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Abstract� We propose an e�cient method that deter�
mines the sign of a multivariate polynomial expression
with integer coe�cients� This is a central operation on
which the robustness of many geometric algorithms de�
pends� The method relies on modular computations�
for which comparisons are usually thought to require
multiprecision� Our novel technique of recursive relax�
ation of the moduli enables us to carry out sign deter�
mination and comparisons by using only �oating point
computations in single precision� The method is highly
parallelizable and is the fastest of all known multipreci�
sion methods from a complexity point of view� We show
how to compute a few geometric predicates that reduce
to matrix determinants� We discuss implementation
e�ciency� which can be enhanced by good arithmetic
�lters� We substantiate these claims by experimental
results and comparisons to other existing approaches�
This method can be used to generate robust and e��
cient implementations of geometric algorithms� includ�
ing solid modeling� manufacturing and tolerancing� and
numerical computer algebra �algebraic representation
of curves and points� symbolic perturbation� Sturm se�
quences and multivariate resultants��
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� Introduction

Most of geometric predicates can be expressed as com�
puting the sign of an algebraic expression� In principle�
one may compute such expressions by using �oating�
point arithmetic with a �xed �nite precision �f�p� arith�
metic�� but then the roundo� errors may easily lead to
the wrong sign� This problem is often referred to as the
robustness problem in computational geometry 	
���

One solution to the robustness problem is to explic�
itly handle numerical inaccuracies� so as to design an
algorithm that does not fail even if the numerical part
of the computation is done approximately 	

� �
�� or
to analyze the error due to the f�p� imprecision 	
���
Such designs are extremely involved and have only been
done for a few algorithms� The general solution� it has
been widely argued� is to compute the predicates ex�
actly 	
� �� 
�� ��� 

�� This can be achieved in many
ways� computing the algebraic expressions with in��
nite precision 	�
�� with a �nite but much higher pre�
cision that can be shown to su�ce 	
��� or by using
an algorithm that performs a speci�c test exactly� In
the last category� much work has focused on comput�
ing the sign of the determinant of a matrix with inte�
ger entries 	�� �� ��� which applies to many geometric
tests �such as orientation tests� in�circle tests� compar�
ing segment intersections� as well as to algebraic prim�
itives �such as resultants and algebraic representations
of curves and surfaces�� Recently� some techniques have
been devised for handling arbitrary expressions and f�p�
representation 	����

In our present paper� we propose a method that de�
termines the sign of a multivariate polynomial expres�
sion with integer coe�cients� using no operations other
than modular arithmetic and f�p� computations with
a �xed �nite �single� precision� The latter operations
can be performed very fast on usual computers� The
Chinese remainder algorithms enable us to perform ra�
tional algebraic computations modulo several primes�
that is� with a lower precision� and then to combine
them together in order to recover the desired output



value� The latter stage of combining the values mod�
ulo smaller primes� however� was always considered a
bottleneck of this approach� because higher precision
computations were required at this stage� Our paper
proposes a new technique� which we call recursive relax�
ation of the moduli and which enables us to resolve the
latter problem� Due to this technique� we correctly re�
cover the sign of an integer from its value reduced mod�
ulo several smaller primes� and we only use some sim�
ple lower precision computations at the recovery stage�
�This should make our algorithms of some independent
interest also for the theory and practice of algebraic
computing�� Our deterministic algorithms 
 and � of
sections � and �� respectively� specify our approach and
our technique based on Lagrange�s and Newton�s inter�
polation formulae� respectively� Our algorithm � of sec�
tion � gives a probabilistic simpli�cation of algorithm ��
Preliminary experimental results and running times are
discussed in section �� In general� our methods are com�
parable in speed to other exact methods and even faster
for particular inputs�

Related work� Performing exact arithmetic is usually
expensive� Thus� it is customary to resort to arithmetic
�lters 	
��� those �lters safely evaluate a predicate in
most cases� in order to avoid performing a more ex�
pensive exact implementation� The di�cult cases arise
when the expression whose sign we wish to compute is
very small� For typical �lters� the smaller this quantity�
the slower the �lter 	�� �� ���� this is referred to as adap�
tivity� Modular arithmetic displays an opposite kind of
adaptivity� with a smaller quantity� fewer moduli have
to be computed� hence the test is faster� Typically�
when �lters fail� they also provide an upper bound on
the absolute value of the expression whose sign we wish
to compute �see many details and estimates in 	�����
This bound can then be used to determine how many
moduli should be taken� Modular arithmetic is there�
fore complementary to the �ltering approach� We also
observe this in section ��

Residue Number Systems �RNS� express and ma�
nipulate numbers of arbitrary precision by their moduli
with respect to a given set of numbers� They have been
popular because they provide a cheap and highly paral�
lelizable version of multiprecision arithmetic� It is im�
possible here to give a fair and full account on RNS� but
Knuth 	��� and Aho� Hopcroft� and Ullman 	
� provide
a good introduction to the topic� From a complexity
point of view� RNS allows to add and multiply numbers
in linear time� Its weak point is that sign computation
and comparisons are not easily performed and seem to
require full reconstruction in multiple precision� which
defeats its purpose� This is precisely the issue that our
paper handles�

The closest predecessors of our work are appar�

ently 	
�� and 	���� The algorithm of Hung and
Parhami 	��� corresponds to single application of the
second stage of our recursive relaxation of the moduli�
Such a single application su�ces in the context of the
goal of 	���� that is� application to divisions in RNS�
but in terms of the sign determination of an integer�
this only works for an absolutely larger input� The pa�
per 	
�� gives probabilistic estimates for early termina�
tion of Newton�s interpolation process� which we apply
in our probabilistic analysis of our algorithm �� Its main
subject is an implementation of an algorithm computing
multidimensional convex hulls� The paper 	
�� does not
use our techniques of recursive relaxation of the moduli�
and it does not contain the basic equations �
����� of
our section ��

� Exact sign computation using modular arithmetic

Modular computations� Our model of a computer is that
of a f�p� processor that performs operations at unit cost
by using b�bit precision �e�g�� in the IEEE ��� double
precision standard� we have b � ���� It is a realistic
model as it covers the case of most workstations used
in research and industry� We will use mainly one basic
property of f�p� arithmetic on such a computer� for all
four arithmetic operations �and for computing a square
root too but we will not need it�� the computed result
is always the f�p� representation that best approximates
the exact result 	��� ���� This means that the relative
error incurred by an operation returning x is at most
��b� and that the absolute error is at most �blog jxj�bc�
�All logarithms in this paper are base ��� In particular�
operations performed on pairs of integers smaller than
�b are performed exactly as long as the result is also
smaller than �b�

Let m�� � � � �mk be k pairwise relatively prime inte�
gers and let m �

Q
imi� For any number x �not nec�

essarily an integer�� we let xi � x mod mi be the only
number in the range

�
�mi

� � mi

�

�
such that xi � x is a

multiple of mi� �This operation is always among the
standard operations because it is needed for reducing
the arguments of periodic functions��

To be able to perform arithmetic modulo mi on inte�
gers by using f�p� arithmetic with b�bit precision� we will
assume that mi � �b����� Performing modular multi�
plications of two integers from the interval

�
�mi

� � mi

�

�
can be done by multiplying these numbers and return�
ing their product modulo mi� �The product is smaller
than �b in magnitude and hence is computed exactly��
Performing additions can be done very much in the
same way� but since the result is in the range

�
�mi

� � mi

�

�
�

taking the sum modulo mi is more easily achieved by
adding or subtracting mi if necessary� Integral divi�
sions modulo mi can be computed using Euclid�s algo�
rithm� we will need them in this paper only in section ��



Therefore� arithmetic modulo mi can be performed us�
ing f�p� arithmetic with b�bit precision� provided that
mi � �b�����

Exact sign computation� In this paper� we consider the
following computational problem�

Problem � Let k� b� m�� � � � �mk denote positive inte�
gers� m�� � � � �mk being pairwise relatively prime� such
that mi � �b����� and let m �

Qk
i��mi� Let

x be an integer whose magnitude is smaller than
b�m������ k��b�c� Given xi � x mod mi� compute the
sign of x by using only modular and �oating�point arith�
metic both performed with b�bit precision�

We will solve this problem� even though x can be huge
and� therefore� not even representable by using b bits�

� Lagrange�s method

According to the Chinese remainder theorem 	��� x is
uniquely determined by its residues xi� that is� Prob�
lem 
 is well de�ned and admits a unique solution�
Moreover� this solution can be derived algorithmically
from the following formula� due to Lagrange 	��� ���� If
x is an integer in the range

�
�m

� �
m
�

�
� xi stands for

the residue x mod mi� vi � m�mi �
Q

j ��imj � and

wi � v��
i mod mi� then

x �

�
kX

i��

��xiwi� mod mi� vi

�
mod m�

Trying to determine the sign of such an integer� we
computed the latter sum approximately in �xed b�bit
precision� Computing a linear combination of large in�
tegers vi with its subsequent reduction modulo m can
be di�cult� so we prefer to compute the number

S � frac

�
kX

i��

�xiwi� mod mi

mi

�
�

where frac�z� is the fractional part of a number x that
belongs to

�
� �

� �
�
�

�
�

If S were computed exactly� then we would have
S � frac�x�m�� due to Lagrange�s interpolation for�
mula� In fact� S is computed with a �xed b�bit pre�
cision� Nevertheless� we prove in the full version that
exact rounding and summing terms pairwise in a tree�
like fashion introduces an absolute error �k � k ��b��

in the sum S� Therefore� if S is greater than �k� the
sign of x is the same as the sign of S� and we are done�
Otherwise� jxj � �km� Since mk � �b����� we can say
conservatively that for all practical values of k and b�
this is smaller than m

�mk
����k���� and hence we may re�

cover x already from xi � x mod mi for i � �� � � � � k���
that is� it su�ces to repeat the computation using only

k��� rather than k moduli� Recursively� we will reduce
the solution to the case of a single modulus m� where
x � x�� We will call this technique recursive relaxation
of the moduli� and we will also apply it in section ��

We will present our resulting algorithm by using ad�
ditional notation�

m�j� �
Y

��i�j

mi�

v
�j�
i �

Y
��i�j

i��j

mi�

w
�j�
i �

�
v
�j�
i

���

mod mi�

S�j� � frac

�
jX

i��

xiw
�j�
i mod mi

mi

�
�

so that m � m�k�� wi � w
�k�
i and S � S�k�� All the

computations in this algorithm are performed by using
f�p� arithmetic with b�bit precision�

Algorithm � � Compute the sign of x knowing xi �
x mod mi

Precomputed data� mj � w
�j�
i � �j� for all � � i �

j � k
Input� integers k and xi �

�
�mi

� � mi

�

�
� for all � �

i � k
Output� sign of x� the unique solution of xi �

x mod mi in
h
�m�k�

� � m
�k�

�

�
Precondition� jxj � m�k�

� ��� �k�

�� Let j � k � �
�� Repeat j � j � ��

S�j� � frac

�
jX

i��

xiw
�j�
i mod mi

mi

�

until jS�j�j � �j or j � �
�� If j � � return �x � ��
	� If S�j� � � return �x � ��

� If S�j� � � return �x � ��

Lemma ��� Algorithm � computes the sign of x know�

ing its residues xi by using at most
k�k���

� f�p� modular

multiplications� k�k���
� f�p� divisions� k�k���

� f�p� addi�
tions� and k � � f�p� comparisons�

Proof� Themi�s and the w
�j�
i �s are computed once and

for all and placed into a table� so they are assumed to
be available to the algorithm at no cost� In step �� a
total of j modular multiplications� j f�p� divisions� and j
f�p� additions �including taking the fractional part� are
performed� �

By using parallel implementation of the summation
of k numbers on dk� log ke arithmetic processors in



�dlog ke time �cf� e�g� 	�� ch����� we may perform algo�
rithm 
 on dk� log ke arithmetic processors in O�k log k�
time� assuming each b�bit f�p� operation takes constant
time� Furthermore� if dk�� log ke processors are avail�
able� we may compute all the S�j� and compare jS�j�j
with �j � for all j � �� � � � � k concurrently� This would re�
quire O�log k� time on dk�� log ke processors� Finally� if
dtk� log ke processors are available for some parameter
� � t � k� we may perform algorithm 
 in O��k log k��t�
time by batching dte consecutive values of j in parallel�
In practice� the algorithm needs to examine only a few
values of j� so O�log k� time su�ces even with dk� log ke
processors�

Remark �� If actually x � �� the algorithm can be
greatly sped up by testing if xj � � in step �� in which
case we may directly pass to j � �� Furthermore� stage
� is not needed unless x � xj � � for all j� which can be
tested beforehand� Of course� if the only answer needed
is �x � �� or �x �� ��� then it su�ces to test if all the
xi�s are zero�

Remark �� If jxj is not too small compared to m�k��
then only step k is performed� involving only k f�p� op�
erations of each kind� Also� we note that the costly part
of the computation is likely to be the determination of
the xi�s� For these reasons� we should try to minimize
the number k of moduli mi involved in the algorithm�
This can be done by getting better upper estimates on
the magnitude of the output or by using the probabilis�
tic technique of section ��

� A generalization of Lagrange�s method

We will show that Lagrange�s method is in fact a par�
ticular case of the following method� Let

	��� � S�k� � frac

�
kX

i��

�xiwi� mod mi

mi

�
�

This quantity is computed in the �rst step of algo�
rithm 
� If the computed value of 	��� is smaller than
�k� it implies that 	��� � ��k� Thus� jxj is smaller than
�m�k� We can then multiply xiwi by

�k � b
�
� ��� �k�

��k
c�

to obtain �xiwi�k� mod mi for all i � �� � � � � k� This
can be easily done by precomputing �k modulo each
mi� We then compute

	��� � frac

�
kX

i��

�xiwi�k� mod mi

mi

�
�

and more generally�

	�j� � frac

�
kX

i��

�xiwi�
j
k� mod mi

mi

�
�

where we assume �k mod mi precomputed for all i �
�� � � � � k� This leads to the following algorithm�

Algorithm � � Generalized Lagrange�s method� Com�
pute the sign of x knowing xi � x mod mi�

Precomputed data� mi� wi� �k� �k mod mi� for
all i � �� � � � � k
Input� integers k and xi �

�
�mi

� � mi

�

�
for all i �

�� � � � � k
Output� sign of x� the unique solution of xi �
x mod mi in

�
�m

� �
m
�

�
Preconditions� jxj � m

� ��� �k� and x �� �

�� Let j � ��
�� Repeat j � j � ��

	�j� � frac

�
kX

i��

xiwi mod mi

mi

�

xi � xi�k mod mi for all � � i � k�
until j	�j�j � �k or j � k
�� If j � k return �x � ��
	� If 	�j� � � return �x � ��

� If 	�j� � � return �x � ��

It is easy to see that the number of iterations in step �
is O�logm� log�k� � O�k�� because jxj is no less than

 and no more than m�k� � �k�b������ and is multiplied
by �k at each iteration�

Remark �� Algorithm 
 corresponds to a choice of
�k � mj in step j� this is why we call algorithm � a
generalization� Applying Lagrange�s method� we do not
multiply by the maximum at each step� but by a smaller
number chosen so as to simplify the computations�

Remark �� To yield the parallel time bounds such as
O�log k� using dk�� log ke processors for algorithm �� we
need to precompute �k

j for all i� j � �� � � � � k�

� An incremental variant

A recursive incremental version of the Chinese remain�
der algorithm� named after Newton� is described in this
section� Its main advantage is that it does not require
an a priori bound on the magnitude of x�

Let x�j� � x mod m�j�� for j � �� � � � � k� so that
x��� � x� and x � x�k�� Let y� � x�� and for all
j � �� � � � � k�

tj � w
�j�
j � �m�j������ mod mj �

yj �
�
xj � x�j���

�
tj mod mj �

h
�
mj

�
�
mj

�

�
�



Then �see� e�g�� 	��� ����� for all j � �� � � � � k�

x�j� � x�j��� � yjm
�j����

Clearly� this leads to an incremental computation of the
solution x � x�k� to problem 
� we see below how this
can be exploited for an early termination of the interpo�
lation� A further advantage is that all computation can
be kept modulo mj � and no �oating�point computation
is required� in contrast to sections � and � where S�j�

or 	�j� are computed� It is obvious� that when yj �� ��
then the sign of x�j� is the same as the sign of yj since
jx�j���j � m�j������ If yj � �� the sign of x�j� is the
same as that of x�j���� for j � �� whereas the sign of
x��� � x� � y� is known� If yj � � for all j� then this is
precisely the case when x � ��

For � � i � j � k� we introduce integers

u
�j���
i �

�
m�i���tj

�
mod mj �

�
j��Y
l�i

ml

���

mod mj �

Then tj � u
�j���
� � In the full version of the paper� we

show that the quantities yj verify the following equality
for all j � �� � � � � k�

yj �

�
�xj � x��u

�j���
� �

j��X
i��

yiu
�j���
i

�
mod mj �

Therefore� they can be computed by using modular
arithmetic with bit�precision given by the maximum
bit�size of the m�

j � Here it su�ces to assume that the

absolute value of x is bounded by m�k����

Algorithm � � Compute the sign of x� knowing x mod
mi� by Newton�s incremental method

Precomputed data� mj � u
�j���
i � for all � � i �

j � k
Input� integers k and xi �

�
�mi

� � mi

�

�
for all i �

�� � � � � k
Output� sign of x� where x is the unique solution

of xi � x mod mi in
h
�m�k�

� � m
�k�

�

�
Precondition� None�

�� Let y� � x�� j � �� Depending on whether y�
is negative� zero or positive� set s to ��� � or ��
respectively�
�� Repeat j � j � ��

yj �

�
�xj � x��u

�j���
� �

j��X
i��

yiu
�j���
i

�
mod mj �

until j � k� For every j� if yj is strictly negative
or positive� then set s to �� or �� respectively�
�� Depending on whether s is ��� �� or �� return
�x � ��� �x � ��� or �x � ��� respectively�

Remark �� As in remark 
� we can test beforehand if
all xi � �� which is precisely the case when x � ��

Lemma ��� Algorithm � computes the sign of x know�

ing its residues xi using at most k�k���
� f�p� modular

multiplications� k�k���
� f�p� modular additions� and k

f�p� comparisons�

Proof� For every j � �� � � � � k� there are j � � f�p�
modular additions and multiplications� There is one
comparison for each j � �� � � � � k� �

Algorithm � requires k recursive steps in the worst
case �though we expect to have it terminate earlier in
practice�� so its parallel time cannot be decreased be�
low 
�k log k�� Nevertheless the algorithm can be im�
plemented in O�k log k� time on dk� log ke processors�
assuming each b�bit f�p� operation takes constant time�

To compare with algorithm 
� realistically assume
that a modular addition is equivalent to ��� f�p� ad�
ditions and one comparison� on the average� Then�

algorithm 
 requires k�k���
� f�p� divisions �which are

essentially multiplications with precomputed recipro�
cals� more than algorithm �� whereas the latter requires
k�k���

� extra f�p� additions and k�k���
� additional com�

parisons�
The principal feature of this approach� based on

Newton�s formula for recovering x� is its incremental
nature� This may lead to faster termination� before
examining all k moduli� Informally� this should hap�
pen whenever the magnitude of x is signi�cantly smaller
than m�k���� in which case we would save the computa�
tion required to obtain xj for all larger j� This saves a
signi�cant amount of computation if termination occurs
earlier than the static bound indicated by k� A quan�
ti�cation of this property in the case of convex hulls can
be found in 	
���

We propose below a probabilistic variant of algo�
rithm � which� moreover� removes the need of an a pri�
ori knowledge of k� Step � is modi�ed to include a test
of yj against zero� Clearly� yj � � precisely when x�j� �
x�j���� Then we may deduce that x�j� � x�k� � x� with
a very high probability� and terminate the iteration�

Algorithm � � Yield earlier termination of algo�
rithm � for absolutely smaller input� Algorithm � is
modi�ed exactly as shown�

Input� integers xi �
�
�mi

� � mi

�

�
for i � �� � � � as

required in the course of the algorithm� no need
for k
Output� sign of x with very high probability

�� Terminate the loop also if yj � �

By lemma ��
 of 	
��� this algorithm fails with prob�
ability bounded by �k � ���mmin� where

mmin � minfm��m�� � � � �mkg�



For k � ��� mmin � ���� the error probability is less
than ���	� A more careful analysis can reduce this
probability by exploiting the correlation of failure at
di�erent stages� For experimental support of this claim�
we refer to 	
���

� Applications

��� Exact geometric predicates

Exact geometric predicates is the most general way
to provide robust implementations of geometric algo�
rithms 	
� 
�� ��� 

�� In particular� orientation tests
can be implemented by looking for the sign of a deter�
minant� Modular arithmetic becomes increasingly in�
teresting when the geometric tests �e�g� determinants�
are of higher order and complexity� They are central in�
notably�

� Convex hull computations� this is a fundamental
problem of computational geometry and of opti�
mization for larger dimensions� Among numerous
practical applications� one may note collision de�
tection in dynamic simulation and animation 	����
prediction of poses for industrial parts on a con�
veyer belt� and computation of stable grasps by
robots 	����

� Voronoi diagrams� for points� their computation
reduces to convex hulls� The sweepline algorithm
in �D is relatively simple� but involves tests of de�
gree �� and modular arithmetic can be of substan�
tial help in conjunction with arithmetic �lters 	
���
For segments� the tests become of even higher de�
gree and complexity 	��� and f�p� computation is
likely to introduce errors� so exact arithmetic is
often a must�

� Mixed subdivisions used in solving systems of non�
linear equations� Sparse elimination theory is
a relatively new area of computational algebraic
geometry� which exploits the geometric structure
of polynomial systems in order to obtain tighter
bounds and faster algorithms for their manipula�
tion 	
��� The algebraic questions are formulated
in terms of Newton polytopes and their mixed vol�
ume� each polytope being the convex hull of the
exponent vectors appearing in a polynomial�

Even for small dimensions� the nature of the data
may force the f�p� computation to introduce inconsis�
tencies� for instance� in�

� Planarity testing in geometric tolerancing 	����
Here� one must determine if a set of points sam�
pling a plane surface can be enclosed in a slab
whose width is part of the planarity requirements�

The computation usually goes by computing the
width of the convex hull� and the data is usually
very �at� hence prone to numerical inaccuracies�

In geometric and solid modeling� traditional ap�
proaches have employed �nite precision �oating point
arithmetic� based on bounds on the roundo� errors� Al�
though certain basic questions in this domain are now
considered closed� there remain some fundamental open
problems� including boundary computation 	
��� Toler�
ance techniques and symbolic reasoning have been used�
but have been mostly restricted to polyhedral objects�
their extension to curved or arbitrary degree sculptured
solids would be complicated and expensive� More re�
cently� exact arithmetic has been proposed as a valid
alternative for generating boundary representations of
sculptured solids� since it guarantees robustness and
precision even for degenerate inputs at a reasonable or
negligible performance penalty 	�
��

Furthermore� exact arithmetic allows the use of a
variety of algebraic and symbolic methods� including
algebraic representation of curves and points� symbolic
perturbation� Sturm sequences and multivariate resul�
tants� for an introduction to these methods� see 	��� The
critical operation is deciding the sign of a multivariate
polynomial expression with rational coe�cients on a set
of points� Recent data structures that exploit structure
of algebraic objects� such as straight�line programs� also
use precisely this kind of primitive operation 	����

��� Sign of the determinant of a matrix

As mentioned� computing the sign of a matrix determi�
nant is a basic operation in computational geometry� ap�
plied to many geometric tests �such as orientation tests�
in�circle tests� comparing segment intersections� 	�� ���
Sometimes� the entries to the determinant are them�
selves algebraic expressions� For instance� the in�circle
test can be reduced to computing a �� � determinant�
whose entries have degree � and thus require �b�O����
bit precision to be computed exactly 	��� Computing
these entries by using modular arithmetic enables in�
circle tests with b�bit precision while still computing
exactly the sign of a �� � determinant�

To compute an n � n determinant modulo mk� we
may use Gaussian elimination with a single �nal divi�
sion� At step i � n of the algorithm� the matrix is�

BBBB�
��� � � � � � �
� �i�i � � �
���

���
���

� �n�i � � �

�
CCCCA

and we assume that the pivot �i�i is invertible modulo
mk� Then we change line Lj to �i�iLj � �j�iLi for all



j � i � �� � � � � n� At step n of the algorithm� we mul�
tiply the coe�cient �n�n by the modular inverse of the

product
Qn��

i�� �n�i
i�i � This gives us the value of the de�

terminant modulo mk� Note that the same method but
with non�modular integers and a �nal division would
have involved exponentially large integers and several
slow divisions at each step� Nevertheless� it is only
the range of the �nal result that matters for modular
computations� This shows a big advantage of modular
arithmetic over other multiprecision approaches�

The pivots should be invertible modulo mk� If mk

is prime� the pivot simply has to be non�zero modulo
mk� The algorithm can be also easily implemented if
mk is a power of a prime� or if mk is the product of two
primes� This would be desirable mainly for takingmk �
�bk for which modular arithmetic is done naturally by
integer processors� though here� special care must be
taken about even output� Other choices of mk do not
seem to bring any improvement�

With IEEE double precision �b � ���� we choose
moduli smaller than ��
� so that ��mk

� �� � ����
Gaussian elimination intensively uses �ad�bc��style op�
erations� here we may apply one �nal modular reduc�
tion� instead of two for each product before subtracting�

This algorithm performs O�n�� operations for each
modulusmi� With Hadamard�s determinant bound and
mk greater than �b��� only k � d�n logne �nite �elds
need to be considered� Hence the complexity of �nding
the sign of the determinant is O�n� log n� single preci�
sion operations� On a O�n� logn��processor machine�
the time complexity drops to O�n�� if we use custor�
mary parallelization of the Gaussian elimination rou�
tine for matrix triangulation �cf� 	
���� which gives us
the value of the determinant� �We apply this routine
in modular arithmetic� with simpli�ed pivoting� con�
currently for all mi�s�� Theoretically� substantial ad�
ditional parallel acceleration can be achieved by using
randomization 	�� ch� ��� 	���� yielding the time bound
O�log� n� on dn� log ne arithmetic processors� and the
processor bound can be decreased further to O�n���
	��
by applying asymptotically fast algorithms for matrix
multiplication�

	 Experimental results

We present several benchmark results of our implemen�
tations of the described methods for computing a deter�
minant in C� and compare them with di�erent existing
packages� Method FP is a straightforward f�p� imple�
mentation of Gaussian elimination� Method LEDA uses
the routine sign�of�determinant�integer�matrix�

of Leda 	��� Method CL has been implemented by
us based on 	�� ��� As we compare with methods
that handle arbitrary dimensions� we did not special�
ize the implementation for small dimensions as is done

n FP MOD CL GMP LEDA
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Table 
� Performance on random determinants�
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Table �� Performance on small determinants�
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Table �� Performance on zero determinants�



in 	�� �this would provide an additional speedup of ap�
proximately ��� Method GMP is an implementation
of Gaussian elimination using the GNU Multiprecision
Package� for dimension lower than �� and an implemen�
tation of Bareiss� extension of Gaussian elimination� for
higher dimensions� Method MOD is an implementation
of modular Gaussian elimination as described in sec�
tion � using our recursive relaxation of the moduli� Of
the other methods available� the lattice method of 	��
has not yet been implemented in dimensions higher than
�� LN 	
�� provides a very fast implementation in di�
mensions up to � but was not available to us in higher
dimensions�

Among the methods that guarantee exact compu�
tation� our implementations are at least as e�cient as
the others� and for certain classes of input they outper�
form all available programs� Furthermore our approach
applies to arbitrary dimensions� whereas methods that
compute a f�p� approximation of the determinant value
are doomed to fail in dimensions higher than 
� because
of over�ow in the f�p� exponent�

All tests were carried out on a ��MHz Sun Sparc �
workstation� using the clock�� function� Each program
is compiled with the compiler that gives best results�
Each entry in the following tables represents the aver�
age time of one run in microseconds� with a maximum
deviation of about ���� We concentrated on deter�
minant sign evaluation and considered three classes of
matrices� random matrices� whose determinant is typ�
ically away from zero� in table 
� almost�singular ma�
trices with single�precision determinant in table �� and
lastly singular matrices with zero determinant in ta�
ble �� The coe�cients are integers of bit�size �� � n
�due to restrictions of Clarkson�s method��

Our results suggest that our approach is comparable�
and for certain classes of input signi�cantly faster than
the examined alternatives that guarantee exact results�
The running times are displayed in tables 
��� �For
small dimensions� specialized implementations can pro�
vide an additional speedup for all methods�� Our code
is reasonably compact and easy to maintain� As an
obvious improvement� with a reasonably accurate f�p�
�lter� the penalty of exact arithmetic can be paid only
for small determinants �tables � and ��� Another im�
provement we plan on exploring is to use parallelization�

Some side e�ects may occur� due to the way we
generate matrices� The code of the modular pack�
age is free� and anyone can benchmark it on the
kind of matrices that he uses� It is available via
the URL http���www�inria�fr�prisme�personnel�

pion�progs�modular�html


 Conclusion

RNS systems have been used in number systems be�
cause they provide a highly parallelizable technique for
multiprecision� As parallel computers are becoming
more available� RNS provide an increasingly desirable
implementation of multiprecision� This comes in sharp
contrast with other multiprecision methods that are not
easily parallelizable� Perhaps the main problem with
RNS is that comparisons and sign computations seem
to require full reconstruction and� therefore� use stan�
dard multiprecision arithmetic� We show that one may
in fact use only single precision and still perform these
operations exactly and e�ciently� In some applications�
the number of moduli may be large� Our algorithms
may be easily implemented in parallel with a speedup
depending almost linearly on the number of processors�

As an application� we show how to compute the sign
of a determinant� This problem has received consid�
erable attention� yet the fastest techniques are usually
iterative and do not parallelize easily� Moreover� they
usually only handle single precision inputs� Our tech�
niques are comparable in speed or even faster than other
techniques �e�g� 	�� �� ���� and can easily handle arbitrar�
ily large inputs�

A central problem we plan to explore further is
to design algorithms that compute upper bounds on
the quantities involved to determine how many moduli
should be taken� For determinants� the static bounds
we use seem to su�ce for applications in computational
geometry 	
��� They might be overly pessimistic in
other areas �such as tolerancing or symbolic algebra�
where the nature of the data or algebraic techniques
might imply much better bounds� A valid approach we
will further study and implement is Newton�s incremen�
tal method of section �� provided that we are willing to
a�ord some small probability of error�
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