co)ro – Rs)/ro

> min(rs(l – 18m2/n2) – (1 – co)ro,

(1 + co)ro – Rs(l + 18m/n))/ro

> qual(S) – 187rmax(rs/rO, Rs/ro)/n

= qual(S) – 203r/n.

The bound on the running time follows from [2].
m

5 Other Quality Measures

There are many ways to quantify the roundness of
an object besides the one used above. For example,
we may require

● thatthe inner radius r(p) lies in some interval
[ro – El, r.+ Ez] and the outer radius R(p) in
some interval [ro – c3, ro + c4], or

● thatthe width R(p) —r-(p) lies in some interval
[0, c5] or

● thatthe relative width (R(p) –r(p))/r(p) lies
in some interval [(), I%]or

● that the average distance of a point in bd 1
from the center c lies in some interval [r. –
c7, ro + E7].

The approach described in this paper is readily ex-
tended to the first three constraints above and in fact
to a large class of constraints thatcan be formulated
in terms of an annuhts containing the boundary of
the body to be classified. Let 7 = {~1, . . . . A} be
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a family of functions of two real arguments. We call
fi the i-th measure ofqua/i~. For a point p let

qual(p, 1) = ,rn)nk fi(r(p, 1), R(p, 1))

be (he quality of the body I with respect to p and let

qual(l) = mflmqual(p, 1)

be the quality of I. We call a point p withqual(I) =
qual(p, i) an F-center of I and use C3,[ to de-
note an :-center of I. The examples above lead
to the quality functions ~1(r, R) = r – (ro – EI),
fz(r, R) = ro + E2 – r, f3(r, R) = R – (ro –63),

f4(r, R) = ro+c4 – R, f5(r, R) =65 –(R –r),
and ~G(r,R) = ● – ( R – r)/r. The specialization
~={~l,~l,~q,~d)andcl =~z ==3 =q=coro
was considered in the preceding section.

Our approach hinges on the following two prop-
erties

. the quafity of the sample S = Sn can be com-
puted efficiently and

● the quality of Sn is a good estimate for the
quality of 1.

With respect to the first property we observe that
the overlay of the furthest and nearest site Voronoi
diagram partitions the plane into cells (= regions,
edges, and vertices) with the property that for all
p in a fixed cell the radii r(p, S) and R(p, S) are
determined by a small number of points in the sam-
ple S, namely two points for regions, three points
for edges, and four points for vertices. For a cell f
let S,f be the points in S thatdetermine r(p, S) and
R(p, S) for all p in j.
AssumptionBM: Let f be a cell and let F be the
affine hull of f; F is either the plane, or a line,
or a vertex. We assume that the function p ~
qual(p, S~ ) for p e F has only a bounded num-
ber of local minima and that these minima are com-
putable in constant time.

Assumption BM M certainly satisfied for any
quality measure based on the functions fl, . . . . fc
above. We proceed under assumption BM. For each
f, the equations fi = fj, 1 s i < j c k, partition
F into cells wherein each cell we have a fixed order-
ing of the values of fl ,..., f~. Thus, determining
the local minima within a cell amounts to a bounded
size (since lSf I s 4) optimization problem.

We determine the Iocaf minima of qual(p, Sf )

in F and then test these minima for containment in
f. The “surviving” minima are candidates for the
Y-center of S. The total number of candidates is
0(n2). We conclude:

Lemma 10 Under assumption BM the quality of a
sample S of size n can be computed in time O (n2 ).

We next turn to the second property thatqual(S,, )
is a good estimate of qual(l).
Assumption CD: For all sufficiently large n, all X-
centers of f and all $-centers of S~ lies in the core
of 1. The quality functions fl, . . . . fk are differen-
tiable and have bounded derivative.

Lemma 11 Under assumptions CMQA, BM, and
CDwehave Iqual(l) – qual(Sn)l = 0(1/n).

Proofi By the first part of assumption CD any
~-center cs = C3. S of S lies in the core
of I. Also co lies in the core and hence
r(cs, 1) – 0(1/n) s r(cs, 1) s r(cs, S) and
R(c5, S) s R(cs, 1) s R(cs, S) + 0(1/n) by
Lemmas 7 and 8. Thus, (Ifi(r(cs, 1), R(c~, J)) –

fi((r(cs. S), R(cs, S))1 = 0(1/n) and hence

qual(l) > qual(c~, 1)

? qual(cs, S) — 0(1/n).

The same argument with C3,1 instead of cs shows

qua)(l) = qual(cf, 1)
S qual(cl, S) + 0(1/n)
s qual(S) + 0(1/n).

m
Assumption CD is satisfied for afl quality

measures based on functions f], . . . . fs. It
is not satisfied for the measure qual(p, 1) =

f6(r(P, 0, R(p, 1)). Under this measure the cen-
ter may lie at infinity and not within 1.

Theorem 12 Under assumptions CMQA, BM, and
CD, there is a classi$cation algorithm working
in time 0(11/qual(l)12) time with 0(11/qual(l)l)
probes.

Rook The algorithm was already given in section
1. Its correctness and performance follows immedi-
ately from Lemmas 10 and 11. n

6 Dkcussion and Open Problems

Our work rises many open problems:
We have introduced several notions of round-

ness, and given a general procedure for their associ-
ated classification problems. It seems to us that the
different notions of roundness are useful for differ-
ent applications. It is unclear why the widthmeasure
to(l) is dominant in practice.

What is the influence of the probing model? For
example, what happens for a “line prober” that is
able to determine the tangent to the object perpen-
dicular to a specified direction. We conjecture that
the error of approximation reduces from O( 1/n ) to
0(1/n2).
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We claim only a running time of O(n2) for deter-
mining qr.M/(.Sn). For two quality measures a time
bound of O(nlogn) can be obtained: For refer-
enced roundness this is shown in [2] and for width
this is shown in [6]. Can the time bound be im-
proved for other quality measures.

Does the approach extend to more complicated
classification tasks, e.g., determining roundness of a
three-dimensional object?

In our approach we keep the probing center co
fixed although CS. is known to be a much better ap-
proximation of c1 as n gets large. Can this be ex-
ploited?

Is an approach thatclassifies “clearly good” and
“clearly bad” objects quickly and takes longer on
“borderline objects” of interest to actual metrology?
Of course, in practice, one should modify our de-
cision procedure to simply accept or reject once
we have determined that the quality is smaller than
some constant. This is the decision policy issue
studied in [ 15].

Measurement devices make errors [8]. How can
this be taken into account?

7 Bibliography

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

RichardCole and Chee K. Yap. Shapefrom probing.
JournalofAlgorithrrrs,8:19-38, 1987.
CtI.Duncan,M.T.Gtiich, andE,A.Ramos. Efficient
approximationafgorithtnsand optimizationalgorithms
for computational metrology. In Proc. SODA 97, pages
121-130, 1997.
H. Ebara, N. Fukuyarna, H. Nakano, and Y. Nakanishi.
Roundness algorithms using the Voronoidiagrams. In
Abstracts 1st Card. Conf Comput. Geom,, page 41,
1989.
Sbaw C. Feng and Theodore H. Hopp. A review of cur-
rent geometric tolerancing theories and inspection data
analysis algorithms. TechnicalReport NISTIR-4509,
NationalInstituteof Standardsand Technology, U.S.
Departmentof Commerce.FactoryAutomationSystems
Division, Gaitbersburg, MD 20899, February 1991.
A, B. Forbes. Geometric tolerance assessment. NPL
Technical RepmtDITC 210/92, NationatPhysicalLab
oratory,Divisionof InformationTechnologyandCom-
puting,NPL,Teddington,Middlesex,U.K. TW1I OLW,
October, 1992.
J. Garcia and P.A,Rarnos. Fittinga set of points by a
circle. In Prac. ACM Conference on Computational Ge-
ometry, 1997.
V. B. Le and D. T. Lee. Out-of-roundness problem re-
visited. IEEE Tmns. Pattern Anal, Mach, Intell., PAMI-
13(3):217-223, 1991.
S. D. Phillips, B. Borchardt, and G. Caskey. Measure-
ment uncertain y considerations for coordinate measur-
ing machines. NIST Technical Report NISTJR 5170,
National Institute of Standards and Technology, NIST,
Precision Engineering Division, Building 220, Roam
B113,Gaithersburg,MD 20899, April, 1993.
U. Roy, C.R. Liu, and T.C, Woo. Review of dimen-
sioning and tolerancing: representation and processing,
Compurer-aided Design, 23(7):466-483, 1991,

[10] U. Roy and X. Zhmg. Establishment of a pair of
concentric circles with the minimum radial separation
for assessing rounding error. Computer Aided Design,
24(3):161-168, 1992.

[ 1I] Michiel Smid and Ravi Janardan. On the width and
roundness of a set of points in the plane. Department of
Computer Science Report TR 94-62, University of Min-
nesota, 1994.

[12] Vijay Srinivasan and Herbert B. VOelcker,editors. Di-
mensionali’blerarrcirtgcurdMetrology,345 East 47th
Street, New York, NY 10017, 1993. The American So-
ciety of Mechanical Engineers, CRTD-VOI.27.

[13] Kurt Swanson. An optimal algorithm for roundness de-
termination on convex polygons. In Proc. 3rd Workshop
Algorithms Data Struct., volume 709 of Lecture Notes in
Compuler Science,pages601-609, 1993.

[14] Chee K, Yap. Exact computationrd geometry and tol-
erarrcing metrology. In David Avis and Jit Bose, ed-
itors, Snapshots of Computational and Discrete Ge-
ometry Vol.3. McGill School of Comp.Sci, Tech.Rep.
No,SOCS-94.50, 1994. A Volume Dedicated to God-
fried Toussaint.

[15] Chee K. Yap and Ee-Chien Chang, Issues in the metrol-
ogy of geometric tolerancing. In M. Overmars, editor,
Prw Workshop on Algorithmic Robotics. SpringerVer-
Iag, 1996. (to appear) Lecture Notes in Computer Sci-
ence.

138


